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KERNEL-BASED METHODS FOR LEARNING NON-LINEAR SVM 

 
 

Abstract. The paper reports a model-free approach to the design of a non-

linear classifier of SVM type. SVMs are usually viewed as “non-parametric” 

models, where the attribute non-parametric does not refer to the lack of 

parameters in the SVMs models, the learning problem of the SVM’s parameters 

being of crucial importance. The novelty of the proposed method is given by a new 

expression for the bias parameter and a refined version of gradient ascent method 

for solving the SVM - QP problem. The tests pointed out good convergence 

properties and, moreover, the proposed modified variants proved higher 

convergence rates as compared to the standard SMO algorithm. Also, the 

performance of the resulted classifier proves better as compared to the standard 

choice of the bias. 

Key words: Support Vector Machine, kernel functions, gradient ascent  

algorithm. 
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1. Introduction 
 

Let us denote by S a system of unknown input-output dependency, the 

unknown dependency being of deterministic/non-deterministic, linear/non-linear 

type. Besides, it is possible that the output is influenced by the observable input as 

well as a series of unobservable latent factors. There is no information about the 

underlying joint probability distribution corresponding to the (possible) non-linear 

dependency ( )xfy =  between the high dimensional space of inputs x and the 

output space of S, therefore one is forced to perform a distribution-free learning. 

The only information available is a finite size set of training data 

( ) { }{ }NiyxyxS i
n

iiiN ≤≤−∈∈= 1,1,1,,, R  consisting of input-output 

observations. 

The basic components in a probabilistic setting for supervised learning 

from data are Generator (G), System (S) and Learning Machine (LM) (Figure 1), 

where 
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• G is the component responsible with the generation of samples from a n-

dimensional input space. The samples are generated by G according to a 

probabilistic distribution that can be either known (observational setting) 

or unknown (un-observational setting) by the experimenter; 

• S is a system that computes for each input x a m-dimensional output y 

according to an unknown input/output dependency; 

• LM is a component that aims to find out (discover, learn) the unknown 

input/output dependency of S. Each input x is fed into S and LM and the 

component LM emits the m-dimensional output y according to the current 

hypothesis. The computed output y is fed into LM, and the learning 

algorithm implemented at the level of LM re-computes a new hypothesis 

on the basis of the current hypothesis, x, y and y .     

The indexed set of hypothesis Ω  can be finite or infinite 

(numerable/continuous), each particular hypothesis being usually expressed in 

terms of a finite set of parameters.  

In other words, the learning component LM implements an indexed family 

Ω  of possible hypothesis about the unknown input/output dependency of S, and 

the learning algorithm corresponds to a search strategy in the space of hypothesis 

aiming to tune to the available history of S represented by pairs ( )yx,  that were 

explicitly made known to LM. In the particular case when the output space 

is{ }1,1− , we say that the scheme represented in Figure 1 corresponds to a 

classification problem. In case of a two-class classification problem, S 

discriminates between the examples coming from two classes, say 21,hh , that is 

the unknown input-output dependency of S corresponds to the true provenance 

class of the input x, S computes 1=y  if x comes from 1h , and -1 otherwise. The 

component LM is a classifier, that is, to each hypothesis corresponds a decision 

rule concerning the provenance class of the input.  

The simplest classifiers are of parametric type, in this case the decision 

function involves the components of the input and a finite set of parameters, each 

hypothesis corresponding to a particular parameter value. Being given their 
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LM 

y 

x 

y  

Figure 1.The basic components 

of a learning system 
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simplicity, the linear classifiers are of a particular interest, in this case the decision 

concerning the provenance class being based on the value of a linear combination 

of the input components. The parameter corresponding to each hypothesis is the set 

of coefficients involved in the decision function. In other words, in case of linear 

classifiers each hypothesis corresponds to a hyperplane in the space of inputs 

assumed to separate the two classes. Usually, only incomplete information about 

the classes 21,hh is available, as for instance characterizations in probabilistic or 

fuzzy terms or finite size sets of examples such that for each example, the true 

provenance class is known. The concept of Support Vector Machine (SVM) was 

introduced by Vapnik and Chervonenkis (Vapnik, 1998), and the problem of 

learnig SVM is, from mathematical point of view, a quadratic problem (QP) 

(Vapnik, 1998; Abe, 2010). 

SVMs are usually viewed as “non-parametric” models, where the attribute 

non-parametric does not refer to the lack of parameters in the SVMs models, the 

learning problem of the SVM’s parameters being of crucial importance. However, 

unlike in classic statistical inference, the parameters are not predefined, their 

number depending essentially on the particular training data, that is the parameters 

of SVMs are data driven and define the capacity of the model to match to data 

complexity.  

In the simplest pattern recognition task, SVM uses a linear separating 

hyperplane to determine a classifier with a maximum margin. In order to 

accomplish this aim, the learning problem for the SVM becomes a constrained 

non-linear optimization problem, the cost function being quadratic and the 

constraints of linear type. In more complex cases, when the classes among which it 

is intended to discriminate can not be linearly separated in the initial input space, 

the first step is to transform the original input space into a higher dimensional 

feature space by using various non-linear mappings; polynomial, sigmoid, radially 

symmetric functions, multiquadrics of different spline functions, in the hope that 

the data would become linearly separable in the resulted new higher dimensional 

feature space. 

Unfortunately, in spite of the advantage that the images of the initial non-

linearly separable data in the feature space correspond to a linearly separable 

training sequence, the computational complexity could become intractable. The 

“kernel trick” prevents the increase of computational complexity and consists in 

using kernels that hide both the explicit expression of the feature extractor (the 

transform) and the dimension of the feature space. Moreover, the computation in 

the feature space can be expressed in terms of computations in the initial space, 

that is the computational complexity is not increased. 

The work reported in this paper is a model-free approach to the design of a 

non-linear classifier of SVM type.  

 

2. Kernel-based approaches in the design of a SVM classifier 
One of the fundamental mathematical results underlying the kernel-based 

learning theory is the celebrated Mercer’s theorem.  
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Definition. Let A  be a compact subset of R
n
, for some ∈n N

*
, and nσ  

the Lebesque measure on ( )nB,n
R , where nB stands for the σ -algebra of n-

dimensional Borelian sets. The symmetric function →× AAK : R is said to be a 

positive defined kernel on A if the following conditions hold, 

 C1. for any finite number N and for any finite set of points 

{ } ANixi ⊂= ,...,1, and for any real numbers { }Niai ,...,1, = ,  

                 ( ) 0,

1,

≥∑
=

N

ji
jiji xxKaa          

C2. ( ) ( ) ( ) ∞<∫ ∫A A nn ydxdyxK σσ,2
     

If K is a positive defined kernel on A, then it induces the integral operator 

( ) ( )nn RR 22: LLLK →  given by, for any ( )nR2Lf ∈ , 

( )( ) ( ) ( ) ( )∫=
nR

tdtftxKxfL nK σ,  

The integral operator KL is called the Hilbert-Schmidt operator induced by 

the kernel K. It can be proved (Mercer, 1908) that KL is a self-adjoint, positive, 

compact operator having a countable system of non-negative eigenvalues 

{ } ∞= ,1kkλ satisfying ∞<∑
∞

=1

2

k
k

λ and the corresponding ( )AL2
-normalized 

eigenfunctions { } ∞= ,1kkφ form an orthonormal basis of ( )AL2
. 

Theorem Mercer. Let A be a closed subset of R
n
 and K be continuous 

symmetric function such that C1 and C2 hold. Then, for any ∈yx,  R
n
 ,  

             ( ) ( ) ( )∑
∞

=
=

1

,
k

kkk yxyxK φφλ ,             (1) 

where  the series converges absolutely for each pair ( ) AAyx ×∈, and uniformly 

on each compact subset of A.  

 

Note that Mercer’s theorem still holds if A a finite set, as for instance 

{ }nA 1,1−=  and K is pointwise-defined positive defined.  

Let →Ag : F, ( ) ( )( ),...2,1, == kxxg kkφλ , where F is referred as the 

feature space. Each eigenfunction kφ is conventionally referred as a selected 

feature (attribute or characteristic), the corresponding eigenvalue kλ being taken as 

the value of the feature kφ for the example x. The function g is called a feature 
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extractor, for each ∈x  R
n
, ( )xg is the representation of the example x in the 

feature space. 

By construction, the dimensionality of F is determined by the number of 

strictly positive eigenvalues which can be finite or infinite. For instance, in case of 

Gaussian kernel, the dimensionality of F is infinite, that is, for any Ax∈ , ( )xg is 

a denumerable sequence of real numbers.  

In the particular case when the number of strictly positive eigenvalues of 

the kernel K is finite (as it is for instance the case of polynomial kernels), say m, 

then the dimensionality of F equals m and conventionally ( )xg is represented as a 

m-dimensional column vector and  for any ( ) AAyx ×∈, , the equality 

( ) ( ) ( ) ( ) ( )yxKyxygxg
m

k
kkk

T ,
1

== ∑
=

φφλ  holds. For simplicity sake, in the more 

general cases when the dimensionality of F is infinite, we extend the notation to 

represent the inner product defined on F by the series  

      ( ) ( ) ( ) ( ) ( )yxKyxygxg
k

kkk
T ,

1

== ∑
∞

=
φφλ .       (2) 

It is interesting to point out the relations of kernel-based approaches with 

Principal Component Analysis (PCA). Let X be a n-dimensional random vector and 

S the autocorrelation matrix of the repartition of X, ( )TXXES = . Then the 

spectral representation of S is 

                                      ∑
=

=
n

i

T
iiiS

1

ψψλ    (3) 

where { }nλλλ ,...,, 21 are the eigenvalues and { }nψψψ ,...,, 21 is an orthogonal 

basis of unit eigenvectors of S. The random vector X is represented in terms of 

{ }nψψψ ,...,, 21 as, 

                                      ∑
=

=
n

i
iiYX

1

ψ        (4) 

where the random variables iY ’s are linear combinations of the components of X, 

niXY T
ii ,...,2,1, ==ψ , where each eigenvector iψ  is a feature and iY is the 

value of this feature for X. Let ( )nng φλφλφλ ,...,, 2211= , where :iφ  

R
n
→R, ( ) xx T

ii ψφ = . Then  

( ) ( ) ( ) ( ) ( ) SyxyxyxygxgyxK T
n

k

T
kkk

T
n

k
kkk

T =









=== ∑∑

== 11

, ψψλφφλ  (5) 

is a positive defined kernel on any A compact n-dimensional Borelian set. Indeed, 
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for any finite number N and for any finite set of points { } ANixi ⊂= ,...,1, and 

for any real numbers { }Niai ,...,1, = ,  

    ( ) 0,
111,1,

≥
























== ∑∑∑∑

====

N

j
jj

T
N

i
ii

N

ji
j

T
iji

N

ji
jiji xaSxaSxxaaxxKaa          

because S is a symmetric positive defined matrix. 

 Also, for any compact set A, ( ) ∞<∫ ∫A A
dxdyyxK ,2

 holds because K  is 

a continuous function. 

 Obviously, if g is a particular selected feature extractor →Ag : F, where 

the dimensionality of F is possibly infinite, then the function K defined by (2) is a 

positive defined kernel. The kernel “trick” consists in assuming a particular 

expression for a positive defined kernel K, as for instance a polynomial or 

exponential expression. According to the Mercer theorem, there exists a feature 

extractor g such that (2) holds, where neither the explicit functional expression of g 

nor the dimensionality of F are known. However, this information is not really 

needed, because the computations involving the kernel K are carried out in the 

initial n-dimensional space.  

Some of the most frequently used kernels are presented in Table 1. 

 

      Table 1. Standard expressions of kernels 

 

 ( )', xxK  

Polynomial of degree d ( ) 1,1' ≥+ dxx
dT

 

Gauss RBF  ( )2
'exp xx −−γ  

Exponential RBF ( )'exp xx −− γ  

               

Note that the values of ( )', xxK  increases as x and x’ become “closer”, that 

is the kernels given in Table 1 correspond to some similarity measures on R
n
.  

In case of a two-class discrimination problem, being given a finite set of 

examples coming from these classes such that for each example the true 

provenance class is known, the problem is to find a classification decision function 

that correctly identifies the true provenance class for each particular example. 

Moreover, in case the only information available about the classes is given by a 

finite set of examples, the classification decision function is aimed to posses 

generalization capacities, that is, to correctly identify the provenance class for new, 

unseen data. The simplest classification models correspond to linear decision 

functions, in this case the surface separating the regions assigned to the classes 

being a hyperplane. Let ( ) { }{ }NiyxyxS i
n

iiiN ≤≤−∈∈= 1,1,1,,, R  be the set 

of labeled examples, where the value of iy is the indicator for the provenance class 
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of the example ix . We say that NS  is linearly separable if there exists an 

hyperplane ( ) 0:, =+ bxwbwH T
 that separates the positive and negative 

examples, that is ( ) Nibxwy i
T ≤≤>+ 10i . If ( )bw,  were known then the 

classification decision function wbh , : R
n { }1,1−→ , 

( )=xh wb,






<+−

>+

0,1

0,1

bxw

bxw

T

T

would correctly identify the true provenance class 

for each example ix . However, usually, the information whether NS is or is not 

linearly separable is not available and, moreover, even when NS is linearly 

separable the parameters ( )bw,  are unknown. If NS is linearly separable then the 

information contained by NS should be used to find the parameters ( )bw,  such 

that ( )bwH ,  correctly separates positive and negative examples. When either 

NS is not linearly separable or it is not known how NS is, the aim is to look for a 

feature extractor g in the hope that, in the feature space F, the representations of the 

examples of NS are linearly separable, that 

is ( ) ( )( ){ } ∅≠≤≤>+∈∈ Niybxgwbwbw ii
Tm 1,0,,, RR . Being given that in general g 

is a non-linear function, in such a case, if NS  is linearly separable in the feature 

space, then the surface correctly separating the classes in the initial space is not 

linear anymore. Using the kernel “trick”, instead of looking for a suitable feature 

extractor g, different expressions of kernels can be considered.  

For given g, in order to assure the best generalization capacity of the 

classifier, that is to predict well the true provenance class for new test examples, 

the parameters ( )bw,  should be such that the surface of equation 

( ) ( ) 0:, =+ bxgwxH T
wb  separates the representations in the feature space of the 

positive and the negative examples from NS  with the largest “gap” between them, 

that is the minimum distance of the representations to the hyperplane ( )bwH ,  

should be maximized. 

The SVM approach to the computation of an optimal margin classifier 

yields to the quadratic programming (QP) problem (Abe, 2010), 

( )( )







≤≤≥+ Nibxgwy

w

i
T 1,1

2

1
minimize

i

2

                         (6) 
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The dual optimization problem yields to the QP problem on the objective 

function ( )αQ (Abe, 2010), 

  

( ) ( )

















≤≤≥

=

−=

∑

∑∑∑

=

= ==

Ni

y

xxKyyQ

i

i

N

i

N

j
jijiji

N

i
i

1,0

0

,
2

1
maximize

N

1i
i

1 11

α

α

αααα

                   (7) 

If ( )TN
**

2
*

1
* ,...,, αααα =  is a solution of (7), then the optimal value 

of the parameter w is ( )∑
=

=
N

i
iii xgyw

1

** α . The examples ( )ixg  for which 

0* ≠iα  are referred as support vectors. The parameter b can not be explicitly 

computed by solving the SVM problem, a convenient choice of the bias b being 

derived in terms of the support vectors and
*w . The value of the bias b  is usually 

set to  

( ) ( )
















+−=

=−=

i
T

y
i

i
T

y
i

xgwxgwb

ii

*

1

*

1

* minmax
2

1
.                       (8) 

Apparently the explicit functional expression of the feature extractor g is 

required in order to determine the optimal classification decision function. 

However, this information is not needed because, using straightforward 

computations, the parameters ( )**,bw  can be expressed only in terms of the kernel 

K. Indeed, since ( )∑
=

=
N

j
jjj xgyw

1

** α  , we get   

( ) ( ) ( ) ( )∑∑
==

==
N

j
jjj

N

j
j

T
jj

T xxKyxgxgyxgw

1

*

1

** ,αα , that  is 

( ) ( )
















+−= ∑∑
=

=
=

−=

N

j
ijjj

y
i

N

j
ijjj

y
i

xxKyxxKyb

ii
1

*

1
1

*

1

* ,min,max
2

1
αα  and the equation of the 

hyperplane ( )xH
wb ** ,

 is  
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( ) ( ) ( ) ( ) 0,min,max
2

1
,:

1

*

1
1

*

1
1

*
, ** =

















+− ∑∑∑
=

=
=

−=
=

N

j
ijjj

y
i

N

j
ijjj

y
i

N

j
jjjwb

xxKyxxKyxxKyxH

ii

ααα  (9) 

Consequently, the computation of the optimal margin classifier is reduced 

to solving the QP problem (7). There have been proposed a series of methods to 

solve (7) as for instance Sequential Minimal Optimization (SMO) (Platt, 1998), 

decomposition methods (Smola, Schılkopf, 1999) and (Laskov, 2002), and 

methods to solve the least squares SVM formulations (Cawley, Talbot, 2002), 

(Keerthi, Shevade, 2003) and (Suykens, De Brabanter, Lukas, 2002) as well as 

software packages as SVM
light 

(Joachims,1998), a new class of approaches of 

solving the QP optimization problem in learning SVMs being developed recently 

in (Steinwart, Hush, Scovel, 2011) and (Zhang, 2011). Several attempts have been 

proposed to design a SVM type classifier in case the training data is not linear 

separable yielding to the soft margin linear classifiers L1-SVM and  L2-SVM 

(Abe, 2010), fuzzy SVM (Lin, Wang, 2002; Tsujinishi, Abe, 2003). The aim of the 

research reported in the next section of the paper is to investigate the performance 

of new refined variants of gradient ascent type using kernels algorithms in learning 

SVMs by developing a comparative analysis against the standard SMO algorithm. 

 

3. Heuristic Learning of the Optimal Margin Classifier  
 

If ( ) { }{ }NiyxyxS i
n

iiiN ≤≤−∈∈= 1,1,1,,, R  is the given finite set of 

labeled examples coming from the classes 21,hh , for simplicity sake we assume 

that the first m examples come from the first class (that is their labels are 1) and the 

next mN − examples come from the second class (all of them are labeled by -1). 

The entries of the gradient ( )ααQ∇  and the Hessian matrix 

( )( ) ( )

pkpk

Q
QH

,

2

αα
α

α
∂∂

∂
= of the objective function in the QP-problem (7) are,  

(
( ) ( ) NixxKyy

Q N

i
ikiik

k

≤≤−=
∂
∂

∑
=

1,,1
1

α
α
α

,                       (10) 

and  

( ) ( )pkkp
pk

xxKyy
Q

,
2

−=
∂∂

∂
αα
α

      (11) 

respectively. 

Obviously, ( )( )αQH is a negative semi-defined matrix. 

 Let 0>ρ  be a fixed learning rate. 
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Since the standard updating rule  

          ( ) oldQold

ααα αραα
=

∇+=      (12)  

in gradient ascent approach does not generally yield to a parameter that satisfies the 

constraint 0
N

1i
i =∑

=
iyα , a modified learning rule of gradient ascent should be 

considered instead.  

Briefly, in (Cocianu, State, Vlamos, 2011), we proposed that the updating 

step should be performed as follows. 

Assume that 1p , 2p  are the components of the current parameter vector 

oldα selected for being updated, Npmmp ≤≤+≤≤ 21 1,1 . If 1ρ  is a 

weighting parameter expressing the relative “influence” of 

( )
old

p

Q
ααα

α
=∂

∂

1

and
( )

old

p

Q
ααα

α
=∂

∂

2

 to the direction of the updating displacement, 

then the updated parameter satisfying the constraint 0
N

1i
i =∑

=
iyα  is 

( )TNαααα ,...,, 21= , where: 

21,,1, ppiNiold
ii ≠≤≤=αα         (13) 

( ) ( ) ( )
2,1,1

21

11 =












∂
∂

−+
∂
∂

+=
==

i
QQ

oldold
ii

pp

old
pp αααα α

α
ρ

α
α

ρραα ,          

10 1 ≤≤ ρ          (14) 

Consequently, the indices 1p , 2p  should be selected such that to maximize the 

difference ( ) ( )oldQQ αα − . Using the first order approximations, the indices 1p , 

2p  should be determined such that the following conditions hold (Cocianu, State, 

Vlamos, 2011), 

            Npmmp ≤≤+≤≤ 21 1,1 ,    (15)     

     

( ) ( ) ( ) ( ) ( )
01

2121

11 >














∂
∂

+
∂
∂













∂
∂

−+
∂
∂

==== oldoldoldold

pppp

QQQQ
αααααααα α

α
α
α

α
α

ρ
α
α

ρρ

 and 

     ( ) ( )oldQQ αα −  is maximized. 
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The search process is over when at least one of the conditions  

( ) ( ) ( ) ( ) ( )
01

2121

11 ≤














∂
∂

+
∂
∂













∂
∂

−+
∂
∂

==== oldoldoldold

pppp

QQQQ
αααααααα α

α
α
α

α
α

ρ
α
α

ρρ

 for all Npmmp ≤≤+≤≤ 21 1,1 , and ( ) ( ) εαα <− oldQQ ,  respectively 

holds, where 0>ε  is a given threshold, in each case the current value of the 

parameter α  being taken as an approximation of a local maximum point of the 

objective function. 

 

4. A refined gradient ascent search method 

The learning rate ρ  and the weight 1ρ should be taken such that the 

search process is optimized from both point of views, accuracy and efficiency. In 

order to obtain good approximations of the maxima values of the objective 

function, small values of the learning rate are recommended, for instance in our 

tests we used [ ]26 10,10 −−∈ρ .  

The weight parameter 1ρ should be taken as to include some information 

about the statistical properties of the subsets of examples coming from the two 

classes, as for instance class variability and inter-class distance.  

The expression of 1ρ proposed in our work includes the information 

contained by the first and the second order sample moments computed in the 

unknown feature space F. Let us denote by 2,1, ˆ,ˆ gg µµ  the sample means and 

2,1,
ˆ,ˆ
gg ΣΣ  the sample covariance matrices. We denote by K the kernel generated 

by g, that is ( ) ( ) ( )'', xgxgxxK
T= .Since we assumed that the first m examples 

come from the first class and the next mN − examples come from the second 

class, we get, 

( )∑
=

=µ
m

i
ig xg

m 1
1,

1
ˆ , ( )∑

−

=
+−

=µ
mN

i
img xg

mN 1
2,

1
ˆ  

( )( ) ( )( )∑
=

µ−µ−
−

=Σ
m

i

T

gigig xgxg
m 1

1,1,1,
ˆˆ

1

1ˆ , 

( )( ) ( )( )∑
−

=
++ µ−µ−

−−
=Σ

mN

i

T

gimgimg xgxg
mN 1

2,2,2,
ˆˆ

1

1ˆ . 

( )
2,1,

ˆˆˆ

ˆˆ

,,,

2

,,
, =

Σ
= i

igig
T

ig

ig
T

ig
ig

µµ

µµ
θ        (16) 

Let the weight parameter 1ρ be defined as:  
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2,1,

2,

1
gg

g

θθ

θ
ρ

+
=      (17) 

 

Lemma. The expression of 1ρ in terms of the kernel K is: 

( ) ( )
( )( )

( )
( )( )

( ) ( )
( )( )∑∑

∑

−

==

−

=

−−−+−

−−−

=

mN

k

g

m

k

g

mN

k

g

kS

mNmN

kT

mm

kS

mNmN

1

2

4

2,2

1

2

4

1,2

1

2

4

2,2

1
ˆ

1
ˆ

1

ˆ
1

µµ

µ

ρ ,    (18) 

where 

 

( ) ( ) ( )∑ ∑
= =









−=

m

i

m

p
piki xxK

m
xxKkT

1 1

,
1

,  and 

( ) ( ) ( )∑ ∑
−

=

−

=
++++ 









−
−=

mN

i

mN

p
pmimkmim xxK

mN
xxKkS

1 1

,
1

,  

 

Proof. Using straightforward computation, we get, 

 

( )( ) ( ) ( ) ( )( )
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Note that the weight coefficient 
1

ρ can be also expressed as, 
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Being given the lack of theoretical arguments to justify conclusions about 

the performance of the proposed method, an experimental analysis should be 

developed instead. Our tests aimed to establish on experimental basis conclusions 

concerning: 

1. The dependency of the number of iterations on the parameterγ , required 

to obtain significant accuracy. The comparative analysis involved the standard 

SMO method (Platt, 1998), the gradient ascent in the initial space and the modified 
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gradient ascent algorithm in the feature space using the weight coefficient
1

ρ , both 

methods being applied in the feature space. 

2. The performance analysis of the resulted classifier expressed in terms of 

the recognition rates. 

 

The evaluation of distances between two normal n-dimensional classes 

( ) 2,1,, =Σ iN iiµ  is performed in terms of the Mahalanobis distance, 

( ) ( ) ( ) ( )21
1

212121, µµµµ −Σ+Σ−= −T
hhd . 

In case of two Bernoullian samples 
( ) ( )21 ,SS of sizes 21, NN  coming from these 

classes, the distance between samples is evaluated two ways, the former being the 

sample Mahalanobis distance, 

( ) ( ) ( ) ( )21

1

212121, ˆˆˆˆˆˆ,ˆ
21

µµµµ −Σ+Σ−=
−T

NN hhd , where ii Σ̂,µ̂ are 

the sample mean and sample covariance matrix respectively, and the latter being 

the minimum value of the distances between pairs of examples coming from 

different classes,  
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Sx
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∈
∈

2

121
min,

~
21,  

The variability of a sample coming from a certain class can be numerically 

expressed many ways. We considered the indicator given by the mean distances 

between the feature vectors representing examples coming from that class to 

quantitatively express the variability within the sample. If C is the subset of 

NS containing the examples coming from one of the labeled classes, then the 

measure of the variability of C is, 

( ) ( ) ( )∑
∈
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Cxx
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C
,

2
2

1
var   (19) 

             

that can be expressed in terms of the kernel function as (State, Cocianu, Mircea, 

2012), 
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Let −+ CC , be the subsets of NS containing the examples labeled by 1 and -1 

respectively. We express the overall variability of NS by , 
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Based on the idea that the classification of new samples in the class maximum 

variability should be “encouraged”, we take the bias b̂  as  (State, Cocianu, Mircea, 

2012) 
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5. Experimental analysis of the performance of the learning scheme 

based on the weight 1ρ in case of Gaussian kernel 

The tests were performed on simulated data coming from two-dimensional 

normal distributions, the feature extractor g corresponding to the RBF kernel 

( ) { }2
'exp', xxxxK −−= γ , 0>γ , aiming to iteratively solve the QP-problem 

(7). In our tests the generated data for the learning phase were linearly separable.  

The evaluation of the empirical recognition rates of the resulted classifier 

was performed on non-linearly separable new test data randomly generated from 

the same classes.  

The tests were performed according to the scheme presented in the 

following. The classes correspond to two dimensional Gaussian repartitions 

( ) 2,1,, =Σ iN iiµ , where 

( )T5.021 =µ , ( )T75.012 −=µ , 








−

−
=Σ

1646.00007.0

0007.0063.0
1









=Σ

1063.0017.0

017.00666.0
2  The sample of learning data consisted of 60 and 70 

examples coming from these classes respectively. The Mahalanobis distance 

between the classes is ( ) 3844.12, 21 =hhd , the empirical Mahalanobis distance 

computed for the learning data is ( ) 334.12,ˆ
21, =− hhd mNm , and the minimum 

distance between examples coming from different classes is 

( ) 3363.0,
~

21, =− hhd mNm . The learning data and the hyperplane computed 

according to the proposed method are presented in Figure 1. 
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Figure 1. The learning data and the hyperplane computed according to the 

proposed method 

 

 The solution of the QP problem (7) was adaptively learned both ways, 

using the standard SMO algorithm and the proposed variant of gradient ascent 

method for different values of the parameter γ , and some of the results being 

reported in Table 2. 

 

Table 2. Comparative analysis of the proposed method to the standard SMO 
 
γ  The number of 

iterations 

Recognition rates for the 

first    class 

Recognition rates for the 

second class 

 Standard 

SMO 

algorithm 

The 

proposed 

variant of 

gradient 

ascent 

method 

Standard   

SMO 

algorithm 

The proposed 

variant of 

gradient 

ascent method 

Standard 

SMO 

algorithm 

The 

proposed 

variant of 

gradient 

ascent 

method 

0.15 159 194 0.9996 0.9872 0.9134 0.9912 

0.3 175 103 0.9992 0.9878 0.9254 0.9932 

0.5 216  65 0.9986 0.9886 0.9448 0.9938 

0.8 242  46 0.999 0.9892 0.9652 0.9938 

1 274  41 0.9984 0.987 0.9744 0.993 

1.2 314  37 0.998 0.99 0.9806 0.9956 

1.4 328 35 0.9944 0.9894 0.9836 0.993 

 

The variation of the required number of iterations on the parameter γ  in 

case the solution of the QP problem (7) is computed according to the standard 

SMO algorithm and the proposed method respectively is shown in Figure 3. 
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Figure 3. The dependency of the number of iterations on the parameter γ  

 

The performance of the resulted classifier was empirically evaluated on 

new non-linearly separable test data containing 5000 examples coming from each 

class, where the bias b is given by (8) and (22) respectively. The results are 

represented in Figure 4 and Figure 5. In Figure 4, the values of the recognition 

rates are shown for different values of the parameter γ  and the two choices of the 

bias b, where the hyperplane was computed according to the proposed method. In 

Figure 5 similar results are shown in case the hyperplane was computed by the 

standard SMO algorithm. 
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Figure 4. The recognition rates for the classifier computed according to the 

proposed method 

 
Figure 5. The recognition rates for the classifier computed by the standard 

SMO 
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 The tests entailed a series of conclusions that are briefly presented in the 

following.  

a) Concerning the dependency of the number of iterations on the parameter γ  in 

case of the standard SMO method as compared to the proposed method, and 

comparable accuracy in terms of the values of the objective function, we conclude: 

1. Significant improvement is obtained in case of the proposed method for 

values of 5.0≥γ , while the standard SMO seems to perform better for 

smaller values of γ . 

2. The proposed method computes an approximation of the solution of (7) 

significantly faster than the standard SMO algorithm, at comparable 

accuracy expressed in terms of the values of the objective function. 

 

b) Concerning the performance of the resulted classifier expressed in terms of the 

recognition rates, we conclude 

1. The recognition rates are comparable for both classifiers. It seems that in 

case of the proposed method the values of the recognition rates 

corresponding to the classes are closer as compared to the classifier 

computed by standard SMO algorithm, where the value of the recognition 

rate corresponding to one class is significantly larger than the second one. 

A possible explanation of this effect could be related to the fact that the test 

data coming from the classes are of different variability. 

2. The performance of the classifier computed by the proposed method is not 

influenced by the values of γ , while in case of the standard SMO it seems 

that better recognition rate is obtained for larger values of γ .  

 

6. Conclusions 

The research reported in the paper proposes a modified gradient ascent 

method for solving the dual QP problem of nonlinear SVM. The proposed method 

uses the weight parameter 1ρ  to tune the direction of the search displacement to 

the particular training sequence and the computation rule of the bias based on class 

variability indices. The method is not mathematically founded, therefore 

conclusions on its performance can be derived on experimental basis only. The 

tests pointed out good convergence properties and, moreover, the proposed 

modified variants proved higher convergence rates as compared to the standard 

SMO algorithm. Also, the performance of the resulted classifier proves better as 

compared to the standard choice of the bias.  

   

REFERENCES 

 

[1] Abe, S.(2010), Support Vector Machines for Pattern Classification, Springer; 

[2] Cawley, G.C., Talbot, N.L.C. (2002), Improved Sparse Least Squares 

Support Vector Machines.  Neurocomputing 48 (1-4); 



 

 

 

 
Catalina Cocianu, Luminita State 

___________________________________________________________________ 

  

[3] Cocianu, C ., State, L., Vlamos, P.(2011),  A New Method for Learning the 

Support Vector Machines;  Proceedings of the 6
th
 International Conference on 

Software and Data Technology, ICSOFT 2011, INSTICC Press, pp. 365-370; 

[4] Keerthi, S.S., Shevade S.K. (2003), SMO Algorithm for Least Squares SVM 

Formulations. Neural Compt. 15 (2); 

[5] Joachims, T. (1998), Making Large-Scale SVM Learning Practical, in 

Schılkopf, B., Burges, C.J., Smola, A.J. eds. Advances in Kernel Methods – 

Support Vector Learning, Cambridge, MA, MIT Press; 

[6] Laskov, P. (2002), An Improved Decomposition Algorithm for Regression 

Support Vector Machines. Mach. Learning, 46; 

[7] Lin C.F., Wang S.D. (2002), Fuzzy Support Vector Machines; Transactions 

on Neural Networks, Vol. 13, pp. 464-471; 

[8] Platt, J. (1998), Fast Training of Support Vector Machines Using Sequential 

Minimal Optimization. In: Advances in Kernel Methods – Support Vector 

Learning, Cambridge, MA, MIT Press. (Schılkopf, B., Burges, C.J., Smola, 

A.J. eds.); 

[9] Smola, A.J., Schılkopf, B., Müller, K.-R. (1998), General Cost Functions 
for Support Vector Regression. In: Proc. of the Ninth Australian Conf. in 

Neural Networks, Brisbane, Australia; 

[10] State, L.,Cocianu, C., Mircea, M.(2012),  Heuristic Attempts to Improve 

the Generalization Capacities in Learning SVMs ; Proceedings of 13
th
 ACIS 

International Conference on Software Engineering, Artificial Intelligence, 

Networking and Parallel/Distributed Computing (SNPD 2012), August, Kyoto, 

Japan, IEEE Computer Society Press, in press; 

[11] State, L., Cocianu, C., Vlamos, P.(2008),  A  New Unsupervized 
Learning Scheme to Classify Data of Relative Small Volume; Economic 

Computation and Economic Cybernetics Studies and Research,  ASE 

Publishing, ISSN 0424-267X; 

[12] Steinwart I., Hush D., Scovel C. (2011), Training SVMs Without Offset; 

Journal of Machine Learning Research 12  pp. 141-202; 

[13] Suykens, J.A.K., De Brabanter J., Lukas, L. (2002), Weighted Least 

Squares Support Vector Machines: Robustness and Sparse Approximation. 

In: Neurocomputing special issue; 

[14] Shawe-Taylor, J., Cristianini, N. (2000), Support Vector Machines and 

Other Kernel-based Learning Methods; Cambridge University Press; 

[15] Tsujinishi D, Abe S.(2003),  Fuzzy Least Squares Support Vector 

Machines for Multiclass Problems; Neural Networks; pp. 785-792 ; 

[16] Vapnik, V. (1998), Statistical Learning Theory. John Wiley, N.Y.; 

[17] J. Zhang (2011), Optimization of Kernel Function Parameters SVM 

Based on the GA .Advance Materials Research, Jan. pp. 4124-4128, doi: 

10.4028/www.scientific.net/AMR.433-440.4124. 

 

 

 


