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Abstract. The rapid expansion of the Internet of Things (IoT) networks has increased 
vulnerability to Distributed Denial of Service (DDoS) attacks due to resource constraints, 
communication overhead, secure aggregation, and real-time anomaly detection. This paper 
proposes a Federated Learning (FL) model for mitigating DDoS attacks in large-scale 
heterogeneous IoT networks. The proposed model developed an FL-based approach that 
improves DDoS attack detection and mitigation by leveraging machine learning models like 
light gradient boosting machines, extreme gradient boosting, and random forest. To ensure 
secure aggregation, we used homomorphic encryption and reduced communication overhead 
by compression techniques. Furthermore, real-time anomaly detection is achieved using a 
hybrid model that integrates signature-based and anomaly-based detection. After comparing 
it with the existing models, the proposed model demonstrates outstanding performance 
across various metrics. According to simulation results, the proposed model attained an 
accuracy of 99.80%, which signifies its efficiency in providing security in IoT networks.  
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1. Introduction

The Internet of Things (IoT) has revolutionised the world in the last ten years. 
Millions of devices are interconnected by utilising IoT technology, whether real or 
digital (Jahangeer et al., 2023). It has become widely used in academia and industry, 
and the industrial modernisation of IoT will soon involve billions of heterogeneous 
devices. Excessively, the IoT-based prediction of a large-scale implementation faces 
significant obstacles in numerous areas (Noaman et al., 2022). Many cyberattacks 
have evolved significantly, ranging from traditional Denial-of-Service (DoS) and 
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Distributed DoS (DDoS) attacks to sophisticated exploits such as phishing, malware, 
Structured Query Language (SQL) injection, and data exfiltration. Understanding 
these attack types is crucial for designing effective Intrusion Detection Systems 
(IDS) (Abed et al., 2023). Distributed Denial of Service (DDoS) is the network's 
most frequent security risk. These attacks are effective because the botnet is their 
primary attack source. Various attack detection techniques have been developed to 
mitigate this, with differing success rates (Adedeji et al., 2023). Machine Learning 
(ML) and Deep Learning (DL) techniques have revealed encouraging outcomes in 
analysing network traffic and identifying botnet behaviour patterns (Alyazia et al., 
2024).  

Anomaly detection is a crucial component in identifying irregular behaviours in 
IoT networks, which face additional difficulties due to the heterogeneity of IoT 
devices and their limited computational resources (Cook et al., 2029). Various 
studies have focused on enhancing IoT network security, particularly against DDoS 
attacks. These include ML-based IDS to improve detection accuracy (Sadhwani et 
al., 2023). DL frameworks and cloud-based security measures like Moving Target 
Defense (MTD) and Simple Network Management Protocol (SNMP) were 
employed to reduce attack risks (Gayathri et al., 2023). FL models were developed 
to improve privacy and efficiency. In contrast, hybrid models have combined 
techniques like KG-Synthetic Minority Oversampling Technique (SMOTE) and K-
means clustering to reduce overfitting and increase accuracy (Lv et al., 2023). 
Despite these advancements in IoT networks, challenges like resource constraints, 
communication overhead, security, scalability, and real-time detection remain 
significant challenges, particularly in large-scale heterogeneous IoT networks. To 
overcome these, the proposed model developed a solution to mitigate DDoS attacks, 
enhance detection accuracy, and ensure scalability while maintaining computational 
efficiency in resource-constrained IoT environments. 

This paper presents a few contributions to a secure IoT deployment.  
• The proposed model incorporates lightweight machine-learning models 

such as LightGBM, XGBoost, and Random Forest (RF) to reduce 
computational resources.  

• The model uses Federated Learning (FL) to enable distributed training 
across IoT devices without sharing raw data. It conserves data privacy while 
allowing collective learning, making it suitable for large-scale IoT networks 
where data privacy and security are critical. 

• The proposed model integrates compression techniques such as quantisation 
and sparsification. These methods significantly reduce the size of updates, 
enhancing scalability and minimising communication latency. 

• The proposed model utilises homomorphic encryption, which ensures that 
model updates are encrypted and cannot be intercepted or tampered with 
during transmission. 

• The proposed model introduces a hybrid detection model that combines 
signature-based and anomaly-based detection for known and unknown 
attacks. This combination ensures continuous monitoring of the model’s 
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performance and makes improvements based on feedback and new attack 
patterns. 

The study is formatted in the following way: The related work of anomaly-
based detection for IoT networks is analysed in Section 2; the proposed model is 
thoroughly explained in Section 3; the implementation of the proposed model and 
comparison with existing models is shown in Section 4; and in Section 5 the study 
is concluded.  

 
2. Related Work 

 
This section analyses the existing works of DDoS attack detection in the IoT 

environment. (Lee et al., 2022) created an independent defence mechanism that 
integrated a two-dimensional CNN (2D CNN) along with edge computing to detect 
and avoid DDoS attacks. The system used a trained CNN to recognise DDoS attacks 
by investigating packet traffic and achieved high accuracy in distinguishing normal 
and attack traffic. However, it was only trained for usual DDoS attacks and could 
not identify new types of attacks. To address this, (Ogini et al., 2022) proposed a 
bagging-based ensemble ML model to monitor and prevent DDoS attacks in IoT 
environments. Although this model performed well, it still had a false positive rate, 
which could lead to some benign traffic being detected as malicious. To protect IoT 
devices from DDoS attacks, (Ibrahim et al., 2022) used a distributed Ethereum 
blockchain model to authenticate IoT devices. The model eliminated a single point 
of failure and third-party dependencies, but faced scalability and resource constraint 
issues. Similarly, (Aslam et al., 2022) developed a system for finding and reducing 
the effect of DDoS attacks using an adaptive ML-based Software Defined Network 
(SDN) enabled by a multi-layered feed-forwarding approach and Ensemble Voting 
(EV) algorithm. The framework provided high accuracy in DDoS detection, low 
false alarm rates, and efficient resource management. However, it further required 
extensive computational resources for real-time traffic analysis. These challenges 
were partially reduced by (Mahadik et al., 2024), which developed an Edge-FL-
based IDS to protect heterogeneous IoT applications from DDoS attacks. With the 
DL-based one-dimensional CNN (1D-CNN) and CICDDoS2019 dataset, this model 
outperformed in detecting DDoS attacks while achieving high accuracy and 
preserving data privacy. However, this work too faced scalability issues due to 
communication overhead.  

Using fully connected deep four-layer networks, (Awajan, 2023) developed a 
DL-based IDS for IoT networks. The model achieved average accuracy and 
demonstrated reliable performance in detecting DDoS attacks, but this model was 
only trained for a few types of attacks. Similarly, (Shieh et al., 2023) developed a 
novel IDS using CNN and geometrical metrics to detect DDoS attacks. This model 
achieved a high detection rate but struggled with identifying new attack patterns. To 
mitigate this, (Mahadik et al., 2023) aimed to develop an intelligent IDS for 
heterogeneous IoT environments to identify and mitigate various DDoS attacks 
using CNN. This model achieved a high accuracy rate for binary classification, was 
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simple and lightweight, and was less complex. However, this work could not provide 
real-time detection of attacks. Existing models face several challenges in resource 
constraints, communication overhead, real-time anomaly detection, security 
vulnerabilities, and scalability in large-scale heterogeneous IoT networks. These 
issues hinder the effective mitigation of DDoS attacks, especially in dynamic 
environments. To address these issues, the proposed model introduces an innovative 
approach that integrates FL to mitigate DDoS attacks for large-scale heterogeneous 
IoT networks. By utilising FL, the model enables decentralised training and reduces 
communication overhead. This approach ensures security, scalability, and real-time 
anomaly detection in resource-constrained environments.  

 
3. Proposed Federated Learning-based DDoS Attack Detection Model 

 
The proposed model uses FL, compression techniques, and secure aggregation 

methods for mitigating DDoS attacks in large-scale IoT networks using the CIC-IoT-
2023 dataset. The proposed model’s detailed workflow is depicted in Figure 1.  

 

 
Figure 1. The proposed FL-based model for anomaly detection in real-time  

Source: Authors’ own creation. 
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3.1 Dataset Description 
 
The proposed work utilised the CIC-IoT-2023 dataset, which is recognised as 

the largest IoT dataset, gathered from real IoT devices. It includes data from 105 IoT 
devices and documents 33 recorded attacks. Notably, these attacks were carried out 
by malicious IoT devices targeting other IoT devices. Furthermore, the CIC-IoT-
2023 dataset features multiple types of attacks that are not found in other IoT 
datasets. Overall, it comprises a total of 46 features and 1 label. 

 
3.2 Federated Learning  

 
FL is an ML approach that enables model training across distributed devices or 

servers without changing the data. This approach differs from conventional 
centralised learning, which gathers data for training in a single location. Using local 
data, each device or server independently computes model updates and then shares 
them with peers or a central server. The global model improves the updates and 
is directed back to the devices for further development.  

 
3.3 Preprocessing 

 
Preprocessing is an important task in data analysis. It improves the quality and 

reliability of the data, which in turn enhances the accuracy and optimises the 
performance of the dataset.  

 
Min-Max Normalisation: The proposed model applies min-max normalisation 

for scaling the data features in the range [0, 1]. 
 
Label Encoding: Label encoding converts categorical variables into numerical 

values for each column. This ensures that the data within each column is compatible 
with ML algorithms. 

 
3.4 Feature Extraction using AutoEncoder 

 
The AE is an unsupervised neural network composed of two parts: the encoder 

and the decoder. The encoder maps the original input into a hidden space layer, while 
the decoder is responsible for recreating the original input from the hidden space 
layer. For encoding, the training involves initialising the 𝑊𝑊 matrix and 𝑏𝑏 vector. 
Updating both using the error value 𝐿𝐿 as shown in Equations (1) and (2). 

𝑊𝑊 = 𝑊𝑊 + 𝐿𝐿                            (1) 

𝑏𝑏 = 𝑏𝑏 + 𝐿𝐿                                                         (2) 
For decoding, convert the 𝑊𝑊�  matrix and 𝑏𝑏� vector to transpose 𝑇𝑇 of the encoder 

weight and bias vector 𝑛𝑛 as shown in Equations (3) and (4). 

𝑊𝑊�  =  𝑊𝑊𝑛𝑛
𝑇𝑇                            (3) 
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𝑏𝑏� =  𝑏𝑏𝑛𝑛𝑇𝑇                                         (4) 
An encoder is a probabilistic mapping function 𝐸𝐸(𝑢𝑢) that transforms an input 

vector 𝑢𝑢 into a hidden representation ℎ known as an encoder, as shown in Equations 
(5) and (6). 

ℎ = 𝐸𝐸(𝑢𝑢) =  𝜑𝜑(𝑊𝑊 𝑢𝑢 + 𝑏𝑏)                                       (5) 

𝜎𝜎(𝑊𝑊 𝑢𝑢 + 𝑏𝑏) =  1
1+ 𝑒𝑒−(𝑊𝑊 𝑢𝑢+𝑏𝑏)                           (6) 

Where 𝜑𝜑 is the activation function of the 𝑊𝑊 and 𝑏𝑏 matrix-vector in the encoder, 
𝜎𝜎 represents the sigmoid function that maps the input values, and 𝑒𝑒 is the base of the 
natural algorithm. A decoder is a mapping function of 𝐷𝐷(ℎ) is used to transform the 
reconstructed input space vector 𝑟𝑟 from the latent representation ℎ, and decoder 
mapping it with a sigmoid function as stated in Equations (7) and (8). 

𝑟𝑟 = 𝐷𝐷(ℎ) =  𝜑𝜑�𝑊𝑊�  ℎ + 𝑏𝑏��                                       (7) 

𝜎𝜎�𝑊𝑊�  ℎ + 𝑏𝑏�� =  1
1+ 𝑒𝑒−�𝑊𝑊�  ℎ+𝑏𝑏��                               (8) 

The learning process often includes optimising the weights to minimise the 
reconstruction error. Hence, Equation (9) expresses the objective function. 

𝐿𝐿 =  |𝑢𝑢 −  𝑢𝑢�|2                            (9) 
Where 𝑢𝑢 denotes an input value and  𝑢𝑢� is the output value. 

 
3.5 Local Model Training 

 
In FL, local models are trained using locally available data through traditional 

ML algorithms. The proposed model utilised ML algorithms such as LightGBM, 
XGBoost, and RF for local model training. 

 
3.5.1 LightGBM 

 
LightGBM is employed to train individual local models within the FL 

framework. By leveraging its Gradient-Boosting Decision Tree (GBDT). It enables 
clients to learn patterns independently from their data while preserving privacy. 
LightGBM utilises classification and regression trees as weak learners, iteratively 
refining model predictions by minimising the residual error of the previous tree. The 
loss minimisation process 𝐸𝐸𝑅𝑅(𝑃𝑃) is expressed as shown in Equation (10).  

𝐸𝐸𝑅𝑅(𝑃𝑃) = ∑ 𝜆𝜆𝑟𝑟𝑑𝑑(𝑄𝑄𝑖𝑖;𝜃𝜃𝑟𝑟)𝑅𝑅
𝑟𝑟=1                                      (10) 

Where 𝑅𝑅 represents the number of trees, 𝑟𝑟 number of iterations, 𝜆𝜆𝑟𝑟 represents 
the learning rate, 𝑑𝑑(𝑄𝑄𝑖𝑖;𝜃𝜃𝑟𝑟) represents the 𝑟𝑟th tree decision trees, and 𝜃𝜃𝑟𝑟 represents 
the tree parameter. The successive 𝑟𝑟th trees are trained to predict the residual error 
by minimising the loss function ℒ concerning the tree parameter 𝜃𝜃𝑟𝑟 is shown in 
Equation (11). 

𝜃𝜃𝑟𝑟 = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎∑ ℒ�𝑃𝑃𝑖𝑖 ,𝑓𝑓𝑟𝑟−1(𝑄𝑄𝑖𝑖) + 𝜆𝜆𝑟𝑟𝑑𝑑(𝑄𝑄𝑖𝑖; 𝜃𝜃)�𝑛𝑛
𝑖𝑖=1           (11) 
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Here 𝑃𝑃𝑖𝑖 represents the target variable, 𝑓𝑓𝑟𝑟−1(𝑄𝑄𝑖𝑖) represents the previous tree 
prediction, and 𝑛𝑛 represents the training samples. Optimisation was performed using 
gradient descent, which ensures that the residuals are minimised at each iteration, 
enhancing the model’s performance. 

 
3.5.2 XGBoost 

 
XGBoost is employed to train individual local models within the FL framework. 

It is a scalable and computationally efficient implementation of GBDT that builds 
models incrementally. For local model training, XGBoost incrementally builds an 
ensemble of decision trees that work together to refine predictions. The model 
focuses on iteratively correcting the errors of previous trees, allowing it to improve 
performance over time. 

 Each decision tree is built to minimise the residual errors of the previous one, 
ensuring that the model can capture complex patterns, even in noisy data. To further 
increase robustness against noise and overfitting, a random sampling strategy known 
as stochastic gradient boosting has been incorporated. XGBoost represents an 
enhanced implementation that employs regularisation techniques to reduce the risk 
of overfitting. Equation (12) is the objective function for XGBoost that needs to be 
minimised. 

𝑂𝑂𝑂𝑂𝑂𝑂 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑤𝑤 = ∑ �ℎ𝑎𝑎 − �ℎ𝑎𝑎� + 𝑓𝑓𝑤𝑤 (𝑥𝑥𝑎𝑎)��+ ∆(𝑢𝑢)𝑛𝑛
𝑎𝑎=1       (12) 

Where ℎ𝑎𝑎 represents the target value,  ℎ𝑎𝑎� is the model's predicted value 
representing a sample 𝑎𝑎 's predicted category label, 𝑓𝑓𝑤𝑤 (𝑥𝑥𝑎𝑎), represents an additive 
decision tree model, and  ∆(𝑢𝑢) is the regularisation function. This regularisation 
ensures that the model improves over iterations and prevents overfitting, making it 
suitable for local training in environments with high-dimensional data. 

 
3.5.3 Random Forest 

 
RF is used as a local model training technique in the proposed model. RF is a 

supervised ML method that creates several decision trees for the prediction model 
by randomly selecting a subset of the available training data using bootstrap 
sampling. This approach increases model robustness by reducing overfitting and 
handling non-linear relationships between features. During training, each tree is 
created using a random subset of features at each decision node, ensuring diversity 
among the trees. The final output is obtained by aggregating the predictions of all 
trees in the forest, resulting in a robust, collective decision for an update. By 
combining multiple decision trees, each trained on different subsets of data and 
features, as shown in Equation (13). 

𝐹𝐹𝑅𝑅𝑅𝑅� (𝑠𝑠) =  1
𝑁𝑁

 𝑡𝑡𝑖𝑖(𝑠𝑠)                                      (13) 
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Where 𝐹𝐹𝑅𝑅𝑅𝑅� (𝑠𝑠) represents the combined model related to RF as a function of 𝑠𝑠, 
𝑡𝑡𝑖𝑖 is a single decision tree regression model of 𝑖𝑖-th value, and 𝑁𝑁 is the number of 
features. 
 
3.6 Compressed using Quantisation and Sparsification 

 
After training on each IoT device, the local model transmits its learned 

parameters to a central server, which can create significant communication overhead, 
especially in resource-constrained environments. To mitigate this, we apply model 
update compression techniques, namely quantisation and sparsification.  

Quantisation reduces update sizes by using fewer bits to represent numerical 
values, leading to less data transfer with minimal accuracy loss. Sparsification 
further decreases communication requirements by sending only the most significant 
update values while filling the rest with zeros.  

These compressed updates are sent to the central aggregator, which assembles 
the global model from the contributions of all clients. This approach supports 
efficient and scalable federated learning in resource-limited IoT settings without 
compromising model performance. 

 
3.7 Global Model Training using Deep Neural Network 

 
The proposed model used a Deep Neural Network (DNN) based on 

EfficientNetB0 to train the global model. The DNN concept originates from research 
on ANN. DNNs are characterised by two or more hidden layers. They can learn more 
complex and abstract features than shallow ANNs. The EfficientNetB0 model has 
undergone a previous transfer learning process. It is a part of the CNN family and is 
specially designed for effective classification. The lightweight model architecture 
aims to enhance floating-point operation accuracy and efficiency. This is achieved 
by the compound scaling approach, which scales up the tenacity, breadth, and 
complexity of the architecture network. The EfficientNet-B0 network comprises 
a three-channel input image with a pixel resolution of 224*224. A compound 
coefficient ∂ is expressed in Equation (14). 

𝑠𝑠 =  𝛼𝛼𝛼𝛼, 𝑞𝑞 =  𝛽𝛽𝛽𝛽, 𝑟𝑟 =  𝛾𝛾𝛾𝛾                                                 (14) 

Here 𝛼𝛼 ≥ 1, 𝛽𝛽 ≥ 1, and 𝛾𝛾 ≥ 1 are scaling factors dependent on grid search 
and model scaling. The Swiss function with the input variable 𝑖𝑖 is defined as follows 
in Equation (15). 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑖𝑖) =  𝑖𝑖
1+ 𝑒𝑒−𝛽𝛽(𝑖𝑖)                                                           (15) 

The final layer of the EfficientNet-B0 architecture predicts the final output 
based on the data removed from the preceding layers. 
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3.8 Secure Aggregation using Homomorphic Encryption 
 
Secure aggregation is essential to mitigate privacy threats in cross-device FL. It 

allows the central server to compute the aggregation of model updates from 
distributed devices without having access to individual gradients, thus maintaining 
user privacy. To ensure this, the proposed model utilised a HE, a cryptographic 
technique that allows computations to be performed over encrypted data without the 
need to decrypt it first. The HE is the most commonly used privacy protection 
mechanism in FL. For example, let us consider the message 𝑚𝑚. 

Key Generation: (𝑘𝑘𝑘𝑘,𝑘𝑘𝑘𝑘) key pair ∈ 𝑘𝑘 where 𝑘𝑘 represents key space. Which is 
highly dependent on the 𝑘𝑘 element. 

Encryption: To encrypt, apply 𝑘𝑘𝑘𝑘 on a message 𝑚𝑚 producing a ciphertext 𝑐𝑐 in 
the cipher-space. 

Decryption: To decrypt, apply 𝑘𝑘𝑘𝑘 on the encrypted message 𝑐𝑐 to produce 𝑚𝑚. 
Mathematical operations like summation, multiplication, and logic-exclusive 

OR (XOR) operations could be supported by HE. This property ensures that model 
updates can be securely aggregated without revealing individual client information, 
thus enhancing the privacy-preserving capability of the FL framework. 

 
3.9 Model Distribution 

 
In FL, the training model on data sources is distributed among edge devices. 

Each device is trained on its local data to ensure all clients receive the global model. 
Then, it performs local training and shares its updates back to the central server for 
aggregation. 

 
3.10 Real-time Anomaly Detection 

 
The proposed model utilised a hybrid detection model based on the signature 

with anomaly-based detection to detect anomalies in real-time. The input data is 
filtered using statistical features in the signature anomaly detection technique. The 
normal data standard deviation includes a sequence of time series, which is used to 
filter the malicious data (𝑡𝑡1, 𝑡𝑡2, … ) where 𝑤𝑤𝑖𝑖,1,𝑤𝑤𝑖𝑖,2, … ,𝑤𝑤𝑖𝑖,𝑛𝑛 are the individual 
components of the vector 𝑡𝑡𝑖𝑖 is sampled at a time interval 𝑖𝑖. Each 𝑡𝑡𝑖𝑖 is composed of 𝑛𝑛 
elements as shown in Equation (16). 

𝑡𝑡𝑖𝑖 =  𝑤𝑤𝑖𝑖,1,𝑤𝑤𝑖𝑖,2, … ,𝑤𝑤𝑖𝑖,𝑛𝑛                          (16) 

where 𝑛𝑛 is the dataset's total number of sensors and actuators. Let 𝑀𝑀 be the 
length 𝑣𝑣 of a data segment 𝑚𝑚𝑇𝑇+1, … . ,𝑚𝑚𝑇𝑇+𝑣𝑣−1 at a specific time 𝑇𝑇 as defined in 
Equation (17). 

𝑀𝑀 = ( 𝑚𝑚𝑇𝑇 ,𝑚𝑚𝑇𝑇+1, … . ,𝑚𝑚𝑇𝑇+𝑣𝑣−1)                        (17) 

Where 𝑣𝑣 is the window size. The training phase of 𝑛𝑛 standard deviation 
𝑆𝑆𝑆𝑆1,𝑆𝑆𝑆𝑆2, … , 𝑆𝑆𝑆𝑆𝑛𝑛 are calculated for each possible segmented normal data as 
represented in Equation (18). 
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𝑆𝑆𝑆𝑆𝑗𝑗 =  𝜑𝜑�𝑤𝑤𝑇𝑇,𝑗𝑗,𝑤𝑤𝑇𝑇+1,𝑗𝑗, … ,𝑤𝑤𝑇𝑇+𝑣𝑣−1,𝑗𝑗�                       (18) 

The standard deviation 𝑆𝑆𝑆𝑆𝑗𝑗 of 𝑣𝑣 consecutive values 𝑤𝑤𝑇𝑇,𝑗𝑗,𝑤𝑤𝑇𝑇+1,𝑗𝑗, … ,𝑤𝑤𝑇𝑇+𝑣𝑣−1,𝑗𝑗 
for the 𝑗𝑗-th sensor or actuators. Then, for each potential case, the minimum and 
maximum standard deviations are calculated in Equations (19) and (20). 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑗𝑗                         (19) 

𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑗𝑗 = 𝑚𝑚𝑚𝑚𝑚𝑚 𝑆𝑆𝑆𝑆𝑗𝑗                          (20) 

Where 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑗𝑗 and 𝑀𝑀𝑀𝑀𝑀𝑀𝑆𝑆𝑆𝑆𝑗𝑗 are the standard deviations lower and upper bounds 
𝑣𝑣 normal reported values for sensors or actuators correspondingly. When a test input 
segment 𝑆𝑆𝑖𝑖 of 𝑣𝑣 consecutive samples 𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖+1, … , 𝑡𝑡𝑖𝑖+𝑣𝑣−1 from Equation (21) is 
processed, the method computes a Boolean predicate  𝑅𝑅1,𝑅𝑅2, … ,𝑅𝑅𝑛𝑛 where each 𝑅𝑅𝑗𝑗 
as True or False 

𝑆𝑆𝑖𝑖 =  𝑡𝑡𝑖𝑖, 𝑡𝑡𝑖𝑖+1, … , 𝑡𝑡𝑖𝑖+𝑣𝑣−1                         (21) 

When labeled normal, the input moves to the next iteration, finding a stage to 
reduce false negatives. The model adapts to diverse attack patterns by leveraging a 
dynamic threshold mechanism. The input error is classified as anomalous if it 
exceeds a predefined threshold. The model adjusts its threshold over time by 
incorporating feedback from detected anomalies and periodic retraining with 
updated datasets. This ensures its adaptability to changing patterns in real-world IoT 
environments.  

 
4. Results and Discussions 

 
The proposed FL model’s performance analysis is in this section. The 

experiment was conducted on a GPU: NVIDIA Quadro, CPU: Intel® Xeon® CPU 
E5-1650v3@3.50GHz M2000, Python 3.10 x64-based processors, and the 64-bit 
Windows 10 Pro operating system. 

 
4.1 Performance Analysis of the Proposed Model 

 
Table 1 illustrates the effectiveness of the locally trained model with the 

LightGBM, XGBoost, and RF models across various metrics like accuracy, 
precision, sensitivity, specificity, F1-score, and Negative Predicted Value (NPV). 
Additionally, the proposed model has a low tendency for mistakes, as seen by its 
False Positive Rate (FPR) and False Negative Rate (FNR). 
 

Table 1. Performance Metrics of Local Model Training 
Local Model Local Model 1 

(LightGBM) 
Local Model 2 

(XGBoost) 
Local Model 3 

(RF) 
Accuracy (%) 99.86 99.83 99.82 
Precision (%) 99.79 99.74 99.74 
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Local Model Local Model 1 
(LightGBM) 

Local Model 2 
(XGBoost) 

Local Model 3 
(RF) 

Sensitivity (%) 99.79 99.74 99.74 

Specificity (%) 99.89 99.87 99.87 

F1_Score (%) 99.79 99.74 99.74 
FPR (%) 0.1003 0.1252 0.1278 
FNR (%) 0.2006 0.2504 0.2557 

Source: Authors’ processing. 
 

Figure 2(a). Confusion Matrix for Local Model Trained using LightGBM 
Source: Authors’ own creation. 
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Figure 2(b). Confusion Matrix for Local Model Trained using XGBoost 

Source: Authors’ own creation. 
 

 
Figure 2(c). Confusion Matrix for Local Model Trained using RF 

Source: Authors’ own creation. 
 

Figure 2(a-c) displays the confusion matrix for the local model training using 
LightGBM, XGBoost, and RF. It visualises the performance of the local model used 
for multi-class classification tasks involving benign, bot, and DDoS. Each row and 
column represented the actual and predicted values. 
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Table 2 illustrates the effectiveness of the worldwide model trained with 
EfficientNetB0 across a number of metrics, including accuracy, precision, 
sensitivity, specificity, and F1-score. The values of these metrics are 99.80, 99.82, 
99.75, 99.85, and 99.78, respectively. Additionally, the proposed model shows a low 
tendency for mistakes, as seen by its FPR and FNR of 0.002 and 0.003.  
 

Table 2. Performance Metrics of Global Model Training 
Global Model EfficientNetB0 

Accuracy (%) 99.8 

Precision (%) 99.82 

Sensitivity (%) 99.75 

Specificity (%) 99.85 

F1-score (%) 99.78 
FPR (%) 0.002 
FNR (%) 0.003 

Source: Authors’ processing. 
 

 
Figure 3. Confusion Matrix for Global Model Training 

Source: Authors’ own creation. 
 

Figure 3 displays the confusion matrix for the global model training using 
EfficientNetB0. It visualises the efficiency of the global model employed in multi-
class classification tasks involving benign, bot, and DDoS. Each row and column 
represented the actual and predicted values. 

Table 3 shows that the proposed model performs exceptionally well in terms of 
accuracy, with low false positives and false negatives, making it highly reliable for 
real-world IoT environments. The considerable reduction in attack success rate and 
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packet loss highlights its effectiveness in mitigating DDoS attacks. Additionally, the 
optimised communication overhead ensures that the model is scalable and resource-
efficient, which is crucial for IoT devices with limited capabilities. 

 
Table 3. Proposed Model Performance in Mitigating DDoS Attacks 

Metric Mitigation Value 
Detection Accuracy 99.80% 

FPR 0.10 
FNR 0.25 

Attack Success Rate 3.00% 
Packet Loss During Attack 2% 
Communication Overhead 0.5 MB per update 

Source: Authors’ own creation. 
 
4.2 Comparative Analysis of Proposed Model with Existing Models 
 

Table 4. Comparison of performance metrics of the proposed model with existing models 
Model Accuracy (%) Precision (%) Recall (%) 

LSTM [12] 96.44 95.74 97.66 
2D CNN [16] 95.60 93.42 93.42 
1D CNN [20] 96 94.33 95.99 

CNN-Geo [22] 99.70 99.60 99.40 
Proposed Model 99.80 99.82 99.75 

Source: Authors’ own creation. 

Table 4 compares the proposed model with existing models such as LSTM, 
CNN, 1D CNN, CNN-Geo, and Bi-LSTM. The proposed model achieved notable 
accuracy, precision, and recall values of 99.80, 99.82, and 99.75, respectively, 
outperforming the existing models. 

 
5. Conclusions 

 
In this work, we developed an innovative approach to FL-based DDoS attack 

mitigation in large-scale IoT networks by employing lightweight ML models like 
LightGBM, XGBoost, and RF instead of DL models to overcome the resource 
constraints of IoT devices. We integrated quantisation and sparsification techniques 
to reduce communication overhead to ensure efficient model updates between 
devices and central servers. We used HE for a secure aggregation process to prevent 
malicious updates and our hybrid detection model, merging signature-based and 
anomaly-based detection, to enable real-time anomaly detection for continuously 
monitoring the model’s performance and improvement based on feedback and new 
attack patterns. The suggested model was verified utilising the CIC-IoT-2023 
dataset, demonstrating its effectiveness in improving detection accuracy and 
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enhancing security. This approach offers a scalable and secure DDoS detection and 
mitigation solution in an IoT environment. Future work will focus on extending the 
proposed model to other types of cyber threats in IoT networks. 
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