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(EGPU) and new energy stock markets. Drawing on high-frequency data from 2015 to 2023,
the study reveals that significant risk contagion effects exist within new energy markets,
which primarily operate through short-term channels. Static connectedness analysis
confirms the dominant role of short-term spillover effects. Environmental governance policy
uncertainty functions as a net spillover receiver during most periods, suggesting that new
energy market development conditions inversely influence policy uncertainty perceptions.
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enterprises predominantly absorb system shocks. Dynamic analysis reveals significant time-
varying characteristics of spillover effects, with the Total Connectedness Index (TCI)
reaching a peak of 65% during the COVID-19 period in 2020, reflecting the amplification
effect of extreme events on systemic risk. The research findings provide important reference
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1. Introduction

As global climate change issues have intensified and the concept of sustainable
development has gained a deeper acceptance, the new energy industry has emerged
as a crucial strategic pillar for economic transition and green development worldwide
(Androniceanu and Sabie, 2022). Simultaneously, as the world's second-largest
economy and the largest carbon emitter, China assumes significant responsibility in
driving the necessary energy structure transformation and achieving its carbon peak
and carbon neutrality targets (Liu et al., 2022). Moreover, China's renewable energy
market represents the world's largest in terms of installed capacity and investment
scale, with its policy framework serving as a reference model for numerous
developing economies pursuing green transitions. Examining the Chinese context
thus provides valuable insights with broader applicability to understanding policy-
market interactions in rapidly evolving renewable energy sectors globally (Zhao et
al., 2022). Since the 2006 promulgation of the Renewable Energy Law, the Chinese
government has successively introduced a series of environmental and new energy
development policies. These policies, which include renewable energy development
plans, the construction of a carbon emissions trading system, new energy vehicle
promotion policies, and green finance policies, have greatly accelerated the rapid
development of China's new energy industry (Guilhot, 2022; Sawin, 2012).

From an industry development perspective, China’s new energy sector has
achieved remarkable accomplishments under concerted policy guidance. By 2024,
projections suggest that China's new renewable energy capacity additions will
account for an estimated 86% of the nation’s total new power capacity additions,
with the cumulative renewable energy capacity representing 56% of the national total
(Xinhua, 2025). Furthermore, new energy vehicle production and sales have
consistently maintained global leadership for several consecutive years, and the
power battery industry chain has become increasingly sophisticated. However,
whilst the industry has experienced this rapid development, new energy enterprises
simultaneously face unprecedented challenges stemming from policy uncertainty
(Dong et al., 2022).

This policy uncertainty manifests itself across multiple critical dimensions.
Firstly, the dynamic adjustment of policy targets is evident. Renewable energy
development goals, carbon emission peak timetables, and new energy vehicle
promotion targets, for instance, undergo regular adjustments and optimisation over
different periods (Zhang and Qin, 2018). Secondly, the policy instruments
demonstrate diversity and complexity, involving the combined use and dynamic
modification of various policy tools such as fiscal subsidies, tax incentives, carbon
trading schemes, and green bonds. Thirdly, regional variations exist in policy
implementation, where significant differences are observed across distinct regions
regarding the intensity, standards, and timing of environmental policy execution.
Finally, the international policy environment exerts a notable influence, which
includes the impacts of international carbon neutrality commitments, trade policy
shifts, and the coordination of technology standards.
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As policy-sensitive entities, the development trajectories of new energy
enterprises are intimately linked to policy changes. The presence of policy
uncertainty affects enterprise behaviour through several channels. Regarding
investment decisions, policy uncertainty elevates enterprises’ anticipated risk
concerning future returns, frequently leading to delayed or insufficient investment
(Li et al., 2023). For technological innovation, uncertainty in policy standards and
directional mandates influences enterprises’ research and development investment
and subsequent technology pathway choices (Hao et al., 2021). Within market
positioning, regional policy disparities impact enterprises' capacity allocation and
market expansion strategies. Finally, concerning financial performance, policy
changes directly affect enterprises' profitability and overall cash flow conditions (Yu
et al., 2024).

Crucially, China's new energy industry is currently undergoing a critical
transition from a policy-driven to a market-driven development model. With the
gradual phase-out of subsidy policies, the advent of the grid parity era, and
intensifying market competition, new energy enterprises confront increasingly
complex operating environments (Hoang et al., 2021; Wang and Liu, 2024). Against
this backdrop, conducting an in-depth study of the impact mechanisms of
environmental policy uncertainty on new energy enterprises will not only assist
enterprises in better navigating policy risks and formulating scientific business
strategies, but will also provide vital reference material for policymakers aiming to
optimise policy design and enhance policy effectiveness.

Through a systematic review of existing literature, several gaps and deficiencies
were identified in the research on the impact of policy uncertainty on new energy
enterprises. (1) In terms of research content, the existing literature mainly
concentrated on macroeconomic levels and traditional industry sectors, with
relatively limited research specifically targeting policy uncertainty in the new energy
industry. Most studies focused on general policy uncertainty or economic policy
uncertainty, lacking in-depth analysis of environmental policy uncertainty as a
specific domain. Even when few studies involved the new energy industry, they
mostly employed industry-level aggregated data, lacking micro-level analysis of
specific enterprises. (2) In terms of research methods, existing studies primarily
adopted static analysis methods, unable to effectively capture the time-varying
characteristics and dynamic evolution processes of policy uncertainty impacts on
enterprises. Traditional panel data regression models and event study methods,
whilst able to identify average effects of policy uncertainty, were difficult to reveal
the variation patterns and transmission mechanisms of such impacts across different
periods. Additionally, existing research often treated policy uncertainty as an
exogenous variable, lacking in-depth analysis of the interactive mechanisms between
policy uncertainty and enterprise performance. (3) In terms of sample selection,
existing research mostly employed industry average data or single enterprise cases,
lacking comparative analysis and differentiated research on different types of new
energy enterprises. Significant heterogeneity existed within the new energy industry,
with enterprises in different sub-sectors such as hydropower, nuclear power, solar
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energy, wind energy, and energy storage demonstrating significant differences in
technical characteristics, market environments, and policy sensitivity. However,
existing research often ignored this heterogeneity. (4) In terms of impact mechanism
analysis, existing research mainly focused on the direct impact of policy uncertainty
on enterprise financial performance, lacking in-depth analysis of impact
transmission pathways and temporal dimensions. In particular in frequency domain
analysis, existing research rarely distinguished between short-term, medium-term,
and long-term effects of policy uncertainty and lacked systematic analysis of
transmission mechanisms of policy uncertainty shocks between different new energy
enterprises.

The existence of these research gaps not only limited academic understanding of
policy uncertainty impact mechanisms, but also made it difficult to provide targeted
policy recommendations and management insights for policymakers and enterprise
decision-makers. Therefore, conducting systematic research on the impact of China's
environmental policy uncertainty on new energy enterprises possessed significant
theoretical and practical value.

Based on the above research background and existing research gaps, this study
aimed to deeply explore the specific impact mechanisms and dynamic characteristics
of China's environmental policy uncertainty on major new energy enterprises.
Specifically, this research focused on the following core questions: First, did
environmental policy uncertainty significantly impact stock price volatility of new
energy enterprises? This question aimed to verify whether significant statistical
relationships existed between environmental policy uncertainty and new energy
enterprise market performance, and to determine the direction and intensity of such
relationships. Second, did different types of new energy enterprises demonstrate
varying sensitivity levels to environmental policy uncertainty? Considering the
heterogeneity within the new energy industry, this study conducted a comparative
analysis of response differences to policy uncertainty among enterprises in different
sub-sectors including hydropower, nuclear power, solar energy, wind energy, and
energy storage. Third, what were the time-varying characteristics of environmental
policy uncertainty impacts on new energy enterprises? This study analysed the
variation patterns of policy uncertainty impact effects across different periods,
identifying cyclical and structural changes in impact intensity. Fourth, what were the
transmission mechanisms of policy uncertainty shocks between different new energy
enterprises? This study analysed how policy uncertainty shocks propagated between
different enterprises and the differences in such transmission effects across different
time scales. Fifth, what were the frequency characteristics of environmental policy
uncertainty impacts on new energy enterprises? This study distinguished between
short-term, medium-term, and long-term effects of policy uncertainty, analysing
differences in impact mechanisms across different frequency domains.

To deeply analyse these questions, this study selected representative new energy
listed enterprises in China as research subjects. These enterprises covered major sub-
sectors of the new energy industry including hydropower, nuclear power, solar
energy, wind energy, and energy storage, possessing good representativeness and
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typicality that could comprehensively reflect the development status and policy
sensitivity characteristics of China's new energy industry.

This study contributes significantly to the existing literature in several key areas.
Firstly, regarding the scope of the research, we conducted the first systematic
investigation into how China's environmental policy uncertainty affects a
representative selection of new energy companies. This effectively closes a gap in
policy uncertainty research specific to the new energy sector. By selecting seven
market-leading companies that span various new energy sub-sectors, we could
comprehensively reflect the patterns of impact and the mechanisms of transmission
for policy uncertainty across the entire industry. Secondly, on a theoretical level, this
study enhances understanding of the mechanisms through which policy uncertainty
operates. In particular, we reveal the time-varying and frequency characteristics of
policy uncertainty's impact on new energy companies. Analysing the effects of
policy uncertainty across different time scales allows us to offer new theoretical
perspectives for grasping the transmission mechanisms of policy uncertainty. Thirdly,
in the empirical domain, this study establishes a systematic quantitative assessment
framework for the impact of policy uncertainty on new energy companies. This
framework offers significant practical guidance for policymakers seeking to evaluate
the market effects of environmental policies. Furthermore, through a comparative
analysis of the varying sensitivities to policy uncertainty among different types of
new energy companies, we provide essential foundations for investors' risk
management and investment choices.

This work employs the Time-varying Parameter Vector Autoregression-
Frequency Connectedness (TVP-VAR Frequency Connectedness) method, which
offers substantial advantages over conventional analytical approaches. Firstly, the
TVP-VAR model permits the parameters to evolve over time, which allows us to
effectively capture the time-varying nature of how policy uncertainty affects new
energy companies. This capability holds major importance for analysing corporate
responses within rapidly shifting policy environments. Secondly, the frequency
connectedness technique allows us to decompose the associations between variables
into distinct frequency domains. This enables us to identify the short-term, medium-
term, and long-term effects of policy impacts, which is invaluable for understanding
the multi-level impact mechanisms of policy uncertainty. In addition, this method
effectively addresses endogeneity issues within multivariate systems. By
constructing impulse response functions and variance decomposition, we can deeply
analyse the transmission pathways and the intensity of impact stemming from policy
uncertainty shocks between various new energy companies. The innovative
deployment of this methodological framework not only elevates the reliability and
precision of the research findings but also offers crucial methodological references
for subsequent research in cognate fields. By applying this advanced econometric
method, this study can more accurately identify and quantify the dynamic impacts
of environmental policy uncertainty on new energy companies, thus providing robust
empirical evidence for an in-depth understanding of the economic effects of policy
uncertainty (Zeng et al., 2023).
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2. Methodology and data
2.1 TVP-VAR connectedness

Through the implementation of a time-varying methodology, connectedness
dynamics could be examined and analysed. We utilised a time-varying parametric
vector autoregressive (TVP-VAR) connectedness framework grounded in the work
established by Diebold and Yilmaz (2014; 2012) for measuring return spillovers
amongst variables (Antonakakis et al., 2020). The analysis commenced with the
subsequent standard equations:

Yt =B Y1+ &, £ N(,S,) (1)
Bt = Be—1 + Ve, v N(O,R,) (2)
Yt = Atgt_l + Et (3)

Where, Yt,e;and v; is N X 1 vector; ; rely on B;_4 and is an error matrix of
N X Np ; Y;_4 is an error matrix of N, X 1. A, S; and Ryare N X N matrix; p is the
chosen lag length. Yt = A;&;_4 + &; is the Wold representation. Diebold and Yilmaz
(2012) developed a new function of spillover index method via using the impulse
response function introduced by Koop et al. (1996) and generalised forecast error
variance (GFEV) introduced by Pesaran and Shin (1998), then we will estimate the
H-step-ahead GFEV decomposition (GFEVD), is estimated as:

h-1
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as:
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The net connectedness of index i to system can be calculated from the difference
between the connectedness via received from all other indices:

CE(H) =2, (H) — CL; () ®)

Then the net pairwise directional connectedness (NPDC) as:

69 (H)-09 (H
NPDC;;(H) = 205 100 9)

ijt

2.2 Frequency connectedness

Employing the Barunik and Kiehlik (2018) (BK18) technique, we examined the
temporal and frequency connectedness across indices. The BK 18 approach expanded
upon the DY12 methodology through the spectral representation of variance
decomposition, which was founded on frequency response analysis to disturbances.
A methodology grounded in spectral representation variance decomposition was
utilised to estimate connectedness patterns within short-, medium-, and long-term
financial cycles. Initially, the GFEVD at a specified frequency was defined in the
following manner:

(F (@) = (Ukk|(‘1’(€_ )Z)jk| (10)
ji

q,r(e—ia))zq,rl(e+i(u))
Where (f (w)) jk is the section of the spectrum where the index with frequency
w 1is ju. The GFEVD of frequency band g = (¢,d):c,d € (—m,m),c < d as:

(©9) = 52/ @O (@) g (11)

21

Where [ (w) is the weighting structure, as:

~ (q,(e—im)zq,l(eﬂm)) ;
r}(ﬂ)) = %f_”n(ly(e—il)zqﬂ(e+il))jjg/1

(12)

The index j, when applied as a chosen frequency, 2n is used as a constant
amount and then the amount is used to the all frequency. Applying the g frequency,
BK 18 connectedness metric as:

~ (Og)]’k
(99) = %7 (@co) ji (13)

The connectedness in frequency g as:

Zj2k(Og) ) Tr(B,)
CF =100 x < E(@w)jkk - z(@w)j)

(14)
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Where Tr{-} is the trace parameter. The connectedness at frequency g as:

Y =100 x <1 = ;gj’i}) (15)

As DY12, the pairwise spillover of the network at frequency g as:
(), o = (€0, (cD),. (16)

Where, i denoting that index j is a net sender (receiver) of shocks from system

1s showed in terms of net connectedness (C F ) , .
9/ j net

2.3 Data

This study's data comprised the China Environmental Governance Policy
Uncertainty Index (EGPU) and daily return data for seven new energy-related stocks,
with a sample period spanning from 11 June 2015 to 29 December 2023. This
timeframe was determined by the maximum available duration of the EGPU data.
New energy stock data were sourced from the Wind database, including Chuantou
Energy (CTNY), China XD Electric (ZGXD), Three Gorges Water Conservancy
(SXSL), China National Nuclear Corporation (ZGHD), LONGi Green Energy
(LJLN), EVE Energy (YWLN), and Sungrow Power Supply (YGDY). These stocks
represented different segments of the new energy industry chain, covering key
sectors including traditional energy, power equipment manufacturing, hydroelectric
power generation, nuclear power generation, photovoltaic technology, lithium
battery technology, and inverter technology. The China Environmental Governance
Policy Uncertainty Index (EGPU) was sourced from http://github.com/orange-
030/EGPU. This index was constructed using text mining methods, quantifying the
degree of environmental policy uncertainty through analysis of uncertainty
expressions in policy documents, news reports, and official statements (Wu et al.,
2025). All stock price data were converted to logarithmic returns for analysis to
ensure data stationarity and comparability, providing a sufficient sample foundation
for subsequent TVP-VAR frequency domain connectedness analysis.

Prior to the execution of the TVP-VAR frequency connectedness analysis,
researchers conducted several preliminary statistical tests to confirm data suitability
and to justify the selection of nonlinear modelling approaches. First, the Elliott-
Rothenberg-Stock (ERS) unit root test was employed to determine the stationarity
of the return series. The ERS test offers superior power properties compared to
conventional Augmented Dickey-Fuller tests, especially when examining processes
close to the unit root. It achieves this enhancement through the application of
generalised least squares (GLS) detrending procedures. Next, the Jarque-Bera (JB)
test was utilised to assess the normality of the return distributions. This test
simultaneously examines whether the skewness equals zero and the excess kurtosis
equals zero. Significant JB statistics indicate a departure from normality, which
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forecasts the presence of fat tails and asymmetric distributions, features commonly
observed in financial time series. Finally, researchers applied the Brock-Dechert-
Scheinkman (BDS) test to detect nonlinear dependence structures within the data.
This test assesses whether the standardised residuals are independently and
identically distributed (i.i.d.). Rejecting the null hypothesis forecasts the presence of
nonlinear dynamics, conditional heteroscedasticity, or chaotic behaviour that linear
models cannot adequately capture.

3. Result analysis

Table 1. Descriptive statistics

Mean Variance | Skewness | Kurtosis JB ERS

EGPU -0.005 2.832 -3.569 30.603 82869.813*** -10.806***
CTNY 0.014 3.005 -0.503 7.919 5347.615%** -8.607***
ZGXD -0.044 5.941 0.092 4.938 2048.911*** -18.143%**
SXSL -0.004 7.591 -0.05 3.819 1224 545%%* -4 81 7***
ZGHD 0.03 4.466 0.051 9.527 7617.855%** -1.825%

LJLN 0.064 9.819 -0.107 1.899 306.594*** -8.437***
YWLN 0.09 14.347 -0.049 1.782 267.375%** -4,559%%%*
YGDY 0.029 14.831 -0.032 3.156 836.426%*** -6.349%%*

Notes: Table 1 displayed the descriptive statistics results for the return rates of each variable, where
**x ** and * denoted statistical significance at the 1%, 5%, and 10% significance levels, respectively.
ERS represented the Elliott-Rothenberg-Stock unit root test, and JB represented the Jarque-Bera
normality test.

Source: Authors’ own creation.

According to the descriptive statistics results in Table 1, the return rate
distribution characteristics of the variables used exhibited significant heterogeneity
and non-normality features. From the perspective of mean returns, YWLN
demonstrated the highest average return rate (0.09), whilst ZGXD displayed the
largest negative average return rate (-0.044). This return rate differentiation reflected
the performance differences of different variables during the sample period and the
distinct market risk pricing variations. Variance statistics revealed that YGDY and
YWLN possessed the highest volatility (14.831 and 14.347, respectively), whilst
EGPU exhibited the lowest variance (2.832), revealing significant risk differences
amongst the variables. From the distribution form perspective, EGPU demonstrated
significant negative skewness (-3.569) and extremely high kurtosis (30.603),
indicating that its return rate distribution possessed obvious left-skewed and
leptokurtic characteristics with fat tails. All variables' kurtosis values were
significantly greater than the normal distribution kurtosis value of 3, displaying
prevalent fat-tail characteristics. The JB statistic test results showed that all variables'
JB statistics were significant at the 1% significance level, strongly rejecting the null
hypothesis that returns followed a normal distribution. EGPU possessed the highest
JB statistic (82869.813), confirming that its distribution exhibited the most severe
non-normality. The ERS unit root test results indicated that all variables' return rate
series were stationary time series. ZGXD displayed the strongest stationarity
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(-18.143), whilst ZGHD, although having the smallest absolute statistic value
(-1.825), still rejected the unit root hypothesis at the 10% significance level. These
results provided a solid econometric foundation for subsequent time series analysis,
ensuring the validity of model estimation and the reliability of results.

Table 2. BDS test

Variable M2 M3 M4 M5 Mé
EGPU 3.3824%** 3.3005%** 3.2078** 3.1048** 3.0226**
CTNY 14.2497*** 14.2387%** 14.2199%** 14.1919%** 14.2374%*%*
ZGXD 16.6032%** 16.6001%** 16.5905%** 16.5742%%* 16.5769%**
SXSL 14.6728%** 14.6534*** 14.6532%** 14.6273%** 14.6270%**
ZGHD 17.2128%** 17.2079%** 17.2143%** 17.2073%** 17.2034%**
LJLN 9.6860*** 9.3019%** 9.8238*** 9.824 5% 9.8270%**
YWLN 5.2393*** 4.9891 *** 5.2781*** 5.2878*** 5.2783%**
YGDY 7.2275%%* 7.1476%** 7.3218%** 7.3102%*%* 7.2739%**

Notes: *** ** * denote statistically significant at 1%, 5%, 10% level of significance
respectively.
Source: Authors’ own creation.

Table 2 presented the BDS (Brock-Dechert-Scheinkman) test results, which
were used to detect nonlinear dependence and chaotic behaviour in time series data.
From the test results, all variables' BDS statistics under different dimensions (M2 to
Mo6) were significant at the 1% or 5% significance levels, strongly rejecting the null
hypothesis that the data were independently and identically distributed (i.i.d.).
Specifically, ZGHD exhibited the highest BDS statistics across all dimensions
(ranging from 17.2128 to 17.2034), followed by ZGXD (from 16.6032 to 16.5769)
and SXSL (from 14.6728 to 14.6270), while EGPU displayed relatively lower but
still significant BDS statistics (from 3.3824 to 3.0226). These results indicated that
all variables' return rate series possessed significant nonlinear structures and long-
term dependence, violating the fundamental assumptions of traditional linear time
series models. This suggested that these financial time series might contain complex
nonlinear dynamic characteristics, conditional heteroscedasticity, or other forms of
nonlinear dependence relationships, providing strong statistical support for adopting
nonlinear modelling methods.
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Figure 1. Time series plot of return rates
Source: Authors’ own creation.

Figure 1 displays the time series plots of return rates for eight variables
spanning the period from 2015 to 2023, offering an intuitive depiction of each
variable’s dynamic volatility characteristics and temporal evolution patterns. The
figure reveals that the return rate series for all variables exhibit typical financial time
series characteristics: they fluctuate around a zero mean and show clear volatility
clustering, where periods of high fluctuation tend to follow one another. EGPU's
volatility amplitude was relatively small, primarily concentrated between -20% and
5%, consistent with its lower variance statistics, whilst YWLN and YGDY displayed
greater volatility amplitudes, with return rate changes ranging from -20% to 15%,
reflecting higher market risks. Notably, around 2020, multiple variables exhibited
relatively severe volatility, which might have been related to systemic risk events in
global financial markets.

Table 3. Static connectivity table
EGPU CTNY ZGXD SXSL ZGHD LILN YWLN YGDY FROM
Panel A. Overall

EGPU 93.23 1.23 0.98 0.76 112 0.85 1.05 0.79 6.77
CTNY 0.99 53.99 10.09 7.26 14.74 5.68 3.33 3.92 46.01
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EGPU CTNY  ZGXD SXSL ZGHD LILN YWLN YGDY FROM

ZGXD 0.65 9.4 50.15 8.98 12.54 6.79 574 5.75 49.85
SXSL 0.61 7.8 10.18 57.52 8.31 5.46 5.63 4.49 42.48
ZGHD 0.76 14.18 12.57 7.1 50.71 5.01 4.17 5.49 49.29
LILN 0.56 521 6.68 4.34 4.98 49.02 11 18.21 50.98
YWLN 0.92 3.7 6.79 5.35 4.96 12.52 52.88 12.87 47.12
YGDY 0.65 3.89 6.26 3.94 5.61 19.17 12.14 48.34 51.66
TO 5.16 454 53.55 37.73 52.26 55.48 43.06 51.52 344.16
NET -161 -0.61 3.7 -4.75 2.98 4.5 -4.06 -0.14 TCl=43.02
NPDC 0 3 6 1 5 7 2 4
Panel B. Short-term (1-5 days)
EGPU 81.38 11 0.84 0.68 101 0.74 0.94 0.7 6.01
CTNY 0.9 48.31 9.02 6.48 13.18 5 3.02 3.52 41.13
ZGXD 0.56 8.2 44.46 7.84 11.02 5.94 511 5.16 43.84
SXSL 0.53 6.85 9.02 50.4 7.35 4.72 491 3.94 37.34
ZGHD 0.69 12.25 11.09 6.24 44.55 4.38 3.76 4.9 43.31
LILN 0.49 4.56 6.03 3.85 443 43.34 9.77 16.34 45.48
YWLN 0.83 3.25 6.07 4.72 4.47 10.96 46.91 11.54 41.85
YGDY 0.56 3.47 5.74 3.51 5.07 16.81 10.8 43.01 4597
TO 4.56 39.7 47.81 33.32 46.53 48.56 38.32 46.1 304.9
NET -1.44 -1.43 3.98 -4.02 3.22 3.08 -3.53 0.14 TCI=38.11
NPDC 0 3 7 1 6 5 2 4

Panel C. Long-term (5-Inf days)

EGPU 11.85 0.13 0.14 0.08 0.12 0.1 0.11 0.08 0.77
CTNY 0.09 5.68 1.06 0.78 1.56 0.68 0.3 0.41 4.88
ZGXD 0.09 119 5.69 114 1.52 0.85 0.63 0.59 6.01
SXSL 0.08 0.95 115 7.11 0.96 0.74 0.72 0.55 5.15
ZGHD 0.08 1.92 1.48 0.86 6.16 0.63 0.41 0.59 5.98
LJLN 0.08 0.64 0.65 0.5 0.55 5.68 1.23 1.87 551
YWLN 0.1 0.45 0.72 0.63 0.49 1.56 5.97 1.33 5.27
YGDY 0.08 0.42 0.52 0.42 0.54 2.36 134 5.33 5.7

TO 0.59 5.7 5.73 441 5.73 6.93 4.74 542 39.26
NET -0.17 0.82 -0.28 -0.73 -0.25 142 -0.53 -0.27 TCI=4.91
NPDC 1 6 3 1 4 7 3 3

Notes: Forecast horizon is 10.
Source: Authors’ own creation.
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Table 3 presented the static spillover effects analysis results under different
frequency domains in the TVP-VAR model, revealing the dynamic correlations
between China's environmental governance policy uncertainty (EGPU) and new
energy-related stocks. From the perspective of the Total Connectedness Index (TCI),
the overall frequency domain TCI was 43.02, the short-term frequency domain (1-5
days) TCI was 38.11, whilst the long-term frequency domain (over 5 days) TCI was
only 4.91. These results indicated that spillover effects were mainly concentrated in
the short to medium term, with the degree of mutual influence between variables
significantly diminishing in the long term, reflecting the dominant role of short-term
volatility contagion in financial markets.

From the net spillover effects (NET) perspective in analysing the overall
frequency domain results, EGPU functioned as a net spillover receiver (NET=-1.61),
indicating that new energy stock volatility inversely influenced the market
perception of policy uncertainty. ZGXD served as the strongest net spillover
contributor (NET=3.7), followed by LJLN (NET=4.5) and ZGHD (NET=2.98),
whilst SXSL (NET=-4.75) and YWLN (NET=-4.06) were the primary net spillover
receivers. This spillover pattern suggested that traditional power equipment
manufacturers and emerging clean energy enterprises played the role of risk
transmitters in the system, while hydroelectric power generation and lithium battery
technology enterprises predominantly absorbed shocks from the system.

The short-term frequency domain analysis results displayed spillover patterns
similar to the overall frequency domain. EGPU remained a net spillover receiver
(NET=-1.44), with ZGXD (NET=3.98), ZGHD (NET=3.22), and LJLN (NET=3.08)
maintaining net spillover contributor status, whilst SXSL (NET=-4.02) and YWLN
(NET=-3.53) continued as major net receivers. Notably, YGDY transformed into a
slight net spillover contributor in the short term (NET=0.14), which might have
reflected the immediate impact of the photovoltaic inverter industry on other new
energy sub-sectors in the short term. The short-term TCI was 38.11, comprising the
vast majority of overall spillover effects, confirming the importance of short-term
linkage mechanisms in new energy markets.

The long-term frequency domain presented distinctly different spillover
characteristics, with the TCI dropping dramatically to 4.91, indicating that the
mutual dependencies between variables weakened substantially in the long term. In
the long-term frequency domain, LJLN transformed into the strongest net spillover
contributor (NET=1.42), whilst CTNY also became a net contributor (NET=0.82),
with other variables' net spillover effects being relatively weak. This transformation
suggested that in the long term, solar technology leading enterprises and traditional
energy companies might exert more sustained influence on the system, whilst the
influence of power equipment manufacturers that dominated in the short term
weakened in the long term.

Cross-frequency domain comparative analysis revealed several important
characteristics of new energy market spillover effects. Firstly, EGPU functioned as
anet spillover receiver across all frequency domains, contrasting with the traditional
perception of policy uncertainty as an exogenous shock source, suggesting that new
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energy market development conditions might inversely influence policy-making
uncertainty. Secondly, ZGXD and LJLN consistently maintained net spillover
contributor status in the short to medium term, reflecting the central position of
power equipment manufacturing and photovoltaic technology in the new energy
ecosystem. Thirdly, the frequency structure of the spillover effects indicated that
market participants primarily focused on short-term volatility contagion, with long-
term fundamental linkages being relatively weak, providing important temporal
dimension considerations for risk management and investment decisions. Finally, the
changes in spillover positions of different new energy sub-sectors across various
frequency domains reflected the complex impacts of technological progress,
industrial policies, and market competition pattern evolution on inter-industry
correlations.

2016 2018 2020 2022

Figure 2. Dynamic Total Connectedness Index (TCI) (Forecast horizon (H):10)
Source: Authors’ own creation.

Based on the dynamic Total Connectedness Index (TCI) analysis results in
Figure 2, significant time-varying and cyclical characteristics of spillover effects in
new energy markets across the temporal dimension could be observed. From the
overall evolution trajectory, systemic spillover effects were at relatively high levels
in early 2015, with the overall frequency domain TCI at approximately 70%, short-
term frequency domain at around 60%, whilst the long-term frequency domain
maintained a lower level of 10%. This was highly consistent with the conclusion that
short-term spillover effects dominated in the static analysis. During 2015-2017, TCI
across all frequency domains exhibited significant downward trends, with overall
and short-term frequency domains declining from high levels to approximately 30%,
possibly reflecting the mitigation of systemic risks brought about by the gradual
improvement of new energy policies and the increasing maturity of market
mechanisms. During 2018-2019, TCI fluctuated between 40%-50%, demonstrating
market sensitivity to external uncertainty factors, whilst the COVID-19 outbreak in
2020 produced the most significant peak within the study period, with the overall
frequency domain connectedness index surging to approximately 65% in the short
term, fully reflecting the amplification effect of extreme events on systemic risks in
financial markets.
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During 2021-2023, dynamic TCI presented relatively stable but still volatile
characteristics, with overall frequency domain and short-term frequency domain
connectedness indices primarily fluctuating within the 35%-45% range, suggesting
that new energy markets had entered a new equilibrium state after experiencing the
COVID-19 shock. TCI fluctuations during this period might have been related to
factors such as the accelerated carbon neutrality policy implementation and the
intensified competition among the new energy technology pathways. Notably, long-
term frequency domain TCI consistently maintained relatively low and stable levels
of 5%-10% throughout the entire sample period, with its proportion of total spillover
effects remaining consistently small. This corroborated the static analysis result
where long-term TCI was only 4.91, confirming the important characteristic that new
energy market risk contagion was primarily realised through short-term channels.
Overall, the temporal evolution pattern of dynamic TCI not only validated the core
findings of static analysis but also revealed the dynamic adjustment mechanisms of
systemic risks in new energy markets in response to macroeconomic environments,
policy changes, and extreme events.
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Figure 3. Dynamic Net Spillover Effects (NET)
Source: Authors’ own creation.

Based on the dynamic net spillover effects (NET) analysis results in Figure 3,
significant time-varying characteristics and heterogeneous performance of risk
transmission roles across variables in different frequency domains could be observed.
From the overall evolution pattern, EGPU, as a policy uncertainty indicator,
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functioned as a net spillover receiver during most periods, with NET values
fluctuating primarily between -10% and 10%. This was fundamentally consistent
with the conclusion that EGPU was a net receiver in static analysis, but dynamic
analysis revealed the temporal characteristics of its role transitions. Particularly
during the COVID-19 period in 2020, EGPU's net spillover effects exhibited obvious
positive jumps, suggesting enhanced transmission effects of policy uncertainty to
new energy markets under extreme market conditions. CTNY primarily functioned
as a net spillover receiver throughout the entire sample period, with NET values
being negative during most periods. This aligned with its slightly negative net
spillover results in static analysis, but dynamic graphs showed that it briefly
transformed into a net contributor during 2018-2019, possibly reflecting changes in
traditional energy enterprises' market influence during specific periods.

The dynamic NET performance of new energy stocks presented more complex
time-varying characteristics and obvious industry differences. SXSL functioned as a
significant net spillover receiver during most periods, with NET values frequently
below -10%, which was highly consistent with its -4.75 net receiver status in static
analysis. Particularly during the COVID-19 period in 2020, its net reception degree
deepened further, reflecting the high sensitivity of hydroelectric power generation
enterprises to systemic risk shocks. YWLN similarly functioned primarily as a net
spillover receiver, but its NET value fluctuation amplitude was relatively small,
varying between -10% and 5% during most periods, which corresponded to its -4.06
net receiver role in static analysis. ZGXD's dynamic NET performance was most
stable, maintaining long-term positive values, confirming its important status as a
consistent net spillover contributor. This was highly consistent with its 3.7 positive
net spillover value in static analysis. LJLN functioned as a strong net spillover
contributor during 2015-2017, with NET values frequently exceeding 20%, but
subsequently gradually declined and transformed into a net receiver during certain
periods. This role transition might have reflected the impact of photovoltaic industry
technological maturity improvement and market competition landscape changes.
YGDY's NET performance exhibited cyclical characteristics, alternating between
net contributor and net receiver roles across different periods, particularly showing
obvious net spillover contribution peaks around 2020, suggesting dynamic changes
in inverter technology enterprises' position within the new energy industry chain.
Notably, each variable's NET performance maintained consistent directionality
across different frequency domains, further validating the core finding that short-
term spillover effects dominated in static analysis, whilst simultaneously revealing
the complex dynamic characteristics of new energy market risk transmission
mechanisms evolving over time.
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Figure 4. Dynamic pairwise net spillover analysis results of EGPU to other variables
Source: Authors’ own creation.

Based on the dynamic pairwise net spillover analysis results of EGPU to other
variables in Figure 4, the bilateral risk transmission mechanisms and time-varying
characteristics between China's environmental governance policy uncertainty and
various new energy stocks could be deeply observed. From the overall evolution
pattern, pairwise net spillover effects between EGPU and new energy stocks
fluctuated primarily between -2% and 4%, with relatively small amplitudes but
displaying obvious time-varying and heterogeneous characteristics. In most pairwise
relationships, EGPU functioned as a net spillover receiver, meaning that new energy
stock volatility influenced policy uncertainty to a greater extent than policy
uncertainty directly impacted stocks. This finding corroborated the conclusion that
EGPU was a net receiver in the aforementioned overall NET analysis. Particularly
noteworthy was that the EGPU-YGDY and EGPU-LJLN pairs exhibited relatively
significant positive net spillovers during certain periods, suggesting that policy
uncertainty's impact on core photovoltaic industry chain enterprises might have been
more direct and intense at specific time points.

Pairwise net spillover analysis across different frequency domains revealed
complex temporal structures of policy transmission mechanisms. In traditional
energy infrastructure pairs such as EGPU-CTNY, EGPU-ZGXD, and EGPU-SXSL,
short-term and overall frequency domain net spillover patterns were fundamentally
consistent, primarily exhibiting slight negative values, indicating that these
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enterprises' market performance feedback effects on policy uncertainty perception
were relatively stable. Long-term frequency domain net spillover effects approached
zero with minimal volatility, again confirming that interactions between policy
uncertainty and new energy stocks were primarily realised through short-term
channels. In the EGPU-YGDY and EGPU-LJLN pairs, more obvious time-varying
characteristics were observed, particularly during the COVID-19 period in 2020 and
the accelerated carbon neutrality policy implementation phase in 2021-2022, where
these pairs' net spillover effects exhibited significant positive jumps, reflecting the
differentiated impacts of extreme market conditions and major policy changes on
specific new energy sub-sectors. EGPU-YWLN and EGPU-ZGHD pairs' net
spillover effects were relatively stable, fluctuating slightly within negative value
ranges, suggesting that lithium battery and nuclear power enterprises maintained
relatively stable negative feedback relationships with policy uncertainty, meaning
that good performance by these enterprises helped reduce market uncertainty
expectations regarding environmental policies. Overall, pairwise net spillover
analysis not only validated the general characteristic of EGPU as a systemic net
receiver but, more importantly, revealed the heterogeneity and time-varying nature
of risk transmission between policy uncertainty and different new energy technology
pathways, providing more refined empirical evidence for understanding the dynamic
interaction mechanisms between environmental policies and new energy markets.

2018 2020 2022

Figure 5. Robustness test (Forecast horizon (H):20)
Source: Authors’ own creation.

Based on the robustness test results in Figure 5, it was observed that after
adjusting the forecast horizon from H=10 to H=20, the temporal evolution pattern of
the dynamic Total Connectedness Index (TCI) maintained high consistency with the
baseline results in Figure 2, fully validating the robustness of the research
conclusions. From the overall trend perspective, the temporal trajectories of TCI
across frequency domains in Figure 5 almost perfectly overlapped with Figure 2,
with key characteristics including the high levels in early 2015 (overall frequency
domain approximately 70%, short-term frequency domain approximately 60%), the
significant downward trend during 2015-2017, the volatility fluctuations in 2018-
2019, the sharp increase during the COVID-19 period in 2020, and the relative
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stability in 2021-2023 all being completely preserved. This high similarity indicated
that changes in forecast horizon length did not alter the fundamental time-varying
patterns of spillover effects in new energy markets, confirming the reliability of
TVP-VAR model estimation results and the stability of research findings.

More importantly, Figure 5 further confirmed the relative importance structure
of spillover effects in different frequency domains. The long-term frequency domain
TCI still maintained relatively low and stable levels of 5%-10% throughout the entire
sample period, with its proportion of total spillover effects remaining consistently
small, which was completely consistent with results under the H=10 setting. The
short-term frequency domain continued to dominate spillover effects, with its
variation amplitude and temporal patterns highly synchronised with the overall
frequency domain, again confirming the core conclusion that new energy market risk
contagion was primarily realised through short-term channels. Notably, at key time
points such as during the COVID-19 shock in 2020, TCI peak levels under both
forecast horizon settings were almost identical, further validating the measurement
accuracy of extreme events' amplification effects on systemic risks. Additionally, the
fluctuation patterns of TCI within the 35%-45% range during 2021-2023 maintained
high consistency, confirming the assessment that new energy markets entered a new
equilibrium state in the post-COVID-19 era. Overall, this robustness test not only
enhanced the credibility of the research results, but, more importantly, confirmed
that the identified time-varying characteristics and frequency domain differences of
the new energy market spillover effects possessed inherent economic logic support,
independent of specific technical parameter settings.

Table 4. OLS regression
Variables CTNY ZGXD SXSL ZGHD LJLN YWLN YGDY

Coefficient 0.0354 0.0386 0.0236 0.0429 0.0361 0.0422 0.0177

Source: Authors’ own creation.

Based on the OLS regression analysis results in Table 4, the direct impact
effects of EGPU on new energy stock returns could be observed, providing important
robustness test support for the aforementioned TVP-VAR frequency domain
connectedness analysis. From the regression coefficients, EGPU demonstrated
positive impacts on all new energy stocks, with coefficients ranging from 0.0177 to
0.0429. This result was fundamentally consistent with EGPU's role as a systemic risk
transmitter in the TVP-VAR analysis. Specifically, ZGHD exhibited the highest
sensitivity (coefficient 0.0429), followed by YWLN (0.0422) and ZGXD (0.0386),
whilst YGDY's sensitivity was relatively lowest (0.0177). This heterogeneous
pattern corroborated the differentiated response characteristics of different new
energy sub-sectors to policy uncertainty shocks in the aforementioned dynamic
connectedness analysis.

The positive coefficients in OLS regression results indicated that increases in
environmental governance policy uncertainty led to increases in new energy stock
returns. This finding seemingly contradicted traditional negative uncertainty shock
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theories but actually reflected the special nature of the new energy industry. Increases
in environmental policy uncertainty often accompanied the strengthening of
environmental requirements and the advancement of green transformation policies,
bringing more market opportunities and policy support to new energy enterprises,
thereby generating positive market reactions. This explanation formed organic unity
with the finding in TVP-VAR analysis that EGPU primarily functioned as a net
spillover receiver, meaning that good performance in new energy markets inversely
influenced market expectations and uncertainty perceptions regarding environmental
policies. Notably, the differences in various stocks' sensitivity to EGPU also aligned
with the different roles each variable played in the system according to frequency
domain connectedness analysis, with technology-intensive enterprises such as
nuclear power and lithium battery being more sensitive to policy changes, whilst
traditional power equipment and renewable energy generation enterprises
demonstrated relatively stable responses. Overall, OLS regression analysis not only
validated the existence of the relationships between policy uncertainty and new
energy stocks identified by the TVP-VAR model but, more importantly, provided
supplementary information regarding impact direction and intensity, enhancing the
robustness and credibility of research conclusions.

4. Conclusions

This work employed the TVP-VAR frequency domain connectedness
methodology to conduct an in-depth analysis of the dynamic spillover effects
between China's environmental governance policy uncertainty and renewable energy
stock markets, providing important empirical evidence for understanding the risk
transmission mechanisms of policy uncertainty within green financial systems. The
research findings revealed the complex time-varying characteristics and frequency
heterogeneity of risk contagion in renewable energy markets, offering significant
theoretical value and practical implications for investment decision-making and
policy formulation.

The principal findings of this research can be summarised in several key aspects.
Firstly, significant spillover effects existed within renewable energy markets, with
these effects primarily realised through short-term channels, where short-term
frequency domain TCI maintained dominance whilst long-term frequency domain
influences remained relatively weak. Secondly, environmental governance policy
uncertainty predominantly manifested as a net spillover receiver throughout most
periods, suggesting that the developmental status of renewable energy markets
inversely influenced policy-making uncertainty perceptions, contrasting with
traditional perspectives that view policy as an exogenous shock source. Thirdly,
different renewable energy sub-sectors assumed differentiated roles within the
system, with power equipment manufacturing enterprises primarily serving as risk
transmitters whilst emerging technology enterprises predominantly absorbed
systematic shocks. Fourthly, spillover effects exhibited pronounced time-varying
characteristics, with systemic risks significantly amplified during extreme events
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such as the COVID-19 pandemic, whilst connectivity weakened during periods of
relatively stable policy environments.

Based on these research findings, detailed investment strategy
recommendations were provided to different types of investors. For short-term
investors, primary attention should be directed towards short-term volatility
contagion effects in renewable energy markets, as research demonstrated that
spillover effects were primarily realised through short-term channels. When
constructing investment portfolios, excessive concentration within the same
renewable energy sub-sector should be avoided, particularly simultancous heavy
weighting in power equipment manufacturing stocks, as these stocks often served as
sources of risk transmission. Conversely, allocation of certain proportions to risk-
receiving stocks such as SXSL and YWLN could be considered, as these stocks,
whilst absorbing systematic shocks, might also achieve greater rebound potential
when market sentiment improved. Short-term investors should also closely monitor
changes in policy uncertainty indicators, as OLS regression results indicated that
renewable energy stocks generally benefited when environmental policy uncertainty
increased, providing important timing signals for short-term trading.

For long-term investors, the research results offered more optimistic investment
prospects. Due to the relatively weak and stable spillover effects in the long-term
frequency domains, long-term investors need not be overly concerned about the
contagion effects of short-term market volatility. Diversified investment strategies
were recommended, with allocations across different segments of the renewable
energy industry chain, particularly focusing on enterprises such as LJLN that might
transform into net spillover contributors over the long term. Long-term investors
should regard environmental policy uncertainty as investment opportunities rather
than risks, as policy drivers often brought long-term developmental benefits to the
renewable energy sector. Simultaneously, focus should be placed on leading
enterprises with strong technological innovation capabilities and stable industry
chain positions, as these enterprises often assumed risk transmitter roles within the
system, possessing stronger market influence and long-term competitive advantages.

For institutional investors, the frequency domain differences discovered in this
research should be fully utilised to construct multi-layered risk management systems.
In short-term risk management, primary attention should be directed towards
monitoring changes in systemic connectivity indicators, with timely adjustments to
position allocations when TCI exhibited abnormal increases, reducing weights of
high-risk contagion stocks. In long-term asset allocation, the influence of short-term
volatility contagion could be relatively ignored, focusing instead on fundamental
investment value within the renewable energy sector. Institutional investors should
also establish dynamic portfolio rebalancing mechanisms, timely adjusting
allocation weights according to the time-varying characteristics of different
renewable energy stocks' roles within the system. Particularly under extreme market
conditions, adequate liquidity should be prepared to address the amplification effects
of systemic risks.
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The research results provided important policy design and implementation
guidance to environmental policy makers. Firstly, policy makers should recognise
the inverse influence of renewable energy market development status on policy
uncertainty perceptions, meaning that promoting healthy development of renewable
energy markets could effectively reduce policy implementation uncertainty. When
formulating environmental policies, market feedback mechanisms should be fully
considered, establishing real-time monitoring systems for policy effectiveness and
timely adjusting policy intensity and implementation pace according to renewable
energy market performance. Such dynamic adjustment mechanisms would facilitate
beneficial interactions between policy and markets, reducing the negative impacts of
policy uncertainty on the entire green financial system.

Secondly, policy makers should emphasise risk contagion mechanisms within
renewable energy markets, considering differentiated characteristics of various sub-
sectors when designing industrial support policies. For power equipment
manufacturing enterprises serving as risk transmitters, strengthened supervision and
risk prevention should be implemented to prevent negative shocks from spreading
throughout the entire renewable energy ecosystem. For risk-receiving emerging
technology enterprises, more policy support and risk mitigation measures should be
provided to help these enterprises resist systemic risk shocks. Establishing classified
and layered policy instrument systems was recommended, formulating differentiated
support measures and regulatory requirements for different types of renewable
energy enterprises.

Thirdly, given that spillover effects were primarily realised through short-term
channels, policy makers should fully consider short-term market reactions when
releasing major environmental policies, adopting gradual and pre-announced policy
implementation approaches to avoid overly concentrated and severe policy shocks.
Establishing policy communication mechanisms was recommended, releasing policy
signals in advance to provide markets with adequate adaptation time. Simultaneously,
monitoring and intervention capabilities for short-term fluctuations in renewable
energy markets should be strengthened, with timely stabilisation measures
implemented during extreme market conditions to prevent further amplification of
systemic risks.

Finally, policy makers should utilise the positive relationship between
environmental policy uncertainty and renewable energy stock returns, releasing
moderate policy uncertainty to stimulate market vitality and innovation momentum.
This did not imply artificially creating policy uncertainty, but rather finding balance
points amongst policy foresight, consistency, and flexibility. Establishing policy
systems that combined long-term environmental policy frameworks with short-term
flexible adjustment mechanisms was recommended, providing clear long-term
expectations for markets whilst maintaining policy adaptability and responsiveness.
Through such approaches, policy uncertainty could be transformed into positive
factors promoting renewable energy industry development, achieving dual
optimisation of policy objectives and market efficiency.
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In future research, consideration could be given to incorporating additional
uncertainty indices or more detailed renewable energy sector enterprises, such as
wind and geothermal energy companies. Furthermore, extending this analytical
framework to other major economies with significant renewable energy markets,
such as the European Union, the United States, and emerging Asian markets, would
enable cross-country comparative analyses and enhance the generalisability of
findings regarding the relationship between environmental policy uncertainty and
new energy markets.

References

[1] Androniceanu, A., Sabie, O.M. (2022), Overview of green energy as a real strategic
option for sustainable development. Energies, 15(22), 8573.

[2] Antonakakis, N., Chatziantoniou, 1., Gabauer, D. (2020), Refined measures of dynamic
connectedness based on time-varying parameter vector autoregressions. Journal of
Risk and Financial Management, 13(4), 84.

[3] Barunik, J., Kiehlik, T. (2018), Measuring the frequency dynamics of financial
connectedness and systemic risk. Journal of Financial Econometrics, 16(2), 271-296.

[4] Diebold, F.X., Yilmaz, K. (2009), Measuring financial asset return and volatility
spillovers, with application to global equity markets. The Economic Journal, 119(534),
158-171.

[5] Diebold, F.X., Yilmaz, K. (2012), Better to give than to receive: Predictive directional
measurement of volatility spillovers. International Journal of Forecasting, 28(1), 57-66.

[6] Diebold, F.X., Yilmaz, K. (2014), On the network topology of variance decompositions:
Measuring the connectedness of financial firms. Journal of Econometrics, 182(1), 119-134.

[7] Dong, K., Jiang, Q., Shahbaz, M., Zhao, J. (2022), Does low-carbon energy transition
mitigate energy poverty? The case of natural gas for China. Energy Economics, 99,
105324.

[8] Guilhot, L. (2022), An analysis of China's energy policy from 1981 to 2020:
Transitioning towards to a diversified and low-carbon energy system. Energy Policy,
162, 112806.

[9]1 Hao, Y., Ba, N., Ren, S., Wu, H. (2021), How does international technology spillover
affect China's carbon emissions? A new perspective through intellectual property
protection. Sustainable Production and Consumption, 25, 577-590.

[10] Hoang, A.T., Nizeti¢, S., Olcer, A.L., Ong, H.C., Chen, W.H., Chong, C.T., ... Nguyen,
X.P. (2021), Impacts of COVID-19 pandemic on the global energy system and the shift
progress to renewable energy: Opportunities, challenges, and policy implications.
Energy Policy, 154, 112322,

[11] Koop, G., Pesaran, M.H., Potter, S.M. (1996), Impulse response analysis in nonlinear
multivariate models. Journal of Econometrics, 74(1), 119-147.

[12] Li, M., Lin, Q., Lan, F., Zhan, Z., He, Z. (2023), Trade policy uncertainty and financial
investment: Evidence from Chinese energy firms. Energy Economics, 117, 106424.

Vol. 59, Issue 4/2025 153



Xiangjing Zhou, Zhiqiang Tong, Hongjun Zeng, Shenglin Ma

[13] Liu, Z., Deng, Z., He, G., Wang, H., Zhang, X., Lin, J., ... Liang, X. (2022), Challenges
and opportunities for carbon neutrality in China. Nature Reviews Earth &
Environment, 3(2), 141-155.

[14] Pesaran, H.H., Shin, Y. (1998), Generalized impulse response analysis in linear
multivariate models. Economics Letters, 58(1), 17-29.

[15] Sawin, J.L. (2012), National policy instruments: Policy lessons for the advancement and
diffusion of renewable energy technologies around the world. In Renewable Energy
(pp- 71-114), Routledge.

[16] Tiwari, A.K., Abakah, E.J., Gabauer, D., Dwumfour, R.A. (2022), Dynamic spillover
effects among green bond, renewable energy stocks and carbon markets during
COVID-19 pandemic: Implications for hedging and investments strategies. Global
Finance Journal, 51, 100694.

[17] Wang, F., Liu, W. (2024), The current status, challenges, and future of China's
photovoltaic industry: A literature review and outlook. Energies, 17(22), 5694.

[18] Wu, R., Zeng, H., Yan, J., Isik, C. (2025), Introducing the environmental governance
policy uncertainty (EGPU) for China. Journal of Environmental Management, 386,
125748.

[19] Xinhua. (2025, January 28), Renewable energy accounts for 56 pct of China's total
installed capacity. Xinhua News Agency, https://english.news.cn/20250128/fd3207e5de
654a8eabbfl7ee8728377a/c.html.

[20] Zeng, H., Lu, R., Ahmed, A.D. (2023), Return connectedness and multiscale spillovers
across clean energy indices and grain commodity markets around COVID-19 crisis.
Journal of Environmental Management, 340, 117912.

[21] Zhang, L., Qin, Q. (2018), China's new energy vehicle policies: Evolution, comparison and
recommendation. Transportation Research Part A: Policy and Practice, 110, 57-72.

[22] Zhao, C., Ju, S., Xue, Y., Ren, T., Ji, Y., Chen, X. (2022), China's energy transitions for
carbon neutrality: Challenges and opportunities. Carbon Neutrality, 1(1), 7.

154 Vol. 59, Issue 4/2025



