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Abstract. Understanding the evolution of travel mode choice behaviour is critical for urban 
transportation planning and policy-making. This study develops an evolutionary game model 
to analyse how travellers dynamically shift between shared cars, public transit, and private 
vehicles under changing economic and policy conditions. Using replicated dynamic 
equations and stability analysis, we identify equilibrium points and their stability under 
different scenarios. Numerical simulations reveal that government subsidies for shared cars, 
car-sharing travel costs, and public transit fares significantly influence the evolution of travel 
mode choices. Our findings indicate that strategic subsidies can effectively shift travellers 
toward shared mobility, while excessive public transit costs can drive users toward private 
vehicle use. The results provide a theoretical foundation for policymakers to optimise 
transportation policies and encourage sustainable urban mobility. Future research will 
explore real-time behavioural adaptations and machine learning-based travel demand 
predictions. 
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1. Introduction 

 
Travelers’ mode choice behaviour is a central issue in urban transportation 

management, as it fundamentally shapes the structure of urban mobility and informs 
the development of effective traffic management policies. Rapid urban economic 
growth and accelerated urbanisation have led to a surge in transportation demand and 
an expansion in the diversity of available travel modes. Traditional policies have 
predominantly focused on promoting public transport to alleviate urban congestion 
and environmental pressures (Jefferson, 1996; Wardman, 2004; Suryani et al., 2020; 
Huang et al., 2022; Wang and Huang, 2023, Tu, Geng and Zhang, 2023). However, 
the emergence of shared cars has introduced new dynamics, impacted the usage of 
public transit and private cars, and prompted some travellers to shift toward shared car 
travel (Shaheen, Cohen and Farrar, 2019). This shift necessitates a deeper 
understanding of how travellers adapt their choices in response to new mobility options. 



Ting Liu, Fangxia Zhao 

78   Vol. 59, Issue 3/2025 

Traditional static models, rooted in random utility theory and utility maximisation, 
have been widely used to analyse travel mode choices. However, these models often 
assume static decision-making processes, overlooking the dynamic and adaptive 
nature of traveller behaviour under conditions of incomplete information, differing 
values, and changing traffic environments. Travellers exhibit bounded rationality, 
estimating the convenience and cost of various modes based on empirical utility, and 
their choices evolve dynamically toward a stable equilibrium. Evolutionary game 
theory offers a robust framework to model this dynamic process, capturing the 
preference phenomena and evolutionary trends in travel mode choices (Wu et al., 2019; 
Li et al., 2020; Zhu and Li, 2023; Xu, Tan and Zhang, 2024; Lisowski, 2023; Cao et 
al., 2023). This study focuses on urban medium-distance travel and employs 
evolutionary game theory to analyse the dynamic choice process among shared cars, 
public transit, and private cars following the entry of shared car enterprises. The 
contributions of this study are as follows: 

(1) Proposing an evolutionary dynamics approach to study the choice evolution 
of shared cars, public transit, and private cars based on evolutionary game theory. 

(2) Identifying equilibrium points of the evolutionary dynamic model and 
analysing their stability conditions through simulation. 

(3) Examining the role of government subsidies in influencing travellers’ 
preferences toward shared cars. 

(4) Simulating and analysing the impact of shared car and public transit travel 
costs on the final evolution outcomes. 

The paper is organised as follows: Section 2 reviews relevant literature on shared 
cars and travel mode choice. Section 3 introduces the evolutionary dynamics model. 
Section 4 analyses equilibrium points and their stability. Section 5 presents numerical 
results to evaluate the model and its equilibria. Section 6 summarises the findings and 
discusses their implications for urban transportation policy. 

 
2. Literature review 

 
The study of travel mode choice has evolved significantly, with early research 

focusing on macro-level transport mode structures and transitioning to micro-level 
individual behaviour analysis. Initial models, such as the transfer curve method, relied 
on extensive survey data to establish relationships between mode share rates and 
influencing factors, producing transfer curve graphs (Shaheen, Cohen and Farrar, 
2019). With advances in probability theory and the refinement of travel units, research 
shifted toward individual travel characteristics. Since the 1970s, McFadden and others 
introduced utility theory from economics into mode choice modelling, developing 
non-aggregate models based on stochastic utility and utility maximisation principles 
(Mcfadden, 1974; Mcfadden and Train, 2000). These disaggregate models, notably the 
Logit model, incorporate variables such as travel behaviour, traveller attributes, and 
environmental factors to predict mode choices (Horowitz, 1980; Ortuzar, 1983; Mark 
and Uncles, 1987; Wen and Koppelman, 2001; Hoogendoorn and Bovy, 2005; 
Ashiabor, Baik and Trani, 2007). Over time, the Logit model evolved into a 
comprehensive system, including the Multinomial Logit (MNL), Mixed Logit (ML), 
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and Nested Logit (NL) models, addressing various choice scenarios (Bhat, 2001; 
Kalouptsidis and Psaraki, 2010; Bhatta and Larsen, 2011; Chang and Lu, 2013; 
Murray-Truite et al., 2014; Paulssen et al., 2014; Ye et al., 2017; Chen, 2020; Liu, Li 
and Fan, 2022; Rodrigues, 2022). To overcome limitations like the Independence from 
Irrelevant Alternatives (IIA) property in Logit models, the Probit model and Dogit 
model were developed to account for flexible choice attributes (Horowitz, 1980; 
Ortuzar, 1983; Hoogendoorn and Bovy, 2005; Lewis, 1972; Ai and Norton, 2003; 
Gaudry and Dagenais, 1979; Gaudry and Wills, 1979; Gaudry, 1981). 

Recent studies have advanced the application of disaggregate models. Ye et al. 
(2017) proposed a statistically rigorous method to test distributional assumptions in 
the random components of utility functions for MNL and Multiple Discrete-
Continuous Extreme Value (MDCEV) models. Rodrigues (2022) introduced an 
Amortised Variational Inference approach to scale Bayesian inference in mixed MNL 
models for large datasets, leveraging GPU-accelerated computation. Kalouptsidis and 
Psaraki (2010) explored approximate computation of choice probabilities in mixed 
Logit models using Taylor expansions and high-order moments of random coefficients. 
Paulssen et al. (2014) investigated the influence of personal values on travel mode 
choice using the ML model. Chen (2020) applied the mixed Logit model to analyse 
factors influencing residents’ mode choices in a specific community, while Liu, Li and 
Fan (2022) used it to examine cyclist injury severity in daytime and nighttime crashes. 

With the rise of shared mobility, recent literature has explored its impact on travel 
behaviour. Shaheen and Cohen analysed the role of shared mobility in reducing private 
car use, highlighting its potential to complement public transit (Shaheen and Cohen, 
2020). Coenegrachts et al. (2024) examined the substitution effects of car-sharing on 
public transport in European cities, finding significant shifts in mode choice under 
specific cost and convenience scenarios. Zhang et al. (2022) used machine learning to 
predict mode choice shifts with the integration of shared cars, emphasising the role of 
real-time data in model accuracy. Additionally, García-Melero et al. (2021) applied a 
hybrid choice model to study the impact of shared mobility on urban traffic patterns, 
incorporating latent variables like environmental consciousness. 

The advent of computer technology has also spurred the use of machine learning 
in mode choice research, offering data-driven insights into complex traveller 
behaviours (Cheng et al. 2019; Zhao et al., 2020; Kashifi et al., 2022; Xia, Chen and 
Zimmermann, 2023). However, traditional models often assume static decision-
making, which fails to capture the dynamic adaptation process of travellers under 
changing conditions. Evolutionary game theory provides a dynamic framework to 
model this process, analysing how preferences evolve and stabilise over time (Wu et 
al., 2019; Li et al., 2020; Zhu and Li, 2023; Xu et al., 2024; Lisowski, 2023; Cao et al., 
2023). Recent studies, such as those of Xue et al. (2025), have applied evolutionary 
game theory to study competition between shared and traditional transport modes, 
highlighting the role of subsidies and pricing strategies. Similarly, Xue et al. (2025) 
explored the dynamic evolution of mode choices in the context of shared mobility, 
emphasising the impact of policy interventions. 
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This study builds on these advancements by applying evolutionary game theory 
to model the dynamic choice process among shared cars, public transit, and private 
cars, addressing the gap in understanding how shared mobility influences urban travel 
behaviour under bounded rationality. 

 

3. Evolutionary dynamics model 
 

This paper focuses on the study of medium-distance travel mode choice 
behaviour, considering shared car, public transit, and private car travel, not considering 
short-distance travel such as walking and cycling, and not considering long-distance 
travel such as trains, planes, and ships. In the process of medium-distance travel mode 
choice, travellers choose different travel mode according to the principle of 
maximising their benefits. The parameters of the model are shown in the Table 1.  

 
Table1. Description of parameters 

SE  the benefit of car-sharing travel  
BE  the benefit of public transit 
PE  the benefit of private car 

S  the government subsidies for car-sharing travel 
SC  the car-sharing travel cost under the condition of free-flow 
BC  the public transit travel cost under the condition of free-flow 
PC  the private car travel cost under the condition of free-flow 

T  the benefit loss of public transit travel due to congestion in the vehicle 
F  the benefit loss of private car travel due to road congestion 
D  the benefit loss of public transit travel due to road congestion 

Source: Authors’ own creation. 
 

All the parameters in the table1 are positive, and meet the condition that benefit 
is greater than loss, the following inequality holds.  

S SE S C+ >                                                               (1) 

B BE C D> +                                                              (2) 

B BE C T> +                                                              (3) 
P BE C F> +                                                              (4) 

Let the choice probability of shared car, public transport and private car is 
[ ], , 0,1x y z∈ , and 1x y z+ + = . The benefit matrix of travel mode choice is shown in 

Table 2.  
 

Table 2. Benefit matrix 
 Shared car Public transit Private car 

Shared car S SE S C+ − , S SE S C+ −  S SE S C+ − , B BE C−  S SE S C+ − , P PE C−  

Public 
transit B BE C− , S SE S C+ −  B BE C T− − , B BE C T− −  B BE C D− − , P PE C−  

Private car P PE C− , S SE S C+ −  P PE C− , B BE C D− −  B BE C F− − , B BE C F− −  
Source: Authors’ own creation. 
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Let 1E , 2E  and 3E  are the expected benefit of shared car, public transport and 

private car, respectively. E  is the mean expected benefit. The following formula holds: 
( ) ( ) ( )1 S S S S S S S SE x E S C y E S C z E S C E S C= + − + + − + + − = + −                             (5)

( ) ( ) ( )
( )
2 B B B B B B

B B

E x E C y E C T z E C D

x y D Ty E C D

= − + − − + − −

= + − + − −
                                        (6) 

( ) ( ) ( ) ( )3 P P P P P P P PE x E C y E C z E C F x y F E C F= − + − + − − = + + − −             (7) 

( ) ( ) ( )
( ) ( )( )

1 2 3
2

2   2
B B S S

P P P P

E xE yE zE

D T y E C D y E S C x Dxy

F x y x y E C F E C F

= + +

= − + − − + + − +

− + − + − − + − −

                                          (8) 

The mutation equation is as follows: 

( )

( ) ( ) ( ) ( )
( )( )

1 1

22  

   2

[
]

B B S S

P P S s p P

dx
F x E E

dt

x T D y E C D y E S C x Dxy F x y

x y E C F E S C E C F

= = −

= − − − − − + − − + +

+ + − − + + − − + +

                      (9) 

( )
( ) ( ) ( ) ( )
( )( )

2 2

22  

   2

[
]

B B S S

P P B B p P

dyF y E E
dt

y T D y E C D T y E S C x Dxy F x y

x y E C F D E C D E C F

= = −

= − − − − + − + − − + +

+ + − − + + − − − + +

         (10) 

 
4. Equilibrium points and stability 

 
According to the stability theory of differential equations, let 1 0F =  and 2 0F = , 

and get the equilibrium point, and further analyse the stability of the evolution model.  
Case 1: When 0y = , the following formula holds: 

( )( )1

2

1 0
0

P P S SF x x Fx E C F E S C
F

 = − + − − − − + =


=
                                   (11) 

The equilibrium points is ( )0,0,1 , ( )1,0,0  and ( P S S PC F E S C E
F

+ + + − − ,0,

1 P S S P
C F E S C E

F

+ + + − −
− ). 

Case 2: when 0x = , the following formula holds: 

( ) ( )
1

2

0

1 0P P B B

F

F y y F T D y E C F D E C

=
 = − + − + − − + − =   

                   (12) 

The equilibrium points is ( )0,0,1 , ( )1,0,0  and (0, P B B P
C F D E C E

F T D

+ − + − −

+ −
,

1 P B B P
C F D E C E

F T D

+ − + − −
−

+ −
).  



Ting Liu, Fangxia Zhao 

82   Vol. 59, Issue 3/2025 

The Jacobian matrix is used to judge the stability at the equilibrium point. The 
Jacobian matrix is as follows: 

( )
1 1

2 2

 
,

 

F F
x y

J x y
F F
x y

∂ ∂ 
 ∂ ∂ =
 ∂ ∂
 ∂ ∂ 

                                                                (13) 

( ) ( ) ( )

( ) ( ) ( )( )

2 21

2

2 2 2 2 2

2 2

B B S s P P

P P S S P P

F
Fx T D y E D C y x E S C E C F

x

xy D F F x y x y E C F E S C E C F

∂
= + + − − − − + − − + +

∂

− − + + + + − − + + − − + +

              (14) 

( ) ( ) ( )21 2 2 2B B P P

F
xy T F D F D x E D C E C F x

y
∂

= + − + − − − − − + +
∂

                   (15) 

( ) ( )22 2 2 2S S P P

F
F D y Fxy E S C E C F D y

x
∂

= − + − + − − + + −
∂

                            (16) 

( ) ( ) ( )

( ) ( ) ( )( )

22

2

2 3 3 2 3 2 2 2

2 2

B B P P S s

P P B B P P

F
F T D y E D C T E C F y x E S C

y

xy D F F x y x y E C F D E D C E C F

∂
= + − − − − + − + + − + −

∂

− − + + + + − − + + − − − + +

         (17) 

Equilibrium point 1: ( )0,0,1 , the Jacobian matrix is as follows:  

( )
                         0

                   0                           
, S S P P

B B P P

E S C E C F

E D C E C F
J x y

+ − − + +

− − − + +

 
=  
 

                     (18) 

When s P S PE S C F C E+ + + < +  and B P B PE C F C D E+ + < + + , the eigen value of 
Jacobian matrix is negative, and it is asymptotically stable. 

Equilibrium point 2: ( )0,1,0 , the Jacobian matrix is as follows: 

( )
                         0

                   0                               T+C
, B S

P B P

B S

B

T E C S C

E E C

E
J x y

− + −

−

+ + 
=  + − 

                         (19) 

When B S S BT C E S C E+ + + < +  and B P B PT C E E C+ + < +  , the eigenvalue of 
Jacobian matrix is negative, and it is asymptotically stable. 

Equilibrium point 3: when 0F >  and 0D > , the equilibrium point is 

( P S S PC F E S C E
F

+ + + − − ,0,1 P S S PC F E S C E
F

+ + + − −
− ), the Jacobian matrix is as 

follows: 

( )
( ) ( )

1                         *

    0     

,

P S S P

P S S P S B S B

C F E S C E
FJ x y

D C F E S C E F C E E S C D
F

+ + + − −

=
+ + + − − + + − − − −

 
 
 
 
 
 

     (20) 

Where 1*  has no influence on the positive and negative judgment of eigenvalue 
of the matrix. When S P P S S PC E F C E S C E+ − < + + < + , S B S BC E E S C D+ < + + + , 
and ( )P S S PD C F E S C E+ + + − − ( ) 0S B S BF C E E S C D+ + − − − − < , the eigenvalue of 
Jacobian matrix is negative, and it is asymptotically stable. 
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Equilibrium point 4: when F T D+ > , the equilibrium point is (1,0,0), the 
Jacobian matrix is as follows: 

( )
             C

                   0                              C
, P

B S B

S P S B P B P

S

C E

E E C

C E S E E C
J x y

S
+

−

− − − + − − 
=  + − − 

                         (21) 

When S P P SC E C E S+ < + +  and S B S BC E E C S+ < + + , the eigenvalue of 
Jacobian matrix is negative, and it is asymptotically stable. 

Equilibrium point 5: when F T D+ > , the equilibrium point is (0,
P B B PC F D E C E

F T D
+ − + − −

+ −
, 1 P B B PC F D E C E

F T D
+ − + − −

−
+ −

), the Jacobian matrix is as 

follows: 

( )

( ) ( )( )

( )( )
2

       0          

    *                                                   

,
P B B B B P B

B P P B S P S P

P

F

F Y D
J x y

C F E C E E C E C T

F Y D

C E D C F E F Y D F E S C C E

D

+ −
=

+ + − − + − −

+ −

+ + − − − + + − + + + − −

− −

 
 
 
 
 

(22) 

Where 2*  has no influence on the positive and negative judgment of eigenvalue 
of the matrix. When B P P B B PC E D F C E C E T+ + − < + < + + , P S PC F E S C+ + + +  

S PC E< +  and ( )( ) ( ) 0S P S P B P BF T D F E S C C E F C E D F E+ − + + + − − + + + − − < , 
the eigenvalue of Jacobian matrix is negative, and it is asymptotically stable. We 
summarise all the equilibrium points as shown in the Table 3.  

 
Table 3. Equilibrium points and its satisfying conditions 

Equilibrium points Satisfying conditions Stability 

( )0,0,1  
s P S PE S C F C E+ + + < +  
B P B PE C F C D E+ + < + +  

Asymptotically 
stable 

( )0,1,0  
B S S BT C E S C E+ + + < +  
B P B PT C E E C+ + < +  

Asymptotically 
stable 

( P S S PC F E S C E
F

+ + + − − , 0

1 P S S PC F E S C E
F

+ + + − −
− ) 

0, 0F D> >  
S P P S S PC E F C E S C E+ − < + + < +  
S B S BC E E S C D+ < + + +  
( )
( ) 0

P S S P

S B S B

D C F E S C E

F C E E S C D

+ + + − −

+ + − − − − <
 

Asymptotically 
stable 

( )1,0,0  
S P P SC E C E S+ < + +  
S B S BC E E C S+ < + +  

Asymptotically 
stable 

(0, P B B PC F D E C E
F T D

+ − + − −
+ −

,

1 P B B PC F D E C E
F T D

+ − + − −
−

+ −
) 

F T D+ >  
B P P B B PC E D F C E C E T+ + − < + < + +

P S P S PC F E S C C E+ + + + < +  

Asymptotically 
stable 
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Equilibrium points Satisfying conditions Stability 
( )( )

( ) 0
S P S P

B P B

F T D F E S C C E

F C E D F E

+ − + + + − −

+ + + − − <
 

Source: Authors’ own creation. 
 

5. Case study 
 
In this part, firstly, the equilibrium point and stability are simulated. Secondly, 

the government's subsidies for shared car S , the car-sharing travel costs of free flow 
SC , and the public transit travel costs of free flow BC  are simulated and analysed. 

In this study, we analyse the dynamic evolution of travel mode choices (shared 
cars, public transit, and private cars) using an evolutionary game theory approach, 
based on a dataset collected from Beijing in 2024. The dataset comprises travel 
behaviour survey, capturing their mode choices, socioeconomic characteristics, and 
perceptions of travel costs and benefits. Travel cost parameters (e.g., SC , BC , PC ) were 
derived from local car-sharing platforms, public transit fare schedules, and average 
fuel and parking costs, while benefits (e.g. SE , BE , PE ) were estimated based on 
traveller-reported convenience, comfort, and time savings. The dataset and methods 
are detailed below, followed by simulations of equilibrium points, stability, and the 
impacts of government subsidies, car-sharing travel costs, and public transit travel 
costs. The results are further discussed to highlight their implications for urban traffic 
management and policy. 

 

5.1 Equilibrium points and stability 
 

We simulated the results for the five equilibrium points in Table 3. Let the initial 
value is (0.3, 0.3, 0.4) and take values according to the conditions that the equilibrium 
point needs to meet, the parameter values are shown in Table 4. These simulated 
parameter values were calibrated to reflect realistic scenarios in urban transportation 
systems. For example, in Equilibrium Point 1, where private cars dominate, we set 
high private car benefits and low costs to simulate a city where private car ownership 
is heavily subsidised or where public transit and shared cars are underdeveloped. 
Conversely, in Equilibrium Point 4, we set high shared car subsidies and high private 
car costs, representing a policy environment that strongly encourages shared mobility. 
These scenarios enable us to explore how different policy interventions shape travel 
mode dynamics. 

 
Table 4. Parameter values of equilibrium points 

Equilibrium points SE  BE  PE  SC  BC  PC  S  T  F  D  
Equilibrium point 1 50 120 180 35 75 100 4 6 60 30 
Equilibrium point 2 50 140 180 25 50 100 20 6 60 30 
Equilibrium point 3 50 120 180 20 60 100 20 6 60 30 
Equilibrium point 4 50 120 180 20 60 100 55 6 60 30 
Equilibrium point 5 50 120 180 35 60 100 3 6 60 30 

Source: Authors’ own creation. 
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(a) Equilibrium point 1                   (b) Equilibrium point 2 

 
(c) Equilibrium point 3                   (d) Equilibrium point 4 

 
(e) Equilibrium point 5 

Figure 1. Evolution result of equilibrium points 
Source: Authors’ own creation. 

 

Figure 1 shows the process of travel mode choice evolution. As can be seen from 
this figure, equilibrium 1: with the increase of time, the probability of choosing shared 
cars and public transit gradually approaches 0, and the probability of choosing private 
cars infinitely approaches 1; equilibrium 2: with the increase of time, the probability 
of choosing shared car and private car gradually approaches 0, and the probability of 
choosing public transit infinitely approaches 1; equilibrium 3:with the increase of time, 
the probability of choosing shared cars and private car gradually approaches 0.5, and 
the probability of choosing public transit infinitely approaches 0; equilibrium 4: with 
the increase of time, the probability of choosing public transit and private car gradually 
approaches 0, and the probability of choosing shared car infinitely approaches 1; 
equilibrium 5: with the increase of time, the probabilities of choosing shared cars, 
public transit and private car approach 0, 0.28 and 0.72, respectively. These simulation 
results illustrate how different parameter settings lead to distinct stable states in travel 
mode choices. In Equilibrium Point 1, private cars dominate due to their perceived 
benefits (e.g., flexibility, comfort) outweighing those of shared cars and public transit, 
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possibly due to low operating costs or high private car subsidies. Conversely, in 
Equilibrium Point 4, shared cars become the preferred mode when government 
subsidies significantly reduce their effective costs, making them more attractive than 
public transit and private cars. Equilibrium Point 3 represents a mixed strategy where 
shared cars and private cars have equal choice probabilities, indicating a balance 
between their benefits and costs. Equilibrium Point 2 shows public transit as the 
dominant choice, likely occurring when public transit is heavily subsidised or shared 
cars and private cars are relatively expensive or inconvenient. Finally, Equilibrium 
Point 5 describes a scenario where private cars remain the most frequently chosen 
mode, but public transit retains a significant share, suggesting that while private cars 
are preferred, public transit remains a viable option for some travellers. 

 
(a) Equilibrium point 1                      (b) Equilibrium point 2 

 
(c) Equilibrium point 3                           (d) Equilibrium point 4 

 
(e) Equilibrium point 5 

Figure 2. Evolution results of equilibrium points with the different initial values 
Source: Authors’ own creation. 

 
Figure 2 shows the evolution results of different initial points. It can be seen from 

the figure that the initial points have no effect on the final evolution results for five 
equilibrium points. These results highlight the sensitivity of travel mode choices to 
relative benefits and costs. For instance, Equilibrium 1 suggests that without sufficient 
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incentives, private cars remain the preferred mode due to their high convenience and 
autonomy. Equilibrium 4, however, shows that strategic subsidies can shift preferences 
toward shared cars, aligning with sustainability goals. The robustness across initial 
conditions underscores the model’s applicability to diverse urban contexts. 

 
5.2 The simulation analysis of car-sharing subsidy 

 
When the government's subsidy S  for travel using shared cars is 0, 10, 20 and 

30, the evolution of travellers’ choice of three types of travel modes is analysed. The 
values of other parameters are shown in Table 5. 

 
Table 5. Parameter values of car-sharing subsidy analysis 

Parameters SE  BE  PE  SC  BC  PC  T  F  D  
Value (Yuan) 50 120 180 20 60 100 6 60 30 

Source: Authors’ own creation. 
 
Let the initial value is (0.3, 0.3, 0.4), the evolution result with the different car-

sharing subsidy is shown in Figure 3. It can be seen from the analysis in the figure that, 
as S  increases, the probability of travellers choosing shared cars gradually increases. 
The probability of choosing public transit gradually decreases, and finally converges 
to 0. The probability of choosing private cars also gradually decreases, but there is still 
some probability of choosing private cars for travel. 

 

 
Figure 3. Evolution results with the different car-sharing subsidy 

Source: Authors’ own creation. 
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Figure 4. Evolution result of different car-sharing subsidy with different initial values 

Source: Authors’ own creation. 
 
Figure 4 shows the evolution result of different car-sharing subsidy with different 

initial values. It can be seen from the figure that the car-sharing subsidy has an effect 
on the final evolution results, and different car-sharing subsidy eventually converge to 
the different stable points. It is shown that the government's support for the use of 
shared cars plays an important role in the direction of travellers to choose the travel 
mode of shared cars. The government provides appropriate subsidies to stimulate users 
to transfer to using shared cars, which is also conducive to reducing the probability of 
using private cars. At the same time, the subsidy should not be too high, which will 
reduce the probability of public transit choice. 

 
5.3 The simulation analysis of car-sharing travel cost 

 
When the car-sharing travel cost under the condition of free-flow SC  is 0, 15, 25 

and 35, the evolution of travellers’ choice of three types of travel modes is analysed. 
The values of other parameters are shown in Table 6. 

 
Table 6. Parameter values of car-sharing travel cost analysis 

Parameters SE  BE  PE  BC  PC  S  T  F  D  
Value (Yuan) 50 120 180 60 100 20 6 60 30 

Source: Authors’ own creation. 
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Let the initial value is (0.3, 0.3, 0.4), the evolution result with the different car-
sharing travel cost is shown in Figure 5. It can be seen from the analysis in the figure 
that as SE  increases, the probability of travellers choosing private car gradually 
increases. The probability of choosing shared car gradually decreases, and finally 
converges to 0. The probability of choosing public transit also gradually decreases, but 
there is still small probability. 

 

 
Figure 5. Evolution results with the different car-sharing travel cost 

Source: Authors’ own creation. 
 
Figure 6 shows the evolution result of different car-sharing travel costs with 

different initial values. It can be seen from the figure that the car-sharing travel cost 
shave effect on the final evolution results, and different car-sharing travel costs 
eventually converge to the different stable points. This shows that, if the enterprise 
wants to stimulate users' use of sharing car, it needs to reasonably set the travel cost, 
so that some travellers using private cars and public transit will shift to choose shared 
cars for travel. 
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Figure 6. Evolution result of different car-sharing travel cost  

with different initial values 
Source: Authors’ own creation. 

 
5.4 The simulation analysis of public transit travel cost 

 
When the public transit travel cost under the condition of free-flow BC  is 40, 45, 

50 and 55, the evolution of travellers’ choice of three types of travel modes is analysed. 
The values of other parameters are shown in the following Table 7. 

 
Table 7. Parameter values of public transit travel cost analysis 

Parameters SE  BE  PE  SC  PC  S  T  F  D  
Value (Yuan) 50 120 180 20 100 20 6 60 30 

Source: Authors’ own creation. 

 
Figure 7. Evolution result with the different public transit travel cost 

Source: Authors’ own creation. 
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Let the initial value is (0.3, 0.3, 0.4), the evolution result with the different public 
transit travel cost is shown in Figure 7. It can be seen from the analysis in the figure 
that as BC  increases, the probability of travellers choosing public transit car gradually 
decreases. The probability of choosing sharing car gradually increases. The probability 
of choosing private also gradually decreases. 

 

 
Figure 8. Evolution result of different public transit travel cost with different initial values 

Source: Authors’ own creation. 
 
Figure 8 shows the evolution result of different public transit travel cost with 

different initial values. It can be seen from the figure that the public transit travel cost 
has an effect on the final evolution results, and different public transit travel cost 
eventually converge to the different stable points. Therefore, it can be concluded that 
at the charging standard of the public transit can affect the proportion of shared cars. 
The high charges of public transit will make travellers change to car-sharing mode. 

 
6. Conclusions 

 
This study applies evolutionary game theory to model urban travel mode choice 

dynamics, examining interactions between shared cars, public transit, and private 
vehicles. Through stability analysis and numerical simulations, we identify five 
equilibrium points that illustrate how travellers adjust their choices over time in 
response to policy interventions and economic conditions. Key findings indicate that 
government subsidies for shared cars can effectively drive mode shifts, with a 
statistically significant reduction in private vehicle reliance. However, excessive 
public transit fares may act as a deterrent to users, creating a potential risk of increased 
private car usage due to the lack of viable alternatives. These insights highlight the 
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importance of balanced policy interventions, where strategic subsidies and optimal 
pricing structures can enhance urban mobility efficiency and sustainability. 

Despite its contributions, this study has limitations. The model does not account 
for real-time behavioural variations or external shocks, such as economic downturns 
or fuel price fluctuations. Future research should explore integrating machine learning-
based demand forecasting and real-time data analytics to enhance the predictive 
accuracy of travel mode evolution models. Additionally, incorporating multi-modal 
transportation interactions (e.g., micromobility, ride-hailing) could provide a more 
comprehensive understanding of emerging mobility trends in smart cities. 

By offering quantitative insights into travel mode evolution, this research 
provides a theoretical and practical foundation for urban planners and policymakers to 
develop more effective, data-driven transportation strategies that promote sustainable 
mobility and reduce urban congestion. 
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