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Abstract. The safe and effective use of chemical compounds across agriculture, 
pharmaceuticals, and food industries is vital for public health and environmental 
sustainability. However, current systems struggle with predicting compound suitability, 
limiting traceability and data integrity. This study presents an integrated AI-driven 
blockchain framework to predict the suitability of chemical compounds across these sectors, 
ensuring transparent traceability in supply chains. The research develops a robust multi-
label classification model using an optimised FT-Transformer, which effectively handles 
complex molecular descriptor data. To improve classification performance, the study 
introduces the AdamW5 optimiser, which integrates multiple optimisation strategies to 
enhance convergence stability and generalisation performance. The suitability predictions 
are securely stored on a Hyperledger Fabric blockchain, providing immutable records, 
automated access control, and verifiable audit trails. This framework achieved a 
classification accuracy of 98.45%, with a precision of 98.17% and an F1-score of 97.95%, 
significantly outperforming baseline models, while ensuring secure and tamper-proof data 
storage. 
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1. Introduction 

 
Chemical compounds play a crucial role in various industries, spanning from 

agriculture to pharmaceuticals and food production. The effective and safe utilisation 
of chemical compounds plays a key role in agriculture, food processing, and drug 
development (Salthammer 2024; Hegde et al. 2024). Ensuring the appropriate usage 
of these compounds is essential for safety, efficacy, and regulatory compliance. In 
the past, identifying a compound's suitability for a particular domain has relied on 
human assessments and static databases, which fail to accurately reflect the nuanced 
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needs of each sector (Alaca et al. 3034). Monitoring the creation of compounds and 
effective management within the food, agricultural, and pharmaceutical supply 
chains is essential for ensuring product safety (Payandeh et al. 2024). The increased 
concerns about safety and contamination hazards have refocused its attention on 
improved supply chain traceability (Xia et al. 2023). Simultaneously, supply chain 
globalisation has presented difficulties in tracking the source and its organisation of 
chemical compounds (Ghadge et al. 2023). Occurrences of counterfeit substances 
and lapses in quality control emphasise the need for robust traceability mechanisms. 
Blockchain technology has emerged as a promising solution, offering immutable and 
transparent records that enhance trust across supply chain stakeholders (Ahmed et 
al. 2023). 

Recent technological advancements using blockchain can offer a significant and 
realistic solution that ensures transparency and eliminates the necessity for a 
trustworthy centralised authority. The management of agrochemical packaging and 
supply chain is essential due to its hazardous nature. Many intelligent models have 
been developed to track agrochemicals with trustworthy and immutable data using 
blockchain traceability (Monteiro et al. 2024). By employing blockchain technology, 
stakeholders can ensure end-to-end traceability throughout the food supply chain, 
facilitating real-time monitoring of critical processes such as sourcing of raw 
materials, production, storage, distribution, and retail, thereby promoting food 
safety, quality assurance, and consumer trust (Rashed et al. 2025). In the 
pharmaceutical supply chain, a secure Barcode system was designed to address 
tracking and tracing issues, focusing on several key factors such as system reliability, 
security, implementation cost, and flexibility (Bapatla et al. 2024). Existing chemical 
information systems often focus on static compound data, which restricts their 
efficiency in smartly classifying and analysing the suitability of compounds across 
several areas. There is a significant gap in utilising AI technology to automate and 
improve the prediction of a compound's suitability based on its unique chemical 
properties. Furthermore, current systems often encounter issues with traceability, 
decentralisation, and data tampering, which can impact safety assessments, 
regulatory compliance, and public trust. To address these issues, the proposed 
approach designs a robust AI-based multi-label classification model that accurately 
predicts the suitability of chemical compounds and utilises a blockchain-based 
traceability system to store these predictions securely. This improves transparency, 
ensures tamper-proof registration, and creates verifiable audit trails for all 
stakeholders in the chemical supply chain, thereby enhancing safety and trust in the 
sector. 

 
1.1 Research Contribution 

 
The primary contribution of the proposed AI-based suitability prediction 

framework is summarised as follows: 
• The proposed work employs the FT-Transformer (Feature Tokenizer + 

Transformer) model, optimised using an AdamW5 optimiser. It effectively handles 
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high-dimensional tabular molecular descriptors for multi-label classification of 
chemical compounds in the agrochemical, pharmaceutical, and food industries. 

• We have developed a novel AdamW5 optimiser by integrating AdamW,
gradient clipping, gradient centralisation, lookahead, learning rate warm-up, and 
learning rate schedule to improve convergence speed, training stability, and model 
generalisation. 

• The proposed system combines AI-based suitability prediction with a
blockchain-based traceability system, providing tamper-proof, verifiable, and 
transparent storage of high-confidence compound classification through smart 
contracts. 

• The system incorporates automated access control and compound
registration logic via smart contracts, facilitating secure data sharing and providing 
regulatory audit trails of chemical utilisation throughout supply chains. 

The article’s remaining content is structured as follows: Section 2 analyses the 
relevant research on agriculture, food, and pharmaceutical supply chains. The 
materials and methods are covered in Section 3, which also describes the dataset 
used, preprocessing methods, and model architecture. Section 4 exhibits the 
outcomes, along with a comparative analysis and the main findings of the proposed 
framework. Section 5 concludes the study by condensing the main outcomes. 

2. Related Work

In this section, we review and highlight related work found in the literature on 
AI-based approaches for predicting chemical compound properties and suitability, 
as well as blockchain applications in agriculture, food, and pharmaceutical supply 
chains.  

2.1 AI-Based Compound Suitability and Property Prediction 

(Galushka et al. 2021) presented a deep-learning model for predicting chemical 
compound properties, with a focus on LogD and binding affinity. Using a variational 
autoencoder, it generates fingerprints for regression and classification models, 
demonstrating high accuracy. While it enhances virtual screening efficiency, 
challenges such as data sparsity and reliance on structural definitions persist. To 
overcome these limitations, (Kong et al. 2022) developed a new graph neural 
network, specifically a reduced graph message-passing neural network, for chemical 
property prediction that integrates pharmacophore information. It demonstrated that 
pharmacophore-based reduced graph pooling improves prediction accuracy. 
However, it could not be applicable to all molecular structures.  

(Moshkov et al. 2023) aimed to improve drug discovery by assessing chemical 
structures, imaging, and gene-expression profiles to predict compound bioactivity. 
By integrating these data, the prediction achieves a higher success rate than using a 
single modality. This fusion enhances virtual screening efficiency, but it faces 
challenges such as data sparsity and limited fusion strategies. Similarly, (Abdallah 
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et al. 2024) develop AI models to predict skin permeability for transdermal drug 
delivery using molecular descriptors. It utilised machine learning models, including 
Random Forest (RF), Artificial Neural Network (ANN), Light Gradient Boosting 
Machine (LGBM), CatBoost, and XGBoost, for analysis. Cluster analysis of FDA-
approved drugs revealed distinct permeability patterns, which aid in drug 
formulation. However, the model faces challenges in predicting high-molecular-
weight drugs.  
 
2.2 Agri-food and Pharmaceuticals supply chain 

 
(Bhatia et al. 2023) developed an explainable AI-based faster region with a 

CNN model for a user-friendly website based on a QR code to evaluate the content 
of food items. Additionally, a blockchain-based elliptic curve integrated encryption 
technique was employed to verify this. Even though the proposed model improves 
the food traceability scenario, implementing these solutions in real-time applications 
remained difficult. (Sun et al. 2025) created anomalous data processing methods 
using machine learning to create a blockchain-based traceability model for grain and 
oil food supply chains to improve the flexibility and validity of data. The model 
successfully provides comprehensive outlier detection and ensures authenticity and 
reliability. However, integrating blockchain with the complex structure of the grain 
and oil supply chain could provide challenges.  

(Mishra et al. 2024) developed a blockchain-based framework for online 
pharma production that eliminates intermediates with hospitals and pharmacies 
using Ethereum smart contracts to track transactions. This offers an immutable, 
tamper-proof, and reliable system. The model could enable decentralised 
applications for processing the transaction to improve scalability. To increase 
scalability and efficiency, (Abdallah et al. 2023) created distributed ledger 
technology, which provides a transparent pharmaceutical supply chain and smart 
contracts. The model enhances data privacy and security. This could be further 
extended by incorporating a hardware security mechanism that uses a physical 
unclonable function to authenticate the data. 

As evident from these related works, maintaining the safe and effective use of 
chemical substances across the agricultural, food, and pharmaceutical sectors is 
becoming increasingly problematic due to limited transparency, manual verification 
processes, and the absence of real-time traceability in current systems. While various 
AI-based models have been proposed for predicting chemical properties, many 
suffer from limitations, including domain-specific focus, poor generalisation to 
complex or high-molecular-weight compounds, and a lack of integration with 
traceability mechanisms. With higher risks of regulatory non-compliance, 
contamination, and abuse, there is a need for an intelligent, automated, and robust 
system that can accurately predict compound suitability and provide tamper-proof 
traceability across the supply chain. To address these issues, this research creates an 
AI-driven framework to accurately forecast the domain suitability of agrochemical, 
pharmaceutical, or food chemical compounds based on their molecular descriptors. 
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It uses blockchain-based smart contracts to secure registration and track these 
predictions to enable transparency, regulatory compliance, and trust across domains 
for the use of chemicals throughout the supply chain. 

3. A Blockchain-Based Framework for Domain-Specific Prediction
Traceability

This work presents a blockchain-enabled traceability framework for secure and 
domain-specific prediction of a chemical compound's suitability, as depicted in 
Figure 1. The system is constructed with a robust AI-based model using the FT-
Transformer architecture, which is tailored for processing high-dimensional tabular 
data, such as molecular descriptors. The training is optimised using an AdamW5 
optimiser that combines gradient clipping, gradient centralisation, lookahead, 
learning rate warm-up, and learning rate scheduling for rapid convergence, stability, 
and good generalisation. The model utilises multi-label classification to determine 
whether a compound is suitable for use in agrochemicals, pharmaceuticals, and/or 
food applications. Once predictions are generated, the blockchain registration only 
considers high-confidence predictions. These forecasts, along with compound 
identifiers, confidence scores, and predicted domain labels, are inserted into a smart 
contract and immutably stored on a blockchain platform via Hyperledger Fabric. The 
smart contract not only controls data storage but also implements automated access 
control, ensuring that all stakeholders can access verifiable and tamper-proof audit 
trails. This integrated solution ensures that each cross-domain-specific prediction is 
securely logged and accessible, fostering trust, compliance, and accountability 
across cross-domain chemical supply chains. 

Figure 1. AI-based blockchain-enabled traceability framework for secure and 
domain-specific prediction of a chemical compound's suitability 

Source: Authors’ own creation. 



Asha Judi Vargheese, Thankappan Sasikala 

134 Vol. 59, Issue 3/2025 

3.1 Dataset Description 

The PubChemLite Compound Collection for Exposomics is a comprehensive 
compilation of over 371,000 chemicals from a diverse range of areas and application 
domains. This invaluable library provides data on molecular structure and 
composition, annotation categories, and chemical functionality, as well as useful 
information about associated disorders and diseases. It encompasses fields ranging 
from numerology to drug discovery, nutrition to toxicology, all enriched with 
PubMed papers and patents related to each substance. Moreover, the collection 
includes safety information regarding the pharmacological effects of each compound 
as well its toxicity profile when exposed in vitro or when metabolised by the liver. 
For food-related substances, the food-related field provides further details on 
whether their use is suitable for human consumption or not. With its comprehensive 
range of annotation, the PubChemLite_31Oct2020_exposomics.csv file provides 
detailed annotation categories of 371,663 chemicals across a range of applications 
for research and development. This collection can provide invaluable insight into 
how the environment affects human health. Compounds for Studying Environmental 
Exposures Dataset: https://www.kaggle.com/datasets/thedevastator/pubchemlite-
compound-collection-for-exposomics-3?resource=download. 

3.2 Normalisation using Standard Scalar 

The proposed model utilises a standard scalar (Hnamte and Hussain 2023), 
which is used to standardise the values of numerical features. It changes the data so 
that the mean becomes 0 and the standard deviation becomes 1. Equation (1) 
illustrates this process by subtracting the data mean and dividing it by the standard 
deviation. This centres the data around zero and standardises variability.  

𝑍𝑍𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝓍𝓍−𝜇𝜇
𝑠𝑠𝑠𝑠

                           (1)
Where 𝓍𝓍 represents the original value, 𝜇𝜇 represents the mean of the feature, and 

𝑠𝑠𝑠𝑠 represents the standard deviation. 

3.3 AI-based Suitability Prediction using FT-Transformer 

Once the data is pre-processed, the next step is to predict domain-specific 
suitability using an AI model that can learn complex relationships between 
molecular descriptors, enabling accurate multi-label classification across 
agrochemical, pharmaceutical, and food domains. FT-Transformer (Wang et al. 
2025) is an advanced neural network designed for handling tabular data. It uses a 
robust self-attention mechanism in the transformer to learn intricate correlations 
between the features. It is particularly effective in situations where traditional ML 
models perform poorly because of high dimensionality or the requirements to 
capture long-range dependencies among the features. 

Initially, the FT-Transformer converts the input characteristics into an 
appropriate representation. Each feature in the input vector 𝑎𝑎𝑖𝑖 is incorporated into a 
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high-dimensional space using a learnable embedding matrix Ε as shown in Equation 
(2). 

𝑑𝑑𝑖𝑖 = Ε ∙ 𝑎𝑎𝑖𝑖                            (2) 
Where the embedded representation of 𝑖𝑖th feature is represented by 𝑑𝑑𝑖𝑖. These 

embedded features are tokenised to generate a series of feature tokens as represented 
in Equation (3). This enables the model to capture interactions between diverse 
features by allowing the transformer to treat each feature distinctly.  

Τ = {𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑𝑘𝑘}                                         (3) 
Then, the self-attention mechanism allows the model to determine how 

important each feature token is in relation. The attention mechanism computes a 
weighted sum of the input tokens using the weights based on token similarity. The 
mathematical formulation is expressed in Equation (4). 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 (𝒬𝒬,𝒦𝒦,𝒱𝒱) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �𝒬𝒬𝒦𝒦
𝑇𝑇

�𝑒𝑒𝑘𝑘
�𝒱𝒱            (4) 

Where 𝒬𝒬 is the query, 𝒦𝒦 is the key, and 𝒱𝒱 is the value of a linear transformation 
of the input tokens Τ. The FT-transformer employs multi-head attention, which 
combines the output of several self-attention mechanisms in parallel, to improve the 
model's ability to concentrate on a several input. After the attention mechanism, the 
tokens are passed through a position-wise feed-forward network that consists of two 
linear transformations with a ReLU activation function as shown in Equation (5). 

𝐹𝐹𝐹𝐹𝐹𝐹(Τ) = 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(Τ𝒲𝒲1 + 𝒷𝒷1)𝒲𝒲2 + 𝒷𝒷2                       (5) 
Where the learnable parameters are denoted by 𝒲𝒲1, 𝒲𝒲1, 𝒷𝒷1, and 𝒷𝒷2. Finally, 

the output of the feed-forward network is passed through a linear layer to generate 
the final prediction as expressed in Equation (6). 

𝑓𝑓 = 𝒲𝒲𝑜𝑜𝑜𝑜𝑜𝑜Τ + 𝒷𝒷𝑜𝑜𝑜𝑜𝑜𝑜                          (6) 
Where 𝒲𝒲𝑜𝑜𝑜𝑜𝑜𝑜 and 𝒷𝒷𝑜𝑜𝑜𝑜𝑜𝑜 are the weight and bias of the output layer, respectively. 

3.3.1 AdamW5 Optimiser 
To further improve the performance and stability of the FT-Transformer, an 

AdamW5 optimiser is developed. It is an extremely complex and reliable algorithm 
that aims to integrate and synergise existing optimisers to produce a more effective 
optimiser. The components involved in this algorithm are AdamW, gradient 
clipping, gradient centralisation, lookahead, learning rate warm-up, and learning rate 
scheduling. 

The first component of the algorithm is AdamW which includes decoupled 
weight decay. The next part of the algorithm involves implementing gradient 
clipping. This sets a threshold for the gradient to the loss function. In this AdamW5, 
we use the adaptive gradient clipping function, which clips the gradients according 
to unit-wise ratios of the gradient norms to parameter norms, as expressed in 
Equation (7). It has less training time and does not require a significant amount of 
hyperparameter tuning. 

𝐺𝐺𝑦𝑦𝑡𝑡 = �
𝜏𝜏 𝑚𝑚𝑚𝑚𝑚𝑚��𝜃𝜃𝑦𝑦𝑡𝑡 �,𝑒𝑒�

�𝐺𝐺𝑦𝑦𝑡𝑡�
𝐺𝐺𝑦𝑦𝑡𝑡  𝑖𝑖𝑖𝑖 �𝐺𝐺𝑦𝑦𝑡𝑡�

𝑚𝑚𝑚𝑚𝑚𝑚��𝜃𝜃𝑦𝑦𝑡𝑡 �,𝑒𝑒�
> 𝜏𝜏,

𝐺𝐺𝑦𝑦𝑡𝑡  𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒.
           (7) 
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Where 𝐺𝐺𝑦𝑦𝑡𝑡 represents the gradient of the parameter 𝑦𝑦 at time 𝑡𝑡, 𝜃𝜃𝑦𝑦𝑡𝑡  represents the 
model parameter y at the time 𝑡𝑡, 𝜏𝜏 represents a clipping threshold, and 𝑒𝑒 is the 
constant. The next portion of the algorithm is gradient centralisation, regularises the 
loss function to smooth out the optimisation landscape. It is done by normalising the 
gradients by deducting their mean before adding them to the optimiser. It smooths 
out the curve and enhances training speed convergence. This is mathematically 
expressed as shown in Equation (8). 

𝐺𝐺𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = ∇𝐶𝐶𝑦𝑦�𝜃𝜃𝑦𝑦−1� − 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 �∇𝐶𝐶𝑦𝑦�𝜃𝜃𝑦𝑦−1��  (8) 
Where ∇𝐶𝐶𝑦𝑦�𝜃𝜃𝑦𝑦−1� represents the gradient of the loss function parameter. 

Ranger's first optimiser was built using the rectified Adam optimiser and Lookahead. 
While designing an AdamW5, we used the benefit of Lookahead in the algorithm. 
As demonstrated in Equation (9), it iteratively updates two sets of weights by 
selecting a route that looks forward at the series of fast weights produced by another 
optimiser.  

𝜇𝜇𝑦𝑦+𝑥𝑥 = 𝜇𝜇𝑦𝑦 + 𝜀𝜀 ∙ �𝜃𝜃𝑦𝑦+𝑥𝑥 − 𝜇𝜇𝑦𝑦�                            (9) 
Where 𝜇𝜇𝑦𝑦 represents the slow weight for the parameter 𝑦𝑦, 𝜃𝜃𝑦𝑦+𝑥𝑥 represents fast 

weight at 𝑥𝑥 steps, and 𝜀𝜀 represents the lookahead factor. The next part of the 
algorithm is learning rate warm-up, which is the most effective regularisation 
strategy for network training. The learning rate, which is set to 2000 iterations by 
default for the hyperparameter, is subjected to linear warmup iterations. However, it 
produces a warm-up that is too lengthy for shorter training runs, as shown in 
Equation (10). 

𝜔𝜔𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 �1,𝑚𝑚𝑚𝑚𝑚𝑚 �1−𝜑𝜑2
2

.𝑌𝑌, 𝑌𝑌
𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤

��𝜂𝜂      (10) 

Where 𝜔𝜔𝑡𝑡 represents the learning rate at the time 𝑡𝑡 during warm-up, 𝜑𝜑2 
represents coefficient, 𝑌𝑌 represents training step count, 𝑦𝑦𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 represents a total 
number of warmup steps, and 𝜂𝜂 represents learning rate. Finally, the last part of the 
algorithm is the learning rate schedule. This schedule establishes a method for 
varying the learning rate during training, generally to trade off rapid early learning 
against precise convergence at later times. In this work, we adopt a cosine annealing 
schedule, which gradually reduces the learning rate from an initial value to a 
predefined minimum using a cosine function. This smooth decay helps avoid sharp 
drops and improves convergence stability. The learning rate at step 𝑦𝑦 is computed as 
shown in Equation (11). 

𝜔𝜔𝑡𝑡 = 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 + 1
2

(𝜔𝜔0 − 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚)�1 + 𝑐𝑐𝑐𝑐𝑐𝑐 � 𝑦𝑦𝑦𝑦
𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚

��  (11) 

Where 𝜔𝜔0 represents the initial learning rate, 𝜔𝜔𝑚𝑚𝑚𝑚𝑚𝑚 represents the minimum 
learning rate, and  𝑌𝑌𝑚𝑚𝑚𝑚𝑚𝑚 represents the total number of training epochs. 
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3.4 Blockchain-based Traceability System for Secure Storage 

After high-confidence predictions are received, it is crucial to ensure that the 
results are not only securely recorded but also transparently accessible. For this 
purpose, a blockchain-based system based on Hyperledger Fabric is used for storing 
the compound predictions immutably. This ensures data integrity, enhances 
traceability, and ensures that all stakeholders can verify predictions in a tamper-proof 
manner. 

The proposed blockchain-based system for domain appropriateness across 
agriculture, food, and pharmaceutical products aims to trace, share, and register 
specific data throughout the entire supply chain. The system uses this to provide 
transparency, tamper-resistant registration, and auditable trails for all the 
stakeholders across the chemical supply chain. 

3.4.1 Smart Contract 
To automate and secure the process of prediction logging and data access on 

the blockchain, a smart contract mechanism is employed. A smart contract is a form 
of a computer program that executes on the blockchain and can automatically 
execute when specific conditions are satisfied. The proposed work utilises solidity 
language to write smart contracts. Through this, the system records the traceability 
information of agriculture, food, and pharmaceutical products, tracks the status of 
these products, and manages the supply chain. This automation promotes regulatory 
compliance and cross-domain trust. 

A smart contract (Bandhu et al. 2023) is implemented to automate the secure 
logging of prediction results. It records only high-recommendable compounds, each 
entry is timestamp, tamper-proof, and verifiable, and only authorised users can 
access the system. Each recorded prediction entry is cryptographically linked to its 
metadata and stored immutably on the blockchain. This eliminates the risk of 
tampering and ensures auditability throughout the system. 

4. Results and Discussion

Table 1. Hyperparameters of AdamW5 optimiser 
Parameter Values 
Learning Rate 0.001 
weight_decay 0.01 
clip_grad_norm 1.0 
gradient_centralization True 
use_lookahead True 
 warmup_steps 1000 
 lr_schedule cosine 
total_steps 10000 

Source: Authors’ processing. 
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In this section, the proposed AI-based suitability prediction framework was 
analysed to evaluate its performance across several metrics. This has been executed 
on a Windows 10 system. TensorFlow version 2.17 and Python 3.12 were used to 
create the DL models. The hardware specifications include an Intel Core i5 6500 
CPU running at 3.20 GHz, 8.0 GB of DDR3 RAM, and an Intel(R) HD Graphics 
530 for graphics. Hyperparameter settings utilised in the AdamW5 optimiser are 
detailed in Table 1.  

4.1 Performance Evaluation of the Proposed Framework 

This section examines the proposed system's performance in effectively 
predicting the compounds based on the molecular description, with an emphasis on 
its classification capabilities. The proposed model performs exceptionally well on 
several metrics, including accuracy, precision, F1-score, recall, Matthews 
Correlation Coefficient (MCC), and specificity at 98.45%, 98.17%, 99.68%, 
99.40%, 98.35%, and 98.90%, as shown in Table 2. This demonstrates how well the 
proposed model accurately predicts the suitability of compounds. Additionally, the 
model exhibits a low propensity for mistakes, with few false positives and false 
negatives, as evidenced by its False Positive Rate (FPR) of 0.016 and False Negative 
Rate (FNR) of 0.23. 

Table 2. The Proposed Framework's Performance Metrics 

Metrics Accuracy 
(%) 

Precision 
(%) 

F1-
score 
(%) 

Recall 
(%) 

MCC 
(%) 

Specificity 
(%) 

FPR 
(%) 

FNR 
(%) 

Values 98.45 98.17 99.68 99.40 98.35 98.90 0.016 0.23 
Source: Authors’ processing. 

4.2 Blockchain Analysis 

Figure 2. MetaMask Smart Contract Deployment 
Source: Authors’ own creation. 
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Figure 3. Smart Contract Deployment Confirmation on Sepolia 
Source: Authors’ own creation. 

Figure 4. Blockchain-Logged Cross-Domain Chemical Usage Dashboard 
Source: Authors’ own creation. 

This section presented an end-to-end deployment and logging of domain-
specific compound suitability prediction results on a blockchain using the Sepolia 
Ethereum testnet. Figure 2 shows the MetaMask interface prompting the user to 
deploy a smart contract from Remix IDE, including details such as the request origin, 
estimated gas fees, and transaction confirmation time. Figure 3 confirms successful 
contract deployment on the Sepolia blockchain, including transaction hash, sender 
and receiver addresses, gas usage, and timestamp. Figure 4 displays the front end of 
the blockchain-logging dashboard, listing each image alongside its compound ID, 
prediction suitability across agriculture, food, and pharmaceutical, model version, 
timestamp, and cryptographic hash. This secure, transparent, and verifiable logging 
mechanism enhances trust and traceability in cross-domain chemical usage across 
the supply chain. 

Figure 5 shows the exchange between the threshold for prediction confidence 
and blockchain transaction behaviour. The higher the threshold, the fewer compound 
predictions are selected for blockchain logging, saving aggregate gas costs. 
However, this comes at the cost of excluding potentially suitable compounds. This 
balance is critical in ensuring both cost-efficiency and trustworthy traceability in 
real-world supply chain deployments. 



Asha Judi Vargheese, Thankappan Sasikala 

140 Vol. 59, Issue 3/2025 

Figure 5. Prediction Confidence vs. Blockchain Logging Cost 
Source: Authors’ own creation. 

Table 3 shows the comparison of the standard and AdamW5 optimisers in terms 
of the percentage of high-confidence predictions (confidence ≥ 0.90) and the number 
of predictions stored on the blockchain. In comparison to the standard AdamW 
optimiser, the enhanced version resulted in a 14.3% improvement in the percentage 
of high-confidence predictions from 74.8% to 89.1%. This enhancement directly 
contributed to the sum of predictions that qualify for blockchain logging, leading to 
a larger number of reliable and traceable entries in the supply chain ledger. 

Table 3. Impact of Optimiser on High-Confidence Prediction Logging 
Optimiser High-confidence Rate (%) Logged Predictions 
Standard AdamW 74.8 748 
AdamW5 (Proposed) 89.1 891 

Source: Authors’ processing. 

4.3 Ablation Study 

In this section, we analyse the results of the ablation studies. Table 4 shows the 
results of the proposed AdamW5 optimiser with different epochs and learning rates. 

To validate the proposed model’s performance, we conducted an ablation study 
by contrasting its performance with various optimisers. This outcome demonstrates 
how the proposed AdamW5 optimiser can improve the model’s performance in 
terms of accuracy, precision, recall, and F1-score among other measures. 

Table 4. Ablation Analysis of the Proposed Framework 
Optimiser Epoc

hs 
Learning 

Rate 
Accuracy 

(%) 
Precision 

(%) 
Recall 
(%) 

F1-score 
(%) 

Adam  5 0.0005  95.25 94.90 95.67 95.30 

10 95.50 95.20 95.90 95.55 

15 95.75 95.44 96.17 95.80 

20 96 95.70 96.40 96.05 

AdamW  5 0.0008  95.75 95.84 96.04 95.80 
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Optimiser Epoc
hs 

Learning 
Rate 

Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

F1-score 
(%) 

10 96 95.70 96.40 96.05 

15 96.25 95.55 95.81 96.30 

20 96.50 96.20 96.90 96.55 

RAdam  5 0.001  96.25 95.97 96.60 96.34 

10 96.50 96.20 96.90 96.55 

15 96.75 96.47 97.13 96.80 

20 97 96.70 97.40 97.05 

Ranger  5 0.0007  96.51 96.85 97.09 96.80 

10 97 96.70 97.40 97.05 

15 97.20 96.95 97.69 97.30 

20 97.50 97.42 97.90 97.55 

Ranger21  5 0.0009  97.21 96.95 97.68 97.30 

10 97.68 97.12 97.9 97.55 

15 97.72 97.81 98.13 97.80 

20 98 97.70 98.40 98.05 

AdamW5 
(Proposed)  

5 0.001  97.75 97.45 98.05 97.80 

10 98 97.70 98.40 98.05 

15 98.25 97.95 98.65 98.30 

20 98.50 98.17 99.06 97.95 

Source: Authors’ processing. 

4.4 Comparative Analysis with Baseline Models 

This section compares the effectiveness of the proposed model with different 
baseline methods for predicting the compounds' suitability. Table 5 shows the 
performance of the FT-Transformer model compared with other models, Random 
Forest, MLP, XGBoost, TabNet, and TabTransformer on the suggested framework. 

Table 5. Comparative evaluation of the proposed model with baseline approaches 
Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 
Random Forest 94.23 93.8 94.5 94.01 
MLP 95.1 94.7 95.2 94.95 
XGBoost 96.45 95.61 96.3 96.09 
TabNet 96.8 95.85 96.7 96.22 
TabTransformer 97.6 96.2 97.41 97.85 
FT-Transformer (Proposed) 98.45 98.17 99.06 97.95 

Source: Authors’ processing. 

The FT-Transformer model used in the proposed system achieves the optimal 
overall performance, with an accuracy of 98.45%, a precision of 98.17%, a recall of 
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99.06%, and an F1-score of 97.95%. This outstanding performance is due to the 
ability of the FT-Transformer to handle high-dimensional tabular data through 
attention-based feature interactions, which makes it suitable for predicting 
compound suitability across a wide range of domains. 

4.5 Discussion 

The presented work tackles the critical challenge of determining the cross-
domain applicability of chemical molecules between agrochemical, pharmaceutical, 
and food domains while ensuring secure and tamper-proof traceability across the 
supply chain. The conventional systems mainly rely on fixed databases and human 
judgment, which are error-prone, inflexible, and do not offer real-time or 
decentralised traceability. Additionally, current solutions fail to include intelligent 
multi-label classification or provide transparent audit trails that are verifiable by 
supply chain stakeholders. To overcome these limitations, the study proposes an AI-
driven multi-label classification model based on the FT-Transformer for precise 
suitability prediction from high-dimensional molecular descriptor data and a 
blockchain-based traceability system based on Hyperledger Fabric and smart 
contracts to securely record and handle the prediction results. 

The FT-Transformer model, advanced by an AdamW5 optimiser, effectively 
extracts intricate relationships between features in the dataset. The optimiser 
combines multiple components including gradient clipping, centralisation, 
lookahead updates, learning rate warm-up, and cosine annealing to improve 
convergence speed, stability, and generalisation. This outcome shows excellent 
classification performance, as demonstrated by 98.45% accuracy, 98.17% precision, 
and an F1-score of 97.95%. To validate the framework, a thorough evaluation was 
conducted through benchmark metrics, heatmap, ROC curves, and ablation studies 
comparing different optimisation approaches. The AdamW5 optimiser consistently 
outperformed baseline optimisers like Adam, AdamW, RAdam, Ranger, and 
Ranger21. Furthermore, a comparative analysis with state-of-the-art models 
including Random Forest, XGBoost, TabNet, and TabTransformer confirmed the 
superiority of the FT-Transformer in this domain. In addition to model evaluation, 
the blockchain component was validated through practical deployment on the 
Sepolia Ethereum testnet. Smart contracts were designed to automate compound 
registration, facilitate access control, and offer immutable logs. The system 
demonstrated efficient transaction times and consistent gas costs, showing feasibility 
for real-world implementation. The blockchain dashboard also supports end-to-end 
transparency by displaying prediction metadata, timestamps, and cryptographic 
hashes for every logged compound. Combining AI and blockchain technologies 
ensures both high prediction accuracy and verifiable data integrity fulfilling 
regulations, safety, and trust requirements in cross-domain supply chains. 
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5. Conclusions

In this study, we introduced an integrated framework that combines an 
optimised FT-Transformer model with a blockchain-based traceability system to 
address the problem of predicting chemical compound suitability in agrochemical, 
pharmaceutical, and food contexts. By using the FT-Transformer attention 
mechanism and improving its training using an AdamW5 optimiser, the model 
effectively managed high-dimensional molecular descriptor data and attained a high 
classification accuracy of 98.45% and generalisation. To ensure safe, transparent, 
and tamper-proof prediction logging, we utilised a blockchain implementation with 
Hyperledger Fabric through smart contracts, allowing immutable record-keeping as 
well as automatic access control. Experimental findings validated the improved 
performance of the model over baseline techniques, while blockchain deployment 
demonstrated feasibility for real-world traceability. In future work, we plan to 
expand the framework by incorporating real-time data streams and integrating 
additional domain-specific ontologies for improved contextual prediction. 
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