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Abstract. This paper employed the TVP-VAR frequency connectedness method to analyse 
the dynamic spillover effects between China's environmental governance policy uncertainty 
(EGPU) and new energy stock markets. Drawing on high-frequency data from 2015 to 2023, 
the study reveals that significant risk contagion effects exist within new energy markets, 
which primarily operate through short-term channels. Static connectedness analysis 
confirms the dominant role of short-term spillover effects. Environmental governance policy 
uncertainty functions as a net spillover receiver during most periods, suggesting that new 
energy market development conditions inversely influence policy uncertainty perceptions. 
Different new energy sub-sectors play differentiated roles within the system: power 
equipment manufacturing enterprises primarily transmit risk, whilst emerging technology 
enterprises predominantly absorb system shocks. Dynamic analysis reveals significant time-
varying characteristics of spillover effects, with the Total Connectedness Index (TCI) 
reaching a peak of 65% during the COVID-19 period in 2020, reflecting the amplification 
effect of extreme events on systemic risk. The research findings provide important reference 
points for investors' risk management and asset allocation strategies, as well as for 
policymakers' green finance policy design. 
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1. Introduction 
 
As global climate change issues have intensified and the concept of sustainable 

development has gained a deeper acceptance, the new energy industry has emerged 
as a crucial strategic pillar for economic transition and green development worldwide 
(Androniceanu and Sabie, 2022). Simultaneously, as the world's second-largest 
economy and the largest carbon emitter, China assumes significant responsibility in 
driving the necessary energy structure transformation and achieving its carbon peak 
and carbon neutrality targets (Liu et al., 2022). Moreover, China's renewable energy 
market represents the world's largest in terms of installed capacity and investment 
scale, with its policy framework serving as a reference model for numerous 
developing economies pursuing green transitions. Examining the Chinese context 
thus provides valuable insights with broader applicability to understanding policy-
market interactions in rapidly evolving renewable energy sectors globally (Zhao et 
al., 2022). Since the 2006 promulgation of the Renewable Energy Law, the Chinese 
government has successively introduced a series of environmental and new energy 
development policies. These policies, which include renewable energy development 
plans, the construction of a carbon emissions trading system, new energy vehicle 
promotion policies, and green finance policies, have greatly accelerated the rapid 
development of China's new energy industry (Guilhot, 2022; Sawin, 2012). 

From an industry development perspective, China’s new energy sector has 
achieved remarkable accomplishments under concerted policy guidance. By 2024, 
projections suggest that China's new renewable energy capacity additions will 
account for an estimated 86% of the nation’s total new power capacity additions, 
with the cumulative renewable energy capacity representing 56% of the national total 
(Xinhua, 2025). Furthermore, new energy vehicle production and sales have 
consistently maintained global leadership for several consecutive years, and the 
power battery industry chain has become increasingly sophisticated. However, 
whilst the industry has experienced this rapid development, new energy enterprises 
simultaneously face unprecedented challenges stemming from policy uncertainty 
(Dong et al., 2022). 

This policy uncertainty manifests itself across multiple critical dimensions. 
Firstly, the dynamic adjustment of policy targets is evident. Renewable energy 
development goals, carbon emission peak timetables, and new energy vehicle 
promotion targets, for instance, undergo regular adjustments and optimisation over 
different periods (Zhang and Qin, 2018). Secondly, the policy instruments 
demonstrate diversity and complexity, involving the combined use and dynamic 
modification of various policy tools such as fiscal subsidies, tax incentives, carbon 
trading schemes, and green bonds. Thirdly, regional variations exist in policy 
implementation, where significant differences are observed across distinct regions 
regarding the intensity, standards, and timing of environmental policy execution. 
Finally, the international policy environment exerts a notable influence, which 
includes the impacts of international carbon neutrality commitments, trade policy 
shifts, and the coordination of technology standards. 
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As policy-sensitive entities, the development trajectories of new energy 
enterprises are intimately linked to policy changes. The presence of policy 
uncertainty affects enterprise behaviour through several channels. Regarding 
investment decisions, policy uncertainty elevates enterprises’ anticipated risk 
concerning future returns, frequently leading to delayed or insufficient investment 
(Li et al., 2023). For technological innovation, uncertainty in policy standards and 
directional mandates influences enterprises’ research and development investment 
and subsequent technology pathway choices (Hao et al., 2021). Within market 
positioning, regional policy disparities impact enterprises' capacity allocation and 
market expansion strategies. Finally, concerning financial performance, policy 
changes directly affect enterprises' profitability and overall cash flow conditions (Yu 
et al., 2024). 

Crucially, China's new energy industry is currently undergoing a critical 
transition from a policy-driven to a market-driven development model. With the 
gradual phase-out of subsidy policies, the advent of the grid parity era, and 
intensifying market competition, new energy enterprises confront increasingly 
complex operating environments (Hoang et al., 2021; Wang and Liu, 2024). Against 
this backdrop, conducting an in-depth study of the impact mechanisms of 
environmental policy uncertainty on new energy enterprises will not only assist 
enterprises in better navigating policy risks and formulating scientific business 
strategies, but will also provide vital reference material for policymakers aiming to 
optimise policy design and enhance policy effectiveness. 

Through a systematic review of existing literature, several gaps and deficiencies 
were identified in the research on the impact of policy uncertainty on new energy 
enterprises. (1) In terms of research content, the existing literature mainly 
concentrated on macroeconomic levels and traditional industry sectors, with 
relatively limited research specifically targeting policy uncertainty in the new energy 
industry. Most studies focused on general policy uncertainty or economic policy 
uncertainty, lacking in-depth analysis of environmental policy uncertainty as a 
specific domain. Even when few studies involved the new energy industry, they 
mostly employed industry-level aggregated data, lacking micro-level analysis of 
specific enterprises. (2) In terms of research methods, existing studies primarily 
adopted static analysis methods, unable to effectively capture the time-varying 
characteristics and dynamic evolution processes of policy uncertainty impacts on 
enterprises. Traditional panel data regression models and event study methods, 
whilst able to identify average effects of policy uncertainty, were difficult to reveal 
the variation patterns and transmission mechanisms of such impacts across different 
periods. Additionally, existing research often treated policy uncertainty as an 
exogenous variable, lacking in-depth analysis of the interactive mechanisms between 
policy uncertainty and enterprise performance. (3) In terms of sample selection, 
existing research mostly employed industry average data or single enterprise cases, 
lacking comparative analysis and differentiated research on different types of new 
energy enterprises. Significant heterogeneity existed within the new energy industry, 
with enterprises in different sub-sectors such as hydropower, nuclear power, solar 
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energy, wind energy, and energy storage demonstrating significant differences in 
technical characteristics, market environments, and policy sensitivity. However, 
existing research often ignored this heterogeneity. (4) In terms of impact mechanism 
analysis, existing research mainly focused on the direct impact of policy uncertainty 
on enterprise financial performance, lacking in-depth analysis of impact 
transmission pathways and temporal dimensions. In particular in frequency domain 
analysis, existing research rarely distinguished between short-term, medium-term, 
and long-term effects of policy uncertainty and lacked systematic analysis of 
transmission mechanisms of policy uncertainty shocks between different new energy 
enterprises. 

The existence of these research gaps not only limited academic understanding of 
policy uncertainty impact mechanisms, but also made it difficult to provide targeted 
policy recommendations and management insights for policymakers and enterprise 
decision-makers. Therefore, conducting systematic research on the impact of China's 
environmental policy uncertainty on new energy enterprises possessed significant 
theoretical and practical value. 

Based on the above research background and existing research gaps, this study 
aimed to deeply explore the specific impact mechanisms and dynamic characteristics 
of China's environmental policy uncertainty on major new energy enterprises. 
Specifically, this research focused on the following core questions: First, did 
environmental policy uncertainty significantly impact stock price volatility of new 
energy enterprises? This question aimed to verify whether significant statistical 
relationships existed between environmental policy uncertainty and new energy 
enterprise market performance, and to determine the direction and intensity of such 
relationships. Second, did different types of new energy enterprises demonstrate 
varying sensitivity levels to environmental policy uncertainty? Considering the 
heterogeneity within the new energy industry, this study conducted a comparative 
analysis of response differences to policy uncertainty among enterprises in different 
sub-sectors including hydropower, nuclear power, solar energy, wind energy, and 
energy storage. Third, what were the time-varying characteristics of environmental 
policy uncertainty impacts on new energy enterprises? This study analysed the 
variation patterns of policy uncertainty impact effects across different periods, 
identifying cyclical and structural changes in impact intensity. Fourth, what were the 
transmission mechanisms of policy uncertainty shocks between different new energy 
enterprises? This study analysed how policy uncertainty shocks propagated between 
different enterprises and the differences in such transmission effects across different 
time scales. Fifth, what were the frequency characteristics of environmental policy 
uncertainty impacts on new energy enterprises? This study distinguished between 
short-term, medium-term, and long-term effects of policy uncertainty, analysing 
differences in impact mechanisms across different frequency domains. 

To deeply analyse these questions, this study selected representative new energy 
listed enterprises in China as research subjects. These enterprises covered major sub-
sectors of the new energy industry including hydropower, nuclear power, solar 
energy, wind energy, and energy storage, possessing good representativeness and 
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typicality that could comprehensively reflect the development status and policy 
sensitivity characteristics of China's new energy industry. 

This study contributes significantly to the existing literature in several key areas. 
Firstly, regarding the scope of the research, we conducted the first systematic 
investigation into how China's environmental policy uncertainty affects a 
representative selection of new energy companies. This effectively closes a gap in 
policy uncertainty research specific to the new energy sector. By selecting seven 
market-leading companies that span various new energy sub-sectors, we could 
comprehensively reflect the patterns of impact and the mechanisms of transmission 
for policy uncertainty across the entire industry. Secondly, on a theoretical level, this 
study enhances understanding of the mechanisms through which policy uncertainty 
operates. In particular, we reveal the time-varying and frequency characteristics of 
policy uncertainty's impact on new energy companies. Analysing the effects of 
policy uncertainty across different time scales allows us to offer new theoretical 
perspectives for grasping the transmission mechanisms of policy uncertainty. Thirdly, 
in the empirical domain, this study establishes a systematic quantitative assessment 
framework for the impact of policy uncertainty on new energy companies. This 
framework offers significant practical guidance for policymakers seeking to evaluate 
the market effects of environmental policies. Furthermore, through a comparative 
analysis of the varying sensitivities to policy uncertainty among different types of 
new energy companies, we provide essential foundations for investors' risk 
management and investment choices. 

This work employs the Time-varying Parameter Vector Autoregression-
Frequency Connectedness (TVP-VAR Frequency Connectedness) method, which 
offers substantial advantages over conventional analytical approaches. Firstly, the 
TVP-VAR model permits the parameters to evolve over time, which allows us to 
effectively capture the time-varying nature of how policy uncertainty affects new 
energy companies. This capability holds major importance for analysing corporate 
responses within rapidly shifting policy environments. Secondly, the frequency 
connectedness technique allows us to decompose the associations between variables 
into distinct frequency domains. This enables us to identify the short-term, medium-
term, and long-term effects of policy impacts, which is invaluable for understanding 
the multi-level impact mechanisms of policy uncertainty. In addition, this method 
effectively addresses endogeneity issues within multivariate systems. By 
constructing impulse response functions and variance decomposition, we can deeply 
analyse the transmission pathways and the intensity of impact stemming from policy 
uncertainty shocks between various new energy companies. The innovative 
deployment of this methodological framework not only elevates the reliability and 
precision of the research findings but also offers crucial methodological references 
for subsequent research in cognate fields. By applying this advanced econometric 
method, this study can more accurately identify and quantify the dynamic impacts 
of environmental policy uncertainty on new energy companies, thus providing robust 
empirical evidence for an in-depth understanding of the economic effects of policy 
uncertainty (Zeng et al., 2023). 
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2. Methodology and data 
 

2.1 TVP-VAR connectedness 
 
Through the implementation of a time-varying methodology, connectedness 

dynamics could be examined and analysed. We utilised a time-varying parametric 
vector autoregressive (TVP-VAR) connectedness framework grounded in the work 
established by Diebold and Yilmaz (2014; 2012) for measuring return spillovers 
amongst variables (Antonakakis et al., 2020). The analysis commenced with the 
subsequent standard equations: 

 
𝑌𝑌𝑌𝑌 = 𝛽𝛽𝑡𝑡𝑌𝑌𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 ,  𝜀𝜀𝑡𝑡∼𝑁𝑁(0, 𝑆𝑆𝑡𝑡)                                                                                         (1) 

 
𝛽𝛽𝑡𝑡 = 𝛽𝛽𝑡𝑡−1 + 𝜈𝜈𝑡𝑡 ,  𝜈𝜈𝑡𝑡∼𝑁𝑁(0,𝑅𝑅𝑡𝑡)                                                                                       (2) 

 
𝑌𝑌𝑌𝑌 = 𝐴𝐴𝑡𝑡𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡                                                                                                    (3) 

 
Where, 𝑌𝑌𝑌𝑌,𝜀𝜀𝑡𝑡and 𝜈𝜈𝑡𝑡 is 𝑁𝑁 × 1 vector; 𝛽𝛽𝑡𝑡 rely on 𝛽𝛽𝑡𝑡−1 and is an error matrix of 

𝑁𝑁 × 𝑁𝑁𝑝𝑝 ; 𝑌𝑌𝑡𝑡−1 is an error matrix of 𝑁𝑁𝑝𝑝 × 1. 𝐴𝐴𝑡𝑡, 𝑆𝑆𝑡𝑡 and 𝑅𝑅𝑡𝑡are 𝑁𝑁 × 𝑁𝑁 matrix; p is the 
chosen lag length. 𝑌𝑌𝑌𝑌 = 𝐴𝐴𝑡𝑡𝜀𝜀𝑡𝑡−1 + 𝜀𝜀𝑡𝑡 is the Wold representation. Diebold and Yilmaz 
(2012) developed a new function of spillover index method via using the impulse 
response function introduced by Koop et al. (1996) and generalised forecast error 
variance (GFEV) introduced by Pesaran and Shin (1998), then we will estimate the 
H-step-ahead GFEV decomposition (GFEVD), is estimated as: 

 

𝜃̃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡
𝑔𝑔 (𝐻𝐻) =

∑𝑡𝑡=1
ℎ−1 𝜓𝜓𝑖𝑖𝑖𝑖,𝑡𝑡

2,𝑔𝑔

∑𝑖𝑖=1
𝑁𝑁  ∑𝑡𝑡=1

ℎ−1 𝜓𝜓𝑖𝑖𝑖𝑖,𝑡𝑡
2,𝑔𝑔                                                                                           (4) 

As 𝜓𝜓𝑖𝑖𝑖𝑖,𝑡𝑡
2,𝑔𝑔(𝐻𝐻) = 𝑆𝑆𝑖𝑖𝑖𝑖,𝑡𝑡

−12 𝐴𝐴ℎ,𝑡𝑡∑𝑡𝑡 𝜀𝜀𝑖𝑖𝑖𝑖,𝑡𝑡 , ∑𝑡𝑡  is a covariance matrix of errors term 𝜀𝜀𝑖𝑖𝑖𝑖,𝑡𝑡 and 
∑𝑗𝑗=1𝑁𝑁  𝜃̃𝜃𝑖𝑖,𝑡𝑡

𝑔𝑔 (𝐻𝐻) = 1,∑𝑖𝑖,𝑗𝑗=1𝑁𝑁  𝜃̃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡
𝑁𝑁 (𝐻𝐻) = 𝑁𝑁. We calculate total connectedness index (TCI) 

as: 

𝐶𝐶𝑡𝑡
𝑔𝑔(𝐻𝐻) =

∑𝑖𝑖,𝑗𝑗=1,𝑖𝑖≠𝑗𝑗
𝑁𝑁  𝜃̃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡

𝑔𝑔 (𝐻𝐻)

∑𝑗𝑗=1
𝑁𝑁  𝜃̃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡

𝑔𝑔 (𝐻𝐻)
× 100                                                                               (5) 

The directed connectedness from index i to index j can be estimated as: 

𝐶𝐶𝑖𝑖→𝑗𝑗,𝑡𝑡
𝑔𝑔 (𝐻𝐻) =

∑𝑗𝑗=1,𝑖𝑖≠𝑗𝑗
𝑁𝑁  𝜃̃𝜃𝑗𝑗,𝑡𝑡

𝑔𝑔 (𝐻𝐻)

∑𝑗𝑗=1
𝑁𝑁  𝜃̃𝜃𝑗𝑗𝑗𝑗,𝑡𝑡

𝑔𝑔 (𝐻𝐻)
× 100                                                                             (6) 

Then, the directed connectedness received by index i from system as: 
 

𝐶𝐶𝑖𝑖←𝑗𝑗,𝑡𝑡
𝑔𝑔 (𝐻𝐻) =

∑𝑗𝑗=1,𝑖𝑖≠𝑗𝑗
𝑁𝑁  𝜃̃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡

𝑔𝑔 (𝐻𝐻)

∑𝑖𝑖=1
𝑁𝑁  𝜃̃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡

𝑔𝑔 (𝐻𝐻)
× 100                                                                            (7) 
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The net connectedness of index i to system can be calculated from the difference 
between the connectedness via received from all other indices: 

 
𝐶𝐶𝑖𝑖,𝑡𝑡
𝑔𝑔 (𝐻𝐻) = 𝐶𝐶𝑖𝑖→𝑗𝑗,𝑡𝑡

𝑔𝑔 (𝐻𝐻) − 𝐶𝐶𝑖𝑖←𝑗𝑗,𝑡𝑡
𝑔𝑔 (𝐻𝐻)                                                                            (8) 

 
Then the net pairwise directional connectedness (NPDC) as: 

𝑁𝑁𝑁𝑁𝑁𝑁𝐶𝐶𝑖𝑖𝑖𝑖(𝐻𝐻) =
𝜃̃𝜃𝑗𝑗𝑗𝑗,𝑡𝑡
𝑔𝑔 (𝐻𝐻)−𝜃̃𝜃𝑖𝑖𝑖𝑖,𝑡𝑡

𝑔𝑔 (𝐻𝐻)

𝑁𝑁
× 100                                                                       (9) 

 
2.2 Frequency connectedness 

 
Employing the Baruník and Křehlík (2018) (BK18) technique, we examined the 

temporal and frequency connectedness across indices. The BK18 approach expanded 
upon the DY12 methodology through the spectral representation of variance 
decomposition, which was founded on frequency response analysis to disturbances. 
A methodology grounded in spectral representation variance decomposition was 
utilised to estimate connectedness patterns within short-, medium-, and long-term 
financial cycles. Initially, the GFEVD at a specified frequency was defined in the 
following manner: 

(𝑓𝑓(𝜔𝜔))𝑗𝑗𝑗𝑗 ≡
𝜎𝜎𝑘𝑘𝑘𝑘
−1��Ψ�𝑒𝑒−𝑖𝑖𝑖𝑖�Σ�𝑗𝑗𝑗𝑗�

2

�Ψ�𝑒𝑒−𝑖𝑖𝑖𝑖�ΣΨ′�𝑒𝑒+𝑖𝑖𝑖𝑖��
𝑗𝑗𝑗𝑗

                                                                           (10) 

Where (𝑓𝑓(𝜔𝜔))𝑗𝑗𝑗𝑗 is the section of the spectrum where the index with frequency 
𝜔𝜔 is jth. The GFEVD of frequency band g = (𝑐𝑐,𝑑𝑑): 𝑐𝑐,𝑑𝑑 ∈ (−𝜋𝜋,𝜋𝜋), 𝑐𝑐 < d  as: 

 
�Θ𝑔𝑔�𝑗𝑗𝑗𝑗 = 1

2𝜋𝜋
∫𝑔𝑔 Γ𝑗𝑗(𝜔𝜔)(𝑓𝑓(𝜔𝜔))𝑗𝑗𝑗𝑗𝑔𝑔𝑔𝑔                                                                       (11) 

Where Γ𝑗𝑗(𝜔𝜔) is the weighting structure, as: 

Γ𝑗𝑗(𝜔𝜔) =
�Ψ�𝑒𝑒−𝑖𝑖𝑖𝑖�ΣΨ′�𝑒𝑒+𝑖𝑖𝑖𝑖��

𝑗𝑗𝑗𝑗
1
2𝜋𝜋∫−𝜋𝜋

𝜋𝜋  �Ψ�𝑒𝑒−𝑖𝑖𝑖𝑖�ΣΨ′�𝑒𝑒+𝑖𝑖𝑖𝑖��
𝑗𝑗𝑗𝑗
𝑔𝑔𝑔𝑔

                                                                     (12) 

The index j, when applied as a chosen frequency, 2π is used as a constant 
amount and then the amount is used to the all frequency. Applying the g frequency, 
BK18 connectedness metric as: 

�Θ�𝑔𝑔�𝑗𝑗𝑗𝑗 =
�Θ𝑔𝑔�𝑗𝑗𝑘𝑘

∑𝑗𝑗 (Θ∞)𝑗𝑗𝑗𝑗
                                                                                                 (13) 

 
The connectedness in frequency g as: 

𝐶𝐶𝑔𝑔𝐹𝐹 = 100 × �
∑𝑗𝑗≠𝑘𝑘 �Θ�𝑔𝑔�𝑗𝑗𝑗𝑗
∑�Θ�∞�𝑗𝑗𝑗𝑗

− Tr �Θ�𝑔𝑔�
∑�Θ�∞�𝑗𝑗𝑗𝑗

�                                                                    (14) 
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Where Tr{-} is the trace parameter. The connectedness at frequency g as: 

𝐶𝐶𝑔𝑔𝑊𝑊 = 100 × �1 − Tr �Θ�𝑔𝑔�
∑�Θ�𝑔𝑔�𝑗𝑗𝑗𝑗

�                                                                                  (15) 

 
As DY12, the pairwise spillover of the network at frequency g as: 

�𝐶𝐶𝑔𝑔𝐹𝐹�𝑗𝑗, net 
= �𝐶𝐶𝑔𝑔𝐹𝐹�𝑗𝑗→⋅ − �𝐶𝐶𝑔𝑔𝐹𝐹�𝑗𝑗←.

                                                                          (16) 
 
Where, i denoting that index j is a net sender (receiver) of shocks from system 

is showed in terms of net connectedness �𝐶𝐶𝑔𝑔𝐹𝐹�𝑗𝑗, net 
. 

 
2.3 Data 

 
This study's data comprised the China Environmental Governance Policy 

Uncertainty Index (EGPU) and daily return data for seven new energy-related stocks, 
with a sample period spanning from 11 June 2015 to 29 December 2023. This 
timeframe was determined by the maximum available duration of the EGPU data. 
New energy stock data were sourced from the Wind database, including Chuantou 
Energy (CTNY), China XD Electric (ZGXD), Three Gorges Water Conservancy 
(SXSL), China National Nuclear Corporation (ZGHD), LONGi Green Energy 
(LJLN), EVE Energy (YWLN), and Sungrow Power Supply (YGDY). These stocks 
represented different segments of the new energy industry chain, covering key 
sectors including traditional energy, power equipment manufacturing, hydroelectric 
power generation, nuclear power generation, photovoltaic technology, lithium 
battery technology, and inverter technology. The China Environmental Governance 
Policy Uncertainty Index (EGPU) was sourced from http://github.com/orange-
030/EGPU. This index was constructed using text mining methods, quantifying the 
degree of environmental policy uncertainty through analysis of uncertainty 
expressions in policy documents, news reports, and official statements (Wu et al., 
2025). All stock price data were converted to logarithmic returns for analysis to 
ensure data stationarity and comparability, providing a sufficient sample foundation 
for subsequent TVP-VAR frequency domain connectedness analysis. 

Prior to the execution of the TVP-VAR frequency connectedness analysis, 
researchers conducted several preliminary statistical tests to confirm data suitability 
and to justify the selection of nonlinear modelling approaches. First, the Elliott-
Rothenberg-Stock (ERS) unit root test was employed to determine the stationarity 
of the return series. The ERS test offers superior power properties compared to 
conventional Augmented Dickey-Fuller tests, especially when examining processes 
close to the unit root. It achieves this enhancement through the application of 
generalised least squares (GLS) detrending procedures. Next, the Jarque-Bera (JB) 
test was utilised to assess the normality of the return distributions. This test 
simultaneously examines whether the skewness equals zero and the excess kurtosis 
equals zero. Significant JB statistics indicate a departure from normality, which 
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forecasts the presence of fat tails and asymmetric distributions, features commonly 
observed in financial time series. Finally, researchers applied the Brock-Dechert-
Scheinkman (BDS) test to detect nonlinear dependence structures within the data. 
This test assesses whether the standardised residuals are independently and 
identically distributed (i.i.d.). Rejecting the null hypothesis forecasts the presence of 
nonlinear dynamics, conditional heteroscedasticity, or chaotic behaviour that linear 
models cannot adequately capture. 
 
3. Result analysis 

 
Table 1. Descriptive statistics 

 Mean Variance Skewness Kurtosis JB ERS 
EGPU -0.005 2.832 -3.569 30.603 82869.813*** -10.806*** 
CTNY 0.014 3.005 -0.503 7.919 5347.615*** -8.607*** 
ZGXD -0.044 5.941 0.092 4.938 2048.911*** -18.143*** 
SXSL -0.004 7.591 -0.05 3.819 1224.545*** -4.817*** 
ZGHD 0.03 4.466 0.051 9.527 7617.855*** -1.825* 
LJLN 0.064 9.819 -0.107 1.899 306.594*** -8.437*** 

YWLN 0.09 14.347 -0.049 1.782 267.375*** -4.559*** 
YGDY 0.029 14.831 -0.032 3.156 836.426*** -6.349*** 

Notes: Table 1 displayed the descriptive statistics results for the return rates of each variable, where 
***, **, and * denoted statistical significance at the 1%, 5%, and 10% significance levels, respectively. 
ERS represented the Elliott-Rothenberg-Stock unit root test, and JB represented the Jarque-Bera 
normality test. 

Source: Authors’ own creation. 
 

According to the descriptive statistics results in Table 1, the return rate 
distribution characteristics of the variables used exhibited significant heterogeneity 
and non-normality features. From the perspective of mean returns, YWLN 
demonstrated the highest average return rate (0.09), whilst ZGXD displayed the 
largest negative average return rate (-0.044). This return rate differentiation reflected 
the performance differences of different variables during the sample period and the 
distinct market risk pricing variations. Variance statistics revealed that YGDY and 
YWLN possessed the highest volatility (14.831 and 14.347, respectively), whilst 
EGPU exhibited the lowest variance (2.832), revealing significant risk differences 
amongst the variables. From the distribution form perspective, EGPU demonstrated 
significant negative skewness (-3.569) and extremely high kurtosis (30.603), 
indicating that its return rate distribution possessed obvious left-skewed and 
leptokurtic characteristics with fat tails. All variables' kurtosis values were 
significantly greater than the normal distribution kurtosis value of 3, displaying 
prevalent fat-tail characteristics. The JB statistic test results showed that all variables' 
JB statistics were significant at the 1% significance level, strongly rejecting the null 
hypothesis that returns followed a normal distribution. EGPU possessed the highest 
JB statistic (82869.813), confirming that its distribution exhibited the most severe 
non-normality. The ERS unit root test results indicated that all variables' return rate 
series were stationary time series. ZGXD displayed the strongest stationarity               
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(-18.143), whilst ZGHD, although having the smallest absolute statistic value             
(-1.825), still rejected the unit root hypothesis at the 10% significance level. These 
results provided a solid econometric foundation for subsequent time series analysis, 
ensuring the validity of model estimation and the reliability of results. 
 

Table 2. BDS test 
Variable M2 M3 M4 M5 M6 
EGPU 3.3824*** 3.3005*** 3.2078** 3.1048** 3.0226** 
CTNY 14.2497*** 14.2387*** 14.2199*** 14.1919*** 14.2374*** 
ZGXD 16.6032*** 16.6001*** 16.5905*** 16.5742*** 16.5769*** 
SXSL 14.6728*** 14.6534*** 14.6532*** 14.6273*** 14.6270*** 
ZGHD 17.2128*** 17.2079*** 17.2143*** 17.2073*** 17.2034*** 
LJLN 9.6860*** 9.3019*** 9.8238*** 9.8245*** 9.8270*** 

YWLN 5.2393*** 4.9891*** 5.2781*** 5.2878*** 5.2783*** 
YGDY 7.2275*** 7.1476*** 7.3218*** 7.3102*** 7.2739*** 

Notes: ***, **, * denote statistically significant at 1%, 5%, 10% level of significance 
respectively. 

Source: Authors’ own creation. 
 

Table 2 presented the BDS (Brock-Dechert-Scheinkman) test results, which 
were used to detect nonlinear dependence and chaotic behaviour in time series data. 
From the test results, all variables' BDS statistics under different dimensions (M2 to 
M6) were significant at the 1% or 5% significance levels, strongly rejecting the null 
hypothesis that the data were independently and identically distributed (i.i.d.). 
Specifically, ZGHD exhibited the highest BDS statistics across all dimensions 
(ranging from 17.2128 to 17.2034), followed by ZGXD (from 16.6032 to 16.5769) 
and SXSL (from 14.6728 to 14.6270), while EGPU displayed relatively lower but 
still significant BDS statistics (from 3.3824 to 3.0226). These results indicated that 
all variables' return rate series possessed significant nonlinear structures and long-
term dependence, violating the fundamental assumptions of traditional linear time 
series models. This suggested that these financial time series might contain complex 
nonlinear dynamic characteristics, conditional heteroscedasticity, or other forms of 
nonlinear dependence relationships, providing strong statistical support for adopting 
nonlinear modelling methods. 
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Figure 1. Time series plot of return rates 

Source: Authors’ own creation. 
 

Figure 1 displays the time series plots of return rates for eight variables 
spanning the period from 2015 to 2023, offering an intuitive depiction of each 
variable’s dynamic volatility characteristics and temporal evolution patterns. The 
figure reveals that the return rate series for all variables exhibit typical financial time 
series characteristics: they fluctuate around a zero mean and show clear volatility 
clustering, where periods of high fluctuation tend to follow one another. EGPU's 
volatility amplitude was relatively small, primarily concentrated between -20% and 
5%, consistent with its lower variance statistics, whilst YWLN and YGDY displayed 
greater volatility amplitudes, with return rate changes ranging from -20% to 15%, 
reflecting higher market risks. Notably, around 2020, multiple variables exhibited 
relatively severe volatility, which might have been related to systemic risk events in 
global financial markets. 

 
Table 3. Static connectivity table 

 EGPU CTNY ZGXD SXSL ZGHD LJLN YWLN YGDY FROM 
Panel A. Overall 

EGPU 93.23 1.23 0.98 0.76 1.12 0.85 1.05 0.79 6.77 

CTNY 0.99 53.99 10.09 7.26 14.74 5.68 3.33 3.92 46.01 
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 EGPU CTNY ZGXD SXSL ZGHD LJLN YWLN YGDY FROM 

ZGXD 0.65 9.4 50.15 8.98 12.54 6.79 5.74 5.75 49.85 

SXSL 0.61 7.8 10.18 57.52 8.31 5.46 5.63 4.49 42.48 

ZGHD 0.76 14.18 12.57 7.1 50.71 5.01 4.17 5.49 49.29 

LJLN 0.56 5.21 6.68 4.34 4.98 49.02 11 18.21 50.98 

YWLN 0.92 3.7 6.79 5.35 4.96 12.52 52.88 12.87 47.12 

YGDY 0.65 3.89 6.26 3.94 5.61 19.17 12.14 48.34 51.66 

TO 5.16 45.4 53.55 37.73 52.26 55.48 43.06 51.52 344.16 

NET -1.61 -0.61 3.7 -4.75 2.98 4.5 -4.06 -0.14 TCI=43.02 

NPDC 0 3 6 1 5 7 2 4  

Panel B. Short-term (1-5 days) 

EGPU 81.38 1.1 0.84 0.68 1.01 0.74 0.94 0.7 6.01 

CTNY 0.9 48.31 9.02 6.48 13.18 5 3.02 3.52 41.13 

ZGXD 0.56 8.2 44.46 7.84 11.02 5.94 5.11 5.16 43.84 

SXSL 0.53 6.85 9.02 50.4 7.35 4.72 4.91 3.94 37.34 

ZGHD 0.69 12.25 11.09 6.24 44.55 4.38 3.76 4.9 43.31 

LJLN 0.49 4.56 6.03 3.85 4.43 43.34 9.77 16.34 45.48 

YWLN 0.83 3.25 6.07 4.72 4.47 10.96 46.91 11.54 41.85 

YGDY 0.56 3.47 5.74 3.51 5.07 16.81 10.8 43.01 45.97 

TO 4.56 39.7 47.81 33.32 46.53 48.56 38.32 46.1 304.9 

NET -1.44 -1.43 3.98 -4.02 3.22 3.08 -3.53 0.14 TCI=38.11 

NPDC 0 3 7 1 6 5 2 4  

Panel C. Long-term (5-Inf days) 

EGPU 11.85 0.13 0.14 0.08 0.12 0.1 0.11 0.08 0.77 

CTNY 0.09 5.68 1.06 0.78 1.56 0.68 0.3 0.41 4.88 

ZGXD 0.09 1.19 5.69 1.14 1.52 0.85 0.63 0.59 6.01 

SXSL 0.08 0.95 1.15 7.11 0.96 0.74 0.72 0.55 5.15 

ZGHD 0.08 1.92 1.48 0.86 6.16 0.63 0.41 0.59 5.98 

LJLN 0.08 0.64 0.65 0.5 0.55 5.68 1.23 1.87 5.51 

YWLN 0.1 0.45 0.72 0.63 0.49 1.56 5.97 1.33 5.27 

YGDY 0.08 0.42 0.52 0.42 0.54 2.36 1.34 5.33 5.7 

TO 0.59 5.7 5.73 4.41 5.73 6.93 4.74 5.42 39.26 

NET -0.17 0.82 -0.28 -0.73 -0.25 1.42 -0.53 -0.27 TCI=4.91 

NPDC 1 6 3 1 4 7 3 3  

Notes: Forecast horizon is 10. 
Source: Authors’ own creation. 
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Table 3 presented the static spillover effects analysis results under different 
frequency domains in the TVP-VAR model, revealing the dynamic correlations 
between China's environmental governance policy uncertainty (EGPU) and new 
energy-related stocks. From the perspective of the Total Connectedness Index (TCI), 
the overall frequency domain TCI was 43.02, the short-term frequency domain (1-5 
days) TCI was 38.11, whilst the long-term frequency domain (over 5 days) TCI was 
only 4.91. These results indicated that spillover effects were mainly concentrated in 
the short to medium term, with the degree of mutual influence between variables 
significantly diminishing in the long term, reflecting the dominant role of short-term 
volatility contagion in financial markets. 

From the net spillover effects (NET) perspective in analysing the overall 
frequency domain results, EGPU functioned as a net spillover receiver (NET=-1.61), 
indicating that new energy stock volatility inversely influenced the market 
perception of policy uncertainty. ZGXD served as the strongest net spillover 
contributor (NET=3.7), followed by LJLN (NET=4.5) and ZGHD (NET=2.98), 
whilst SXSL (NET=-4.75) and YWLN (NET=-4.06) were the primary net spillover 
receivers. This spillover pattern suggested that traditional power equipment 
manufacturers and emerging clean energy enterprises played the role of risk 
transmitters in the system, while hydroelectric power generation and lithium battery 
technology enterprises predominantly absorbed shocks from the system. 

The short-term frequency domain analysis results displayed spillover patterns 
similar to the overall frequency domain. EGPU remained a net spillover receiver 
(NET=-1.44), with ZGXD (NET=3.98), ZGHD (NET=3.22), and LJLN (NET=3.08) 
maintaining net spillover contributor status, whilst SXSL (NET=-4.02) and YWLN 
(NET=-3.53) continued as major net receivers. Notably, YGDY transformed into a 
slight net spillover contributor in the short term (NET=0.14), which might have 
reflected the immediate impact of the photovoltaic inverter industry on other new 
energy sub-sectors in the short term. The short-term TCI was 38.11, comprising the 
vast majority of overall spillover effects, confirming the importance of short-term 
linkage mechanisms in new energy markets. 

The long-term frequency domain presented distinctly different spillover 
characteristics, with the TCI dropping dramatically to 4.91, indicating that the 
mutual dependencies between variables weakened substantially in the long term. In 
the long-term frequency domain, LJLN transformed into the strongest net spillover 
contributor (NET=1.42), whilst CTNY also became a net contributor (NET=0.82), 
with other variables' net spillover effects being relatively weak. This transformation 
suggested that in the long term, solar technology leading enterprises and traditional 
energy companies might exert more sustained influence on the system, whilst the 
influence of power equipment manufacturers that dominated in the short term 
weakened in the long term. 

Cross-frequency domain comparative analysis revealed several important 
characteristics of new energy market spillover effects. Firstly, EGPU functioned as 
a net spillover receiver across all frequency domains, contrasting with the traditional 
perception of policy uncertainty as an exogenous shock source, suggesting that new 
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energy market development conditions might inversely influence policy-making 
uncertainty. Secondly, ZGXD and LJLN consistently maintained net spillover 
contributor status in the short to medium term, reflecting the central position of 
power equipment manufacturing and photovoltaic technology in the new energy 
ecosystem. Thirdly, the frequency structure of the spillover effects indicated that 
market participants primarily focused on short-term volatility contagion, with long-
term fundamental linkages being relatively weak, providing important temporal 
dimension considerations for risk management and investment decisions. Finally, the 
changes in spillover positions of different new energy sub-sectors across various 
frequency domains reflected the complex impacts of technological progress, 
industrial policies, and market competition pattern evolution on inter-industry 
correlations. 

 

 
Figure 2. Dynamic Total Connectedness Index (TCI) (Forecast horizon (H):10) 

Source: Authors’ own creation. 
 

Based on the dynamic Total Connectedness Index (TCI) analysis results in 
Figure 2, significant time-varying and cyclical characteristics of spillover effects in 
new energy markets across the temporal dimension could be observed. From the 
overall evolution trajectory, systemic spillover effects were at relatively high levels 
in early 2015, with the overall frequency domain TCI at approximately 70%, short-
term frequency domain at around 60%, whilst the long-term frequency domain 
maintained a lower level of 10%. This was highly consistent with the conclusion that 
short-term spillover effects dominated in the static analysis. During 2015-2017, TCI 
across all frequency domains exhibited significant downward trends, with overall 
and short-term frequency domains declining from high levels to approximately 30%, 
possibly reflecting the mitigation of systemic risks brought about by the gradual 
improvement of new energy policies and the increasing maturity of market 
mechanisms. During 2018-2019, TCI fluctuated between 40%-50%, demonstrating 
market sensitivity to external uncertainty factors, whilst the COVID-19 outbreak in 
2020 produced the most significant peak within the study period, with the overall 
frequency domain connectedness index surging to approximately 65% in the short 
term, fully reflecting the amplification effect of extreme events on systemic risks in 
financial markets. 
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During 2021-2023, dynamic TCI presented relatively stable but still volatile 
characteristics, with overall frequency domain and short-term frequency domain 
connectedness indices primarily fluctuating within the 35%-45% range, suggesting 
that new energy markets had entered a new equilibrium state after experiencing the 
COVID-19 shock. TCI fluctuations during this period might have been related to 
factors such as the accelerated carbon neutrality policy implementation and the 
intensified competition among the new energy technology pathways. Notably, long-
term frequency domain TCI consistently maintained relatively low and stable levels 
of 5%-10% throughout the entire sample period, with its proportion of total spillover 
effects remaining consistently small. This corroborated the static analysis result 
where long-term TCI was only 4.91, confirming the important characteristic that new 
energy market risk contagion was primarily realised through short-term channels. 
Overall, the temporal evolution pattern of dynamic TCI not only validated the core 
findings of static analysis but also revealed the dynamic adjustment mechanisms of 
systemic risks in new energy markets in response to macroeconomic environments, 
policy changes, and extreme events. 

 

 
Figure 3. Dynamic Net Spillover Effects (NET) 

Source: Authors’ own creation. 
 

Based on the dynamic net spillover effects (NET) analysis results in Figure 3, 
significant time-varying characteristics and heterogeneous performance of risk 
transmission roles across variables in different frequency domains could be observed. 
From the overall evolution pattern, EGPU, as a policy uncertainty indicator, 
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functioned as a net spillover receiver during most periods, with NET values 
fluctuating primarily between -10% and 10%. This was fundamentally consistent 
with the conclusion that EGPU was a net receiver in static analysis, but dynamic 
analysis revealed the temporal characteristics of its role transitions. Particularly 
during the COVID-19 period in 2020, EGPU's net spillover effects exhibited obvious 
positive jumps, suggesting enhanced transmission effects of policy uncertainty to 
new energy markets under extreme market conditions. CTNY primarily functioned 
as a net spillover receiver throughout the entire sample period, with NET values 
being negative during most periods. This aligned with its slightly negative net 
spillover results in static analysis, but dynamic graphs showed that it briefly 
transformed into a net contributor during 2018-2019, possibly reflecting changes in 
traditional energy enterprises' market influence during specific periods. 

The dynamic NET performance of new energy stocks presented more complex 
time-varying characteristics and obvious industry differences. SXSL functioned as a 
significant net spillover receiver during most periods, with NET values frequently 
below -10%, which was highly consistent with its -4.75 net receiver status in static 
analysis. Particularly during the COVID-19 period in 2020, its net reception degree 
deepened further, reflecting the high sensitivity of hydroelectric power generation 
enterprises to systemic risk shocks. YWLN similarly functioned primarily as a net 
spillover receiver, but its NET value fluctuation amplitude was relatively small, 
varying between -10% and 5% during most periods, which corresponded to its -4.06 
net receiver role in static analysis. ZGXD's dynamic NET performance was most 
stable, maintaining long-term positive values, confirming its important status as a 
consistent net spillover contributor. This was highly consistent with its 3.7 positive 
net spillover value in static analysis. LJLN functioned as a strong net spillover 
contributor during 2015-2017, with NET values frequently exceeding 20%, but 
subsequently gradually declined and transformed into a net receiver during certain 
periods. This role transition might have reflected the impact of photovoltaic industry 
technological maturity improvement and market competition landscape changes. 
YGDY's NET performance exhibited cyclical characteristics, alternating between 
net contributor and net receiver roles across different periods, particularly showing 
obvious net spillover contribution peaks around 2020, suggesting dynamic changes 
in inverter technology enterprises' position within the new energy industry chain. 
Notably, each variable's NET performance maintained consistent directionality 
across different frequency domains, further validating the core finding that short-
term spillover effects dominated in static analysis, whilst simultaneously revealing 
the complex dynamic characteristics of new energy market risk transmission 
mechanisms evolving over time. 
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Figure 4. Dynamic pairwise net spillover analysis results of EGPU to other variables 

Source: Authors’ own creation. 
 

Based on the dynamic pairwise net spillover analysis results of EGPU to other 
variables in Figure 4, the bilateral risk transmission mechanisms and time-varying 
characteristics between China's environmental governance policy uncertainty and 
various new energy stocks could be deeply observed. From the overall evolution 
pattern, pairwise net spillover effects between EGPU and new energy stocks 
fluctuated primarily between -2% and 4%, with relatively small amplitudes but 
displaying obvious time-varying and heterogeneous characteristics. In most pairwise 
relationships, EGPU functioned as a net spillover receiver, meaning that new energy 
stock volatility influenced policy uncertainty to a greater extent than policy 
uncertainty directly impacted stocks. This finding corroborated the conclusion that 
EGPU was a net receiver in the aforementioned overall NET analysis. Particularly 
noteworthy was that the EGPU-YGDY and EGPU-LJLN pairs exhibited relatively 
significant positive net spillovers during certain periods, suggesting that policy 
uncertainty's impact on core photovoltaic industry chain enterprises might have been 
more direct and intense at specific time points. 

Pairwise net spillover analysis across different frequency domains revealed 
complex temporal structures of policy transmission mechanisms. In traditional 
energy infrastructure pairs such as EGPU-CTNY, EGPU-ZGXD, and EGPU-SXSL, 
short-term and overall frequency domain net spillover patterns were fundamentally 
consistent, primarily exhibiting slight negative values, indicating that these 
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enterprises' market performance feedback effects on policy uncertainty perception 
were relatively stable. Long-term frequency domain net spillover effects approached 
zero with minimal volatility, again confirming that interactions between policy 
uncertainty and new energy stocks were primarily realised through short-term 
channels. In the EGPU-YGDY and EGPU-LJLN pairs, more obvious time-varying 
characteristics were observed, particularly during the COVID-19 period in 2020 and 
the accelerated carbon neutrality policy implementation phase in 2021-2022, where 
these pairs' net spillover effects exhibited significant positive jumps, reflecting the 
differentiated impacts of extreme market conditions and major policy changes on 
specific new energy sub-sectors. EGPU-YWLN and EGPU-ZGHD pairs' net 
spillover effects were relatively stable, fluctuating slightly within negative value 
ranges, suggesting that lithium battery and nuclear power enterprises maintained 
relatively stable negative feedback relationships with policy uncertainty, meaning 
that good performance by these enterprises helped reduce market uncertainty 
expectations regarding environmental policies. Overall, pairwise net spillover 
analysis not only validated the general characteristic of EGPU as a systemic net 
receiver but, more importantly, revealed the heterogeneity and time-varying nature 
of risk transmission between policy uncertainty and different new energy technology 
pathways, providing more refined empirical evidence for understanding the dynamic 
interaction mechanisms between environmental policies and new energy markets. 

 
Figure 5. Robustness test (Forecast horizon (H):20) 

Source: Authors’ own creation. 
 

Based on the robustness test results in Figure 5, it was observed that after 
adjusting the forecast horizon from H=10 to H=20, the temporal evolution pattern of 
the dynamic Total Connectedness Index (TCI) maintained high consistency with the 
baseline results in Figure 2, fully validating the robustness of the research 
conclusions. From the overall trend perspective, the temporal trajectories of TCI 
across frequency domains in Figure 5 almost perfectly overlapped with Figure 2, 
with key characteristics including the high levels in early 2015 (overall frequency 
domain approximately 70%, short-term frequency domain approximately 60%), the 
significant downward trend during 2015-2017, the volatility fluctuations in 2018-
2019, the sharp increase during the COVID-19 period in 2020, and the relative 
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stability in 2021-2023 all being completely preserved. This high similarity indicated 
that changes in forecast horizon length did not alter the fundamental time-varying 
patterns of spillover effects in new energy markets, confirming the reliability of 
TVP-VAR model estimation results and the stability of research findings. 

More importantly, Figure 5 further confirmed the relative importance structure 
of spillover effects in different frequency domains. The long-term frequency domain 
TCI still maintained relatively low and stable levels of 5%-10% throughout the entire 
sample period, with its proportion of total spillover effects remaining consistently 
small, which was completely consistent with results under the H=10 setting. The 
short-term frequency domain continued to dominate spillover effects, with its 
variation amplitude and temporal patterns highly synchronised with the overall 
frequency domain, again confirming the core conclusion that new energy market risk 
contagion was primarily realised through short-term channels. Notably, at key time 
points such as during the COVID-19 shock in 2020, TCI peak levels under both 
forecast horizon settings were almost identical, further validating the measurement 
accuracy of extreme events' amplification effects on systemic risks. Additionally, the 
fluctuation patterns of TCI within the 35%-45% range during 2021-2023 maintained 
high consistency, confirming the assessment that new energy markets entered a new 
equilibrium state in the post-COVID-19 era. Overall, this robustness test not only 
enhanced the credibility of the research results, but, more importantly, confirmed 
that the identified time-varying characteristics and frequency domain differences of 
the new energy market spillover effects possessed inherent economic logic support, 
independent of specific technical parameter settings. 
 

Table 4. OLS regression 
Variables CTNY ZGXD SXSL ZGHD LJLN YWLN YGDY 

Coefficient 0.0354 0.0386 0.0236 0.0429 0.0361 0.0422 0.0177 

Source: Authors’ own creation. 
 

Based on the OLS regression analysis results in Table 4, the direct impact 
effects of EGPU on new energy stock returns could be observed, providing important 
robustness test support for the aforementioned TVP-VAR frequency domain 
connectedness analysis. From the regression coefficients, EGPU demonstrated 
positive impacts on all new energy stocks, with coefficients ranging from 0.0177 to 
0.0429. This result was fundamentally consistent with EGPU's role as a systemic risk 
transmitter in the TVP-VAR analysis. Specifically, ZGHD exhibited the highest 
sensitivity (coefficient 0.0429), followed by YWLN (0.0422) and ZGXD (0.0386), 
whilst YGDY's sensitivity was relatively lowest (0.0177). This heterogeneous 
pattern corroborated the differentiated response characteristics of different new 
energy sub-sectors to policy uncertainty shocks in the aforementioned dynamic 
connectedness analysis. 

The positive coefficients in OLS regression results indicated that increases in 
environmental governance policy uncertainty led to increases in new energy stock 
returns. This finding seemingly contradicted traditional negative uncertainty shock 
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theories but actually reflected the special nature of the new energy industry. Increases 
in environmental policy uncertainty often accompanied the strengthening of 
environmental requirements and the advancement of green transformation policies, 
bringing more market opportunities and policy support to new energy enterprises, 
thereby generating positive market reactions. This explanation formed organic unity 
with the finding in TVP-VAR analysis that EGPU primarily functioned as a net 
spillover receiver, meaning that good performance in new energy markets inversely 
influenced market expectations and uncertainty perceptions regarding environmental 
policies. Notably, the differences in various stocks' sensitivity to EGPU also aligned 
with the different roles each variable played in the system according to frequency 
domain connectedness analysis, with technology-intensive enterprises such as 
nuclear power and lithium battery being more sensitive to policy changes, whilst 
traditional power equipment and renewable energy generation enterprises 
demonstrated relatively stable responses. Overall, OLS regression analysis not only 
validated the existence of the relationships between policy uncertainty and new 
energy stocks identified by the TVP-VAR model but, more importantly, provided 
supplementary information regarding impact direction and intensity, enhancing the 
robustness and credibility of research conclusions. 
 
4. Conclusions 

 
This work employed the TVP-VAR frequency domain connectedness 

methodology to conduct an in-depth analysis of the dynamic spillover effects 
between China's environmental governance policy uncertainty and renewable energy 
stock markets, providing important empirical evidence for understanding the risk 
transmission mechanisms of policy uncertainty within green financial systems. The 
research findings revealed the complex time-varying characteristics and frequency 
heterogeneity of risk contagion in renewable energy markets, offering significant 
theoretical value and practical implications for investment decision-making and 
policy formulation. 

The principal findings of this research can be summarised in several key aspects. 
Firstly, significant spillover effects existed within renewable energy markets, with 
these effects primarily realised through short-term channels, where short-term 
frequency domain TCI maintained dominance whilst long-term frequency domain 
influences remained relatively weak. Secondly, environmental governance policy 
uncertainty predominantly manifested as a net spillover receiver throughout most 
periods, suggesting that the developmental status of renewable energy markets 
inversely influenced policy-making uncertainty perceptions, contrasting with 
traditional perspectives that view policy as an exogenous shock source. Thirdly, 
different renewable energy sub-sectors assumed differentiated roles within the 
system, with power equipment manufacturing enterprises primarily serving as risk 
transmitters whilst emerging technology enterprises predominantly absorbed 
systematic shocks. Fourthly, spillover effects exhibited pronounced time-varying 
characteristics, with systemic risks significantly amplified during extreme events 
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such as the COVID-19 pandemic, whilst connectivity weakened during periods of 
relatively stable policy environments. 

Based on these research findings, detailed investment strategy 
recommendations were provided to different types of investors. For short-term 
investors, primary attention should be directed towards short-term volatility 
contagion effects in renewable energy markets, as research demonstrated that 
spillover effects were primarily realised through short-term channels. When 
constructing investment portfolios, excessive concentration within the same 
renewable energy sub-sector should be avoided, particularly simultaneous heavy 
weighting in power equipment manufacturing stocks, as these stocks often served as 
sources of risk transmission. Conversely, allocation of certain proportions to risk-
receiving stocks such as SXSL and YWLN could be considered, as these stocks, 
whilst absorbing systematic shocks, might also achieve greater rebound potential 
when market sentiment improved. Short-term investors should also closely monitor 
changes in policy uncertainty indicators, as OLS regression results indicated that 
renewable energy stocks generally benefited when environmental policy uncertainty 
increased, providing important timing signals for short-term trading. 

For long-term investors, the research results offered more optimistic investment 
prospects. Due to the relatively weak and stable spillover effects in the long-term 
frequency domains, long-term investors need not be overly concerned about the 
contagion effects of short-term market volatility. Diversified investment strategies 
were recommended, with allocations across different segments of the renewable 
energy industry chain, particularly focusing on enterprises such as LJLN that might 
transform into net spillover contributors over the long term. Long-term investors 
should regard environmental policy uncertainty as investment opportunities rather 
than risks, as policy drivers often brought long-term developmental benefits to the 
renewable energy sector. Simultaneously, focus should be placed on leading 
enterprises with strong technological innovation capabilities and stable industry 
chain positions, as these enterprises often assumed risk transmitter roles within the 
system, possessing stronger market influence and long-term competitive advantages. 

For institutional investors, the frequency domain differences discovered in this 
research should be fully utilised to construct multi-layered risk management systems. 
In short-term risk management, primary attention should be directed towards 
monitoring changes in systemic connectivity indicators, with timely adjustments to 
position allocations when TCI exhibited abnormal increases, reducing weights of 
high-risk contagion stocks. In long-term asset allocation, the influence of short-term 
volatility contagion could be relatively ignored, focusing instead on fundamental 
investment value within the renewable energy sector. Institutional investors should 
also establish dynamic portfolio rebalancing mechanisms, timely adjusting 
allocation weights according to the time-varying characteristics of different 
renewable energy stocks' roles within the system. Particularly under extreme market 
conditions, adequate liquidity should be prepared to address the amplification effects 
of systemic risks. 
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The research results provided important policy design and implementation 
guidance to environmental policy makers. Firstly, policy makers should recognise 
the inverse influence of renewable energy market development status on policy 
uncertainty perceptions, meaning that promoting healthy development of renewable 
energy markets could effectively reduce policy implementation uncertainty. When 
formulating environmental policies, market feedback mechanisms should be fully 
considered, establishing real-time monitoring systems for policy effectiveness and 
timely adjusting policy intensity and implementation pace according to renewable 
energy market performance. Such dynamic adjustment mechanisms would facilitate 
beneficial interactions between policy and markets, reducing the negative impacts of 
policy uncertainty on the entire green financial system. 

Secondly, policy makers should emphasise risk contagion mechanisms within 
renewable energy markets, considering differentiated characteristics of various sub-
sectors when designing industrial support policies. For power equipment 
manufacturing enterprises serving as risk transmitters, strengthened supervision and 
risk prevention should be implemented to prevent negative shocks from spreading 
throughout the entire renewable energy ecosystem. For risk-receiving emerging 
technology enterprises, more policy support and risk mitigation measures should be 
provided to help these enterprises resist systemic risk shocks. Establishing classified 
and layered policy instrument systems was recommended, formulating differentiated 
support measures and regulatory requirements for different types of renewable 
energy enterprises. 

Thirdly, given that spillover effects were primarily realised through short-term 
channels, policy makers should fully consider short-term market reactions when 
releasing major environmental policies, adopting gradual and pre-announced policy 
implementation approaches to avoid overly concentrated and severe policy shocks. 
Establishing policy communication mechanisms was recommended, releasing policy 
signals in advance to provide markets with adequate adaptation time. Simultaneously, 
monitoring and intervention capabilities for short-term fluctuations in renewable 
energy markets should be strengthened, with timely stabilisation measures 
implemented during extreme market conditions to prevent further amplification of 
systemic risks. 

Finally, policy makers should utilise the positive relationship between 
environmental policy uncertainty and renewable energy stock returns, releasing 
moderate policy uncertainty to stimulate market vitality and innovation momentum. 
This did not imply artificially creating policy uncertainty, but rather finding balance 
points amongst policy foresight, consistency, and flexibility. Establishing policy 
systems that combined long-term environmental policy frameworks with short-term 
flexible adjustment mechanisms was recommended, providing clear long-term 
expectations for markets whilst maintaining policy adaptability and responsiveness. 
Through such approaches, policy uncertainty could be transformed into positive 
factors promoting renewable energy industry development, achieving dual 
optimisation of policy objectives and market efficiency. 
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In future research, consideration could be given to incorporating additional 
uncertainty indices or more detailed renewable energy sector enterprises, such as 
wind and geothermal energy companies. Furthermore, extending this analytical 
framework to other major economies with significant renewable energy markets, 
such as the European Union, the United States, and emerging Asian markets, would 
enable cross-country comparative analyses and enhance the generalisability of 
findings regarding the relationship between environmental policy uncertainty and 
new energy markets. 
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