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Mitigating Catastrophic Forgetting in Imitation Learning for 
Embodied AI using Progressive Neural Networks  

Abstract. Imitation learning is crucial for agent training to replicate expert behaviour, but 
it faces issues like catastrophic forgetting, where the model accommodates new tasks but 
forgets previously learned information. The research aims to develop a Progressive Neural 
Network and Elastic Weight Consolidation (PNN-EWC) approach that mitigates forgetting 
while enhancing task retention and adaptation. The PNN-EWC model is experimented with 
in the Webots simulation environment utilising the Franka Emika Panda robotic arm. This 
model integrates Progressive Neural Networks, which add new columns to the neural 
network for each task, and Elastic Weight Consolidation regularises updates to preserve 
learned tasks. The proposed PNN-EWC model achieved a 95% average success rate and a 
6% forgetting rate in preventing catastrophic forgetting, highlighting significant 
improvements over traditional methods. This approach allows the Franka Emika Panda to 
continuously learn new tasks without losing previously acquired skills, making it effective for 
dynamic environments. 
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1. Introduction 

 
Recent developments in Embodied Artificial Intelligence (EAI) systems have 

enhanced the capabilities of AI agents by enabling them to learn based on their 
interactions with the environment (Duan et al. 2022; Banerjee et al. 2024). As more 
humanoid AI systems become prevalent in today’s technologically driven world, the 
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role of ensuring cooperative behaviour among agents also increases. These 
cooperative humanoid AI systems focus on algorithms and strategies that allow 
multiple agents to learn how to collaborate, adapt, and make decisions within a 
shared environment. Each agent makes decisions at each time step and coordinates 
with others to achieve its goals (Tang et al. 2023, Oroojlooy and Hajinezhad (2023)). 
They gradually collaborate to do tasks and communicate with one another through 
the radio. However, many scenarios were not anticipated before deployment in real-
world applications. Therefore, the robots must make plans based on their experience 
Orr and Dutta (2023). Imitation learning is a technique that involves action cloning, 
where agents replicate the state and action trajectory to learn from demonstrations. 
This method has gained popularity in developing predictive models of agent 
behaviours, with growing interest in imitation learning (Zare et al., 2024). However, 
the challenge faced is the ability to generalise across multiple tasks without 
forgetting the previous one. When new tasks are introduced, traditional models are 
fine-tuned to adapt, but this process leads to catastrophic forgetting, in which the 
model loses its understanding of previously learned tasks (Alammar et al., 2024).  

Imitation learning-based online trajectory guidance systems utilising expert-
like movement trajectories provide novice surgeons with intra-operative trajectory 
guidance and perform manipulation similarly to experts Chen and Fan (2025). 
Instead of explicit programming, bilateral control-based imitation learning utilises 
human demonstrations to achieve human-level motion speeds with environmental 
adaptation (Yamane et al. 2023). Another innovative approach involves learning a 
shared latent space representation for communication between humans and robots, 
allowing robots to generate action based on demonstrations reactively Prasad et al. 
(2024). While imitation learning has shown a promising solution for enabling 
humanoid AI systems to mimic expert behaviours, existing methods have struggled 
with catastrophic forgetting when learning new tasks. The current approach has no 
solid mechanism to retain older knowledge and facilitate quick adaptability to 
changing tasks in dynamic environments. To address these limitations, the proposed 
work introduces an innovative approach to mitigate catastrophic forgetting and 
enhance performance in dynamic environments by facilitating rapid learning and 
task retention. 

 
1.1 Research Contribution 

 
The following is a summary of our proposed work’s primary contributions: 
• The proposed PNN-EWC model combines Progressive Neural Network 

(PNN) and Elastic Weight Consolidation (EWC) to prevent catastrophic forgetting 
and allow continuous learning in imitation learning. This enables the system to retain 
the knowledge gained prior to the new adaptation process without forgetting 
previous tasks in changing, real-time environments. 

• Using PNN, the model dynamically adapts the network by introducing new 
columns to include new tasks without losing previously learned knowledge. This 
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enables the agents can handle sequential and changing tasks effectively without 
performance degradation. 

• To preserve critical weights stable, the proposed model includes EWC, 
which is used to regularise weight updates for the learned tasks in earlier columns. 
This helps to maintain essential knowledge of past tasks while the model learns new 
tasks. 

• The proposed model makes use of an Auction-Based Task Allocation 
(ABTA) approach to enhance task specialisation and coordination among agents. 
The approach ensures that agents are effectively assigned tasks based on their 
abilities, which improves their capability to execute complex roles in multitasking 
scenarios. 

The remaining part of the paper is organised as follows: Section 2 examines the 
existing research on the imitation learning process, Section 3 outlines the proposed 
PNN-EWC framework’s workflow, Section 4 discusses and analyses the findings, 
and Section 5 concludes the paper. 

 
2. Related Work 

 
This section reviews and analyses previous research and developments related 

to imitation learning. (Dey et al. 2023) developed a Reinforcement Learning (RL) 
method for policy transfer in building control using imitation learning. This method 
enhanced a rule-based policy, reduced training time, and minimised unstable early 
exploration behaviour. However, there was considerable conflict when it came to 
complex building environments. To explore learning in complex behaviours, (Wan 
et al. 2023) employed an innovative end-to-end method utilising a neural network to 
develop a system for the autonomous flight of multiple drones. The model 
demonstrated improved performance in terms of single-point failure and scalability, 
successfully enabling the cooperative motion of UAVs. Even though imitation 
learning demonstrated successful dynamic adaptation, it could still be improved in 
more complex and uncertain environments. A similar problem was identified in a 
study by (Han et al. 2023) which combined RL and imitation learning to enable 
robots to play beach volleyball in a 3D environment. The robots outperformed the 
conventional RL approach, achieving a higher score in the Elo rating system. 
However, the model’s high complexity could limit its scalability in more complex 
environments. 

Sun and Kim (2023) introduced a data-driven network traffic simulation 
framework using Multi-agent Generative Adversarial Imitation Learning, which 
directly learns traffic behaviours from observed vehicle trajectory data. This model 
successfully mimicked real-world vehicle movement and identified state change 
patterns, still enhancing the model’s scalability to handle large networks and more 
complex network traffic scenarios. To overcome this, Sun and Kim (2024) employed 
multi-agent imitation learning to develop a simulation model for an unsignalised 
junction utilising two-dimensional data.  
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They concentrated on employing multi-agent adversarial inverse reinforcement 
learning to simulate the paths of vehicles. The model demonstrated superior accuracy 
in generating trajectories for vehicles moving in a straight line, but was less effective 
for vehicles turning. Similarly, (Li et al. 2024) suggested Generative Adversarial 
Imitation Learning Policy Gradients (GAILPG) to enhance the utilisation of 
experience and the capacity for exploration of agents in multi-agent RL. This method 
outperformed the related advanced policy-based and value-based methods. 
However, trained discriminators struggled to evaluate and judge the agent's actions 
properly.  

One of the most challenging problems in imitation learning is enabling agents 
to learn new skills continuously while maintaining an understanding of previously 
learned ones and adapting to dynamic, real-time environments. This requires 
balancing the need to learn quickly with the retention of long-term knowledge to 
deal with sequential and changing task requirements. Existing approaches often fall 
short in maintaining performance across tasks due to catastrophic forgetting, which 
limits their scalability in complex settings. To address these challenges, we propose 
a PNN-EWC model that integrates methods to expand the size of the neural network, 
allowing it to learn new tasks without compromising its prior capabilities, and retains 
critical weights to prevent catastrophic forgetting. This method supports rapid 
learning and task retention, hence enhancing adaptability and performance in 
changing environments. 

 
3. Proposed Methodology 

 
The proposed PNN-EWC framework is illustrated in Figure 1. The proposed 

methodology is implemented in a simulation environment that creates dynamic 
conditions. Initially, imitation learning is employed using a behavioural cloning 
approach, where agents learn from expert demonstration by mapping states to 
actions. As new tasks are introduced, the agent knows how to perform them 
efficiently. To prevent forgetting, the framework utilises PNNs that introduce a new 
column in the neural network for every new task, while maintaining lateral 
connections to previously learned features. EWC selectively controls the weight 
updates and retains essential knowledge. The method enables effective learning, 
adaptability, and long-term performance in humanoid AI in dynamic, challenging 
environments. 
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Figure 1. The Proposed PNN-EWC Framework enhancing task retention  
and adaptation in imitation learning 

Source: Authors’ own creation. 
 

3.1 System Setup 
 
The proposed PNN-EWC framework is implemented in a dynamic environment 

using a Webots simulation environment with a Franka Emika Panda robot. In this 
environment, an agent needs to learn and adapt to multiple tasks sequentially. The 
environment is designed to mimic real-world task transitions, requiring the agent to 
retain prior knowledge while incorporating new learning objectives.  

 
3.2 Imitation Learning 

 
The agent initially learns tasks from expert demonstrations using imitation 

learning. One important learning strategy in autonomous behavioural systems is 
imitation learning, which aims to replicate human behaviour or an agent’s 
performance in a particular task. Using this method, learning observations are 
translated into actions. It reduces the effort required to instruct an agent by 
demonstrating the actions needed to complete a specific task (Dong et al., 2024). The 
proposed model utilises the behavioural cloning method, a direct mapping of states 
𝜅𝜅𝑡𝑡 to the control inputs or actions Α𝑡𝑡 as illustrated in Equation (1). 

 
Α𝑡𝑡 = 𝜋𝜋𝜗𝜗Α(𝜅𝜅𝑡𝑡)                                                   (1) 
 

A supervised learning approach can be used to learn the policy from expert-
demonstrated trajectory data, 𝑑𝑑 = [𝜅𝜅𝑡𝑡,Α𝑡𝑡]. To learn the mapping from the states to 
the actions, a neural network with a parameter set 𝜗𝜗Α is employed.  

 
3.3 Progressive Neural Network 

 
Once the agent successfully learns an initial task, a new task is introduced 

through additional expert demonstrations. As new tasks are introduced, the agent 
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adapts to handle new tasks while preserving previously learned tasks. Continuous 
learning is the main goal of an agent system. By constructing a neural network 
column for each task being solved, progressive networks prevent catastrophic 
forgetting by incorporating these needs directly into the model architecture. At the 
same time, lateral connections to previously learned column properties facilitate 
transfer (Meng et al. 2024). A PNN starts with a single column, whose topology is 
identical to that of a deep neural network, and consists of 𝑁𝑁 layers, 𝐻𝐻𝑎𝑎1 hidden 
activations, 𝑛𝑛𝑎𝑎 units at each layer and convergence parameters 𝜃𝜃1. When moving on 
to a second task, the parameters 𝜃𝜃1 are frozen, and a new column containing 
parameters 𝜃𝜃2 is concatenated. In this scenario, the layer 𝐻𝐻𝑎𝑎2 receives input from 
both 𝐻𝐻𝑎𝑎−12  and 𝐻𝐻𝑎𝑎−11  through lateral connections. This generalisation to 𝑀𝑀 task is 
shown in Equation (2). 

 
𝐻𝐻𝑎𝑎𝑀𝑀 = ℱ�𝑤𝑤𝑎𝑎𝑀𝑀𝐻𝐻𝑎𝑎−1𝑀𝑀 + ∑ 𝐿𝐿𝑎𝑎𝑀𝑀:𝑏𝑏𝐻𝐻𝑎𝑎−1𝑏𝑏

𝑏𝑏<𝑀𝑀 �            (2) 
 

Where 𝑤𝑤𝑎𝑎𝑀𝑀 represents the weight matrix of the column 𝑀𝑀’s layer 𝑎𝑎 , 𝐿𝐿𝑎𝑎𝑀𝑀:𝑏𝑏 
represents the lateral connection from the column 𝑏𝑏’s layer 𝑎𝑎 − 1 to column 𝑀𝑀’s 
layer, 𝐻𝐻0 is the network input, ℱ represents an element-wise non-linearity. The PNN 
architecture with 𝑀𝑀 = 3. However, previously learned tasks may degrade over time 
without proper weight regulation. To mitigate these issues, EWC can be integrated 
with PNN. EWC helps preserve important weights by selectively restricting updates 
to prevent catastrophic forgetting, while PNN expands the network without any prior 
understanding to handle new tasks. This improves the model's ability to learn 
sequential tasks in changing environments. 

 
3.4 Elastic Weight Consolidation  

 
The proposed model utilised EWC, which complements PNN for selective 

regularisation of neural network parameters to prevent catastrophic forgetting in 
neural networks during lifelong continuous training. The EWC maintains the 
network components relevant to the prior task while modifying the entire network 
for subsequent tasks. The EWC approach retains previously learned knowledge in 
sequential learning by incorporating a regulariser into the loss function (Aslam et al. 
2025). It prevents the most significant weights from deviating substantially from the 
consolidated values throughout the learning of subsequent tasks, as shown in 
Equation (3). 

 
𝓛𝓛 = 𝓛𝓛𝒄𝒄 + 𝜏𝜏

2
∑ 𝕀𝕀𝑧𝑧(𝑊𝑊𝑧𝑧 −𝑊𝑊𝑧𝑧

∗)2𝑧𝑧              (3) 
 

Where 𝓛𝓛𝒄𝒄 represents the loss function of training c, 𝑊𝑊𝑧𝑧
∗ and 𝕀𝕀𝑧𝑧 represents the 

weight parameter and importance of 𝑧𝑧-th weight of the neural network following 
training of the previous tasks. The regularising component will provide 
−𝜏𝜏𝕀𝕀𝑧𝑧(𝑊𝑊𝑧𝑧 −𝑊𝑊𝑧𝑧

∗) to the anti-gradient. The resistance to change each weight will, 
therefore, be proportional to its relevance and the hyperparameter 𝜏𝜏 when training 
with the gradient method. 
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The neural network will learn the current task during sequential learning if 𝜏𝜏 is 
small, but it will forget the knowledge from previously learned tasks more quickly. 
Conversely, the network will have a high resistance to changing weights and will be 
able to retain the prior knowledge acquired on previous tasks if 𝜏𝜏 is too large, but its 
learning rate on the current task may be inadequate. 

 
4. Results and Discussion 

 

The proposed PNN-EWC framework for the dynamic environment was 
executed in the Webots simulation environment on a machine with Windows 10 Pro, 
Intel(R) Xeon(R) CPU E5-2680 v4 @ 2.40 GHz. The result section includes the 
performance analysis and comparison analysis of the proposed model to assess its 
effectiveness. 

 
4.1 Environmental setup 

 

The proposed PNN-EWC framework creates a dynamic environment in the 
simulation environment using Webots. Webots is an open-source robotics simulation 
software. The environmental setup is depicted in Figure 2. In the Webots simulator, 
five distinct tasks were designed for the Franka Emika Panda, which is depicted in 
Table 1. Franka Emika Panda is a robot, agile as a human arm with a human touch 
sense, easy to set up, and intuitive to use. The Franka Emika Panda robot has 
classical stiffness, pose repeatability of 0.1mm, and negligible path deviation even 
at high velocities of up to 2m/s. An Intel Realsense camera is attached to the robot 
end-effector. This enables the precise, robust, and rapid execution of processes. This 
robot is equipped with link-side torque sensors in all 7 axes.  

 

 

Figure 2. Visualisation of the dynamic environment 
Source: Authors’ own creation. 

 
Table 1. Task Performed by Franka Emika Panda 

Task Action 
Task A Pick light object 
Task B Stack Boxes 
Task C Screw Bolt 
Task D Arrange Part 
Task F Pick heavy object 

Source: Authors’ processing. 
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4.2 Evaluation Metrics 
 
Performance evaluation of the PNN-EWC framework requires several 

evaluation metrics to assess its performance. These metrics ensure the 
generalisability, robustness, and dependability of the model. Performance metrics 
include success rate, retention score, convergence time, and forgetting rate. These 
metrics offer distinct insights into the model’s strengths and weaknesses.  

Success Rate (SR): Measures the percentage of completed tasks. 
 
𝑆𝑆𝑆𝑆 = �𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑜𝑜𝑜𝑜 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎
� × 100                                      (4) 

 
Retention Score (RS): It quantifies how well the model retains knowledge from 

previously learned tasks.  
 

𝑅𝑅𝑅𝑅 = �∑ 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖)𝑁𝑁
𝑖𝑖=1
∑ 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖)𝑁𝑁
𝑖𝑖=1

� × 100                                                                             (5) 

 
Convergence Time (CT): Measures the time taken for the model to reach a 

stable learning state. It is often computed based on the number of iterations required 
to achieve an accuracy threshold. 

𝐶𝐶𝐶𝐶 = 1
𝑇𝑇
∑ 1

𝐸𝐸𝑡𝑡
𝑇𝑇
𝑡𝑡=1                                                        (6) 

 
Forgetting Rate (FR): Measures the extent of performance degradation in 

previous tasks upon the acquisition of new ones.  
 

𝐹𝐹𝐹𝐹 = �∑ (𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖)−𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖))𝑁𝑁
𝑖𝑖=1

𝑁𝑁
� × 100                            (7) 

 
Where 𝐴𝐴𝑛𝑛𝑛𝑛𝑛𝑛(𝑖𝑖) is the accuracy of the task 𝑖𝑖 after learning a new task, 𝐴𝐴𝑜𝑜𝑜𝑜𝑜𝑜(𝑖𝑖) 

is the accuracy of the task 𝑖𝑖 immediately after its initial learning, 𝑁𝑁 represents the 
total number of previous tasks, 𝑇𝑇 is the total number of tasks, and 𝐸𝐸𝑡𝑡 represents the 
number of epochs needed for the task 𝑡𝑡 to reach accuracy.  

 
4.3 Evaluation of the Proposed Model’s Performance  

 
Table 2 illustrates the performance of the proposed PNN-EWC approach in 

mitigating catastrophic forgetting and improving task adaptation. The proposed 
model demonstrates outstanding performance, achieving a success rate of 95% in 
most tasks. A 78% retention score indicates strong knowledge preservation allowing 
the robot to maintain prior understanding while adapting to new tasks, and a 92% 
convergence time reflects fast adaptation in a dynamic environment. Furthermore, 
the forgetting rate is only 6%, which helps prevent knowledge degradation, ensuring 
stable and continuous learning.   
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Table 2. Performance Metrics of the Proposed PNN-EWC Approach 
Metrics Value (%) 
Success Rate 95 
Retention Score 78 
Convergence Time 92 
Forgetting Rate 6 

Source: Authors’ processing. 

 

Figure 3. Learning Curve for a Single Task 
Source: Authors’ own creation. 

To evaluate the performance of the PNN-EWC framework on complex tasks, 
we selected four manipulation tasks in the dynamic environment. Figure 3 illustrates 
the learning curve to determine the success rate for each task over time steps. 
Initially, the success rate is low, as the model has not fully adapted to the task, but 
as training progresses, the success rate steadily increases, indicating an effective 
learning process. This shows the proposed PNN-EWC framework, which enables 
robots to learn and train tasks without experiencing significant performance 
degradation. 

Figure 4 shows the robotic system's success rate across five tasks of increasing 
mechanical complexity ranging from simple object picking to high-precision circuit 
assembly. Despite the rising complexity, the proposed PNN-EWC framework 
maintains a high success rate, dropping marginally from 95% to 80%. This proves 
the strength of the framework and its ability to generalise the learned behavior to 
more complex engineering processes, like torque-controlled insertion or path 
constraint execution, which are crucial in robotic engineering and assembly lines. 
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Figure 4. Performance of the Engineering Task Complexity 
Source: Authors’ own creation. 

 

 

Figure 5. Performance During Training and Testing 
Source: Authors’ own creation. 

Figure 5 illustrates the performance during training and testing as the Franka 
Emika Panda robot sequentially learns two manipulation tasks. The operational tasks 
include Task A, Task B, Task C, Task D, and Task F. Initially, two tasks are trained, 
the first task is shown with a purple bar, and the second task with a blue bar. During 
testing, the proposed model consistently outperforms the baseline in previously 
learned tasks.  Across two-task learning sequences, the proposed model achieves 
success rates exceeding the baseline. 

 



Antony Gnanaprakasam Darwin Jose Raju, Sankaran Solai Manohar, … 

Vol. 59, Issue 3/2025   106 

 

Figure 6. Effect of Forgetting on Forward Transfer 
Source: Authors’ own creation. 

 

Figure 7. Evolution Performance for Each Task in Terms of Accuracy 
Source: Authors’ own creation. 

Figure 6 illustrates the impact of forgetting on forward transfer. In the absence 
of forgetting, the robot arm, after continual learning on the sequence Task A →Task 
B→Task C should perform well as on the sequence Task A→Task C. However, the 
intermediate Task B diminishes this transfer. In this graph, A-C (Baseline), the 
average success rate is 0.76, whereas A-B-C, it drops to 0.64. This denotes a decrease 
in the average success rate due to the presence of Task B. Conversely, the proposed 
approach effectively mitigates the impact of forgetting on task transfer by achieving 
an average success rate of 0.78.  

Figure 7 illustrates the performance evolution for each task in terms of accuracy 
over time, comparing the proposed PNN-EWC model with the baseline approach. 
The result indicates that PNN-EWC maintains higher accuracy across all functions, 
with a slower decline in performance as new tasks are introduced. This demonstrates 
how effectively the proposed model retains the knowledge gained from previous 
tasks. 
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Figure 8. Evolution Performance for Each Task in Terms of F1 Score 
Source: Authors’ own creation. 

Figure 8 illustrates the performance evolution for each task in terms of the F1 
Score, which combines the precision and recall scores of each task, comparing the 
proposed PNN-EWC model with the baseline approach. The result indicates that the 
proposed PNN-EWC maintains a higher F1 Score across all tasks, confirming better 
knowledge retention and stability across sequential tasks. 

Figure 9 illustrates the model's ability to retain information for previously 
learned tasks. The result shows that PNN-EWC achieves a significantly higher 
retention score than the baseline approach. As the robotic arm learns new tasks, 
PNN-EWC prevents the loss of previously acquired knowledge, while the baseline 
model struggles to remember previously learned tasks. This highlights the robust 
learning capability of PNN-EWC, making it suitable for long-term robotic learning 
scenarios. 

 

Figure 9. Retention Score Evaluation on Task Learned 
Source: Authors’ own creation. 
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(a) Average Accuracy 

 

(b) Average Forgetting Rate 
Figure 10. Incremental Performance Evaluated on all tasks observed during 

Continual Learning in terms of (a) Average Accuracy, (b) Average Forgetting Rate 
Source: Authors’ own creation. 

 
Figure 10 illustrates the average incremental performance evaluated in all tasks 

after each task is completed. (a) Compare the accuracy at the end of all tasks and 
observe that the proposed PNN-EWC approach achieves higher accuracy than the 
baseline approach. (b) Assess the ability to prevent forgetting, which measures 
performance degradation in subsequent tasks. The results show that the proposed 
approach has a lower forgetting rate than the baseline approach.  

Figure 11 shows the time required by the robotic agent to adapt to new tasks in 
a sequential learning scenario. Here, the adaptation time increases when transitioning 
to more complex tasks. However, the observed increase is gradual and within 
practical limits, confirming that the model enables real-time task switching without 
re-training. This makes the faster deployment of robotic systems in dynamic 
manufacturing environments with variable task assignments. 
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Figure 11. Adaptation Time Across Mechanical Task Transitions 
Source: Authors’ own creation. 

 

Figure 12. Joint Torque Efficiency Across Tasks 
Source: Authors’ own creation. 

Figure 12 measures the torque efficiency of the robot arm for each task. 
Efficiency is computed relative to the robot’s maximum torque capacity. The results 
show high torque efficiency (>70%) across all tasks, even as task complexity 
increases. This suggests that the control policies generated through the PNN-EWC 
model are energy-efficient and mechanically optimal, which minimises strain on the 
robot’s joints.  

 
4.4 Comparative Analysis 

 

In this section, we analyse the proposed model's effectiveness compared to 
traditional imitation learning and compare the success rates of the proposed and 
traditional imitation learning approaches. 

Table 3 compares the proposed PNN-EWC framework’s success rate against 
the existing Imitation learning methods, such as IL-RL, Visual hindsight self-
imitation learning, and Visual imitation learning. The existing approaches achieve 
success rates of 94.4%, 92.1%, and 80%, respectively, while the proposed PNN-
EWC framework achieves a success rate of 95%. This demonstrates the effective 
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performance of the proposed model compared to existing imitation learning 
approaches. 

 
Table 3. Comparative analysis of the proposed PNN-EWC with existing approaches 
Reference Methods Success rate (%) 
Han et al. (2023) IL-RL 94.4 
Kim et al. (2024) Visual hindsight self-imitation learning 92.1 
Jonnavittula et al. (2025) Visual imitation learning 80 
Proposed Model PNN-EWC 95 

Source: Authors’ processing. 

4.5 Discussion 
 

In this study, the performance of the proposed PNN-EWC framework is 
evaluated within the Webots simulation environment, demonstrating its 
effectiveness in mitigating catastrophic forgetting in imitation learning. The 
outcomes indicate that the proposed model achieves high accuracy and F1 Scores 
for multiple tasks, outperforming traditional imitation learning models, particularly 
in terms of a slower decline in performance as new tasks are introduced. The analysis 
of the learning curve reveals that PNN-EWC enables stable task adaptation with 
minimal performance loss even as new tasks are introduced. Expanding the network 
progressively can ensure that knowledge is retained, and weight disruption by EWC 
regularisation ensures a smooth transition from one task to another. Additionally, 
compared to the baseline approach, PNN-EWC exhibits superior forward knowledge 
transfer and a high retention score, making it well-suited for continuous learning. 
These findings confirm the potential of PNN-EWC for real-world robotic 
applications, in which sequential learning is crucial. 

 
5. Conclusions 

 
The proposed PNN-EWC framework successfully addressed the catastrophic 

forgetting problem in imitation learning, ensuring that the Franka Emika Panda 
robotic arm retains previously learned tasks while adapting to new tasks. The PNN 
dynamically expands the neural network by adding a new column for each task while 
maintaining lateral connections, thus preserving past knowledge. Meanwhile, the 
EWC enhances the stability of the network by regularising weight updates, 
preventing a significant deviation in crucial parameters. The experimental findings 
validate the performance of the proposed framework, achieving a 95% success rate, 
a 78% retention score, and a 92% convergence time, while maintaining a low 6% 
forgetting rate, which significantly outperforms baseline models. These findings 
demonstrate that the proposed PNN-EWC framework enhances learning stability, 
adaptability, and efficiency in continual learning scenarios. Although the current 
implementation is simulation-based, future work could explore real-world 
deployment and adaptive strategies for task recognition that do not rely on 
predefined task boundaries. 
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