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Abstract. Accurately calculating the prices of Asian options is challenging due to their path-
dependent characteristics and the high-dimensional nature of the problem. This study 
addresses this issue using a novel Physics-Informed Neural Network (PINN) approach, 
which leverages the strengths of both neural networks and partial differential equation 
methods. By applying this PINN method to the pricing problems of one-asset and two-asset 
Asian options, we demonstrate that it can efficiently produce accurate price estimates 
compared to the traditional Monte Carlo method. 
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1. Introduction 
 

We introduce an effective approach for pricing Asian options utilising the 
Physics-Informed Neural Networks (PINNs) methodology. An Asian option is a type 
of financial derivative where the payoff is determined by the average price of the 
underlying asset over a specific period, rather than its price at a single point in time. 
This averaging mechanism reduces the option's sensitivity to short-term volatility 
and market manipulation. Asian options are typically used in markets with high 
volatility or where price manipulation is a concern, providing a more stable and 
predictable hedging instrument. They are popular in commodities and foreign 
exchange markets, helping investors manage risks associated with fluctuating prices 
over time (Wilmott et al., 1995; Kwok, 2008). 

However, due to the path-dependent nature of these options, determining the 
price of Asian options is challenging. Even within the framework of the Black–
Scholes model, a closed-form solution for the price of an arithmetic Asian option 
does not exist. Consequently, a variety of methods have been proposed in the 
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literature to address this challenge. Among these methods, Monte Carlo simulation 
(Glasserman, 2004; Shiraya and Takahashi, 2017), methods based on partial 
differential equations (Shi and Yang, 2014; Vecer, 2014), and expansion techniques 
(Lo et al., 2014; Lin and Chang, 2020) are widely employed. 

With the advancement of computational capabilities driven by big data, 
numerous machine learning and deep learning techniques have demonstrated 
significant success in addressing challenges across various domains, including the 
finance sector (Fischer and Krauss, 2018; Sezer et al., 2020; Goodell et al., 2021; 
Nabipour et al., 2020; Moon and Kim, 2019, 2023). Recently, PINNs have emerged, 
leveraging the strengths of traditional neural networks, particularly their capacity to 
approximate complex functions, by incorporating physical laws directly into the 
training process (Psaros et al., 2023; Cuomo et al., 2022). This approach has also 
been applied to financial option pricing problems, demonstrating performance 
improvements (Bai et al., 2022; Gatta et al., 2023; Wang et al., 2023). 

In this paper, we apply PINNs to the problem of pricing Asian options. Our 
approach aims to overcome the limitations of the Black-Scholes partial differential 
equation, particularly in addressing the path-dependent nature of averaging options 
and high-dimensional problems, thereby enhancing both the accuracy and 
computational efficiency of the pricing process. In Section 4, we demonstrate the 
efficiency of our method based on PINNs through examples involving both single-
asset and multi-asset cases. As shown in Figures 3 and 5, when PINNs are used, 
Asian option prices can be calculated more accurately and efficiently than with the 
traditional Monte Carlo (MC) method. 

The following sections of this paper are structured as follows. Section 2 
introduces the problem of pricing Asian options. Section 3 details the PINN 
methodology, including the structure of neural networks and its application to 
pricing issues. In Section 4, we compare the proposed method with the MC results 
by applying it to examples of single-asset and multi-asset Asian options. Section 5 
concludes the paper with insights and future research directions. 
 
2. Problem description 
 

In this work, we consider the pricing of continuously monitored Asian options. 
Let us assume that the asset price, 𝑆𝑆(𝑡𝑡), follows the stochastic differential equation: 
 

𝑑𝑑𝑆𝑆(𝑡𝑡) = 𝜇𝜇𝑆𝑆(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑆𝑆(𝑡𝑡)𝑑𝑑𝑑𝑑(𝑡𝑡) (1) 
 
where 𝑑𝑑(𝑡𝑡) is the standard Brownian motion process, and 𝜇𝜇 and 𝜎𝜎 represent the 
expected rate of return and volatility of the asset, respectively. Asian options are 
path-dependent derivatives whose payoffs depend on the average of the underlying 
asset prices over a predefined period. Under the assumption of a frictionless market, 
the value of a claim contingent on the stock at time 𝑡𝑡 can be represented as  
 

𝑉𝑉(𝑆𝑆(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑡𝑡) = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)𝐸𝐸∗[𝑔𝑔(𝑆𝑆(𝑇𝑇), 𝐼𝐼(𝑇𝑇),𝑇𝑇) | 𝐹𝐹𝑡𝑡] (2) 
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where 𝑔𝑔(𝑆𝑆(𝑇𝑇), 𝐼𝐼(𝑇𝑇),𝑇𝑇) represents the payoff function at 𝑇𝑇  and 𝐸𝐸∗[⋅] denotes the 
expectation conditioned on the information available at time 𝑡𝑡, represented by the 
filtration 𝐹𝐹𝑡𝑡 with risk neutral assumption 𝜇𝜇 = 𝑟𝑟 in (1). 𝑟𝑟  is the risk-free interest rate 
and 𝐼𝐼(𝑡𝑡) = ∫ 𝑆𝑆(𝜏𝜏)𝑑𝑑𝜏𝜏𝑡𝑡

0 . Then  𝐴𝐴(𝑡𝑡) =  1
𝑡𝑡
𝐼𝐼(𝑡𝑡) represents the continuous average of the 

asset price. Applying the no-arbitrage principle, we derive the governing partial 
differential equation (PDE) for the price, 𝑉𝑉, of the one-asset Asian option: 
 

ℒ[𝑉𝑉] ≡
𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

+
1
2
𝜎𝜎2𝑆𝑆2

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑆𝑆2

+ 𝑟𝑟𝑆𝑆
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆

+ 𝑆𝑆
𝜕𝜕𝑉𝑉
𝜕𝜕𝐼𝐼

− 𝑟𝑟𝑉𝑉 = 0 . (3) 

 

The terminal payoff at maturity, 𝑇𝑇 , is 𝑔𝑔(𝑆𝑆(𝑇𝑇), 𝐼𝐼(𝑇𝑇),𝑇𝑇) = �1
𝑇𝑇
𝐼𝐼(𝑇𝑇) − 𝐾𝐾�

+
 for the 

fixed strike call option with the strike price 𝐾𝐾,  and 𝑔𝑔(𝑆𝑆(𝑇𝑇), 𝐼𝐼(𝑇𝑇),𝑇𝑇) = �𝑆𝑆(𝑇𝑇) −
1
𝑇𝑇
𝐼𝐼(𝑇𝑇)�

+
for the floating strike call option, where (⋅)+ = max(⋅, 0). The boundary 

conditions are approximated by 
 

𝑉𝑉(𝑆𝑆(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑡𝑡) ≈ �𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) �
𝐼𝐼(𝑡𝑡)
𝑇𝑇

− 𝐾𝐾� +
𝑆𝑆(𝑡𝑡)
𝑟𝑟𝑇𝑇

�1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)��
+

, 

 
see in (Barraquand and Pudet,1996). 

For the Asian basket option based on two assets, 𝑆𝑆1(𝑡𝑡) and  𝑆𝑆2(𝑡𝑡) following 
𝑑𝑑𝑆𝑆𝑖𝑖(𝑡𝑡) = 𝑟𝑟𝑆𝑆𝑖𝑖(𝑡𝑡)𝑑𝑑𝑡𝑡 + 𝜎𝜎𝑆𝑆𝑖𝑖(𝑡𝑡) 𝑑𝑑𝑑𝑑𝑖𝑖(𝑡𝑡), 𝑖𝑖 = 1, 2, with the correlation 𝜌𝜌 between two 
assets, the governing PDE becomes 
 

ℒ[𝑉𝑉] ≡
𝜕𝜕𝑉𝑉
𝜕𝜕𝑡𝑡

+
1
2
𝜎𝜎12𝑆𝑆12

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑆𝑆12

+
1
2
𝜎𝜎22𝑆𝑆22

𝜕𝜕2𝑉𝑉
𝜕𝜕𝑆𝑆22

+ 𝜌𝜌 𝜎𝜎1𝜎𝜎2𝑆𝑆1𝑆𝑆2
𝜕𝜕2𝑉𝑉

𝜕𝜕𝑆𝑆1𝜕𝜕𝑆𝑆2
+ 𝑟𝑟𝑆𝑆1

𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆1

+𝑟𝑟𝑆𝑆2
𝜕𝜕𝑉𝑉
𝜕𝜕𝑆𝑆2

+
𝑆𝑆1 + 𝑆𝑆2

2
𝜕𝜕𝑉𝑉
𝜕𝜕𝐼𝐼

− 𝑟𝑟𝑉𝑉 = 0 (4)
 

 
where 𝐼𝐼(𝑡𝑡) = 1

2 ∫ 𝑆𝑆1(𝜏𝜏) + 𝑆𝑆2(𝜏𝜏) 𝑑𝑑𝜏𝜏𝑡𝑡
0 .  

  
3. Computational methods 
 

We are interested in solving the following problem: Given a set of known data, 
what can be inferred about the solution, 𝑉𝑉, of the PDE in (3) or (4) governing the 
pricing of Asian options based on one or two underlying assets, respectively? 
Traditionally, the field of scientific computing has developed robust theoretical 
frameworks and many numerical algorithms to derive exact or approximate solutions 
for such problems. In this study, we apply the approach based on PINNs to determine 
the value of European Asian call options and compare the results with those obtained 
from the traditional MC method. 
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3.1 Monte Carlo method 
 
For the value 𝑉𝑉(𝑆𝑆(𝑡𝑡), 𝐼𝐼(𝑡𝑡), 𝑡𝑡) in (2) of the European Asian option for one asset 

with the payoff function 𝑔𝑔(𝑆𝑆(𝑇𝑇), 𝐼𝐼(𝑇𝑇),𝑇𝑇), the MC method generates 𝑀𝑀 sample paths 
�𝑆𝑆𝑗𝑗(𝑡𝑡𝑖𝑖), 𝑖𝑖 = 1, … ,𝑁𝑁�

𝑗𝑗=1
𝑀𝑀  over 𝑁𝑁  time points, 0 = 𝑡𝑡1 ≤ 𝑡𝑡2 ≤ ⋯ ≤ 𝑡𝑡𝑁𝑁 = 𝑇𝑇  and 

estimates the expectation in (2) by replacing the continuous average 𝐴𝐴(𝑇𝑇) =
∫ 𝑆𝑆(𝜏𝜏)𝑑𝑑𝜏𝜏𝑇𝑇
0 / 𝑇𝑇 with an arithmetic average 1

𝑁𝑁
∑ 𝑆𝑆(𝑡𝑡𝑖𝑖)𝑁𝑁
𝑖𝑖=1  of the samples. 

The MC method is flexible and can be easily applied to various financial 
problems; however, it also has weaknesses. The MC method is heavily dependent on 
the quality of the input data, and the computational intensity is another drawback 
due to the requirement of generating a large number of sample paths. In fact, by the 
Central Limit Theorem, it can be shown that 
 

𝑉𝑉𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡 − 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑂𝑂 �
1
√𝑀𝑀

� 
 

where 𝑉𝑉𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡 is the true (unknown) solution and 𝑉𝑉𝑀𝑀𝑀𝑀𝑀𝑀 is an approximate solution 
from the MC method with 𝑀𝑀 sample paths. 
 
3.2 Neural Networks and PINNs 

 
A neural network (NN) is a computational model inspired by biological neural 

networks in the human brain, composed of interconnected nodes (neurons) and 
weighted connections (synapses). As illustrated in Figure 1, each node processes the 
input signals, applies a nonlinear transformation to the weighted sum of its inputs, 
and passes the output to the next layer. Neurons are organised into layers, with 
information flowing from the input layer through hidden layers to the output layer. 
A neural network is considered deep if it has multiple hidden layers. 
 

 
 

Figure 1. Structure of a neural network  
Source: Illustration by authors. 
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With the increasing power of machine learning techniques, scientific algorithms 
have been developed that incorporate physical principles into machine learning 
models. Given known data as input, a NN can be trained such that its output 𝑉𝑉𝑁𝑁𝑁𝑁 
closely matches the expected target data 𝑉𝑉𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡, achieved by minimizing the error 
between 𝑉𝑉𝑁𝑁𝑁𝑁 and 𝑉𝑉𝑡𝑡𝑟𝑟𝑡𝑡𝑡𝑡. However, one limitation of such standard NNs is that while 
they can model physical or financial processes well based on the training data, their 
predictive capability is limited to the regions spanned by the training data, lacking 
generalisation beyond the training domain. 

PINNs address this limitation by incorporating the governing PDEs into the loss 
function during the training process. PINNs specify a set of collocation points within 
the domain of the PDE, as well as additional points to describe the terminal and 
boundary conditions. Note that the way the points are generated is different from that 
of the MC method (Psaros et al., 2023; Cuomo et al., 2022). 

 
3.3 PINNs for Asian Options 

 
For the one-asset Asian option, we address a function approximation problem 

for the option price 𝑉𝑉(𝑆𝑆, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎)  within the domain [0, 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀] × [0, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀] ×
[0,𝑇𝑇] × [0, 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀] × [0,𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀] , and generate a set of 𝑁𝑁𝑝𝑝  uniformly distributed 
collocation points 𝒟𝒟𝑃𝑃𝑃𝑃𝑃𝑃.  

To determine the option price, we additionally specify a terminal condition (TC) 
and three boundary conditions (BCs) as follows: 
 
(i) Terminal Condition at 𝑡𝑡 = 𝑇𝑇 

𝑉𝑉(𝑆𝑆, 𝐼𝐼,𝑇𝑇, 𝑟𝑟,𝜎𝜎) = �
𝐼𝐼
𝑇𝑇
− 𝐾𝐾�

+
(5) 

(ii) Boundary Condition 1 for 𝑆𝑆 = 0 

𝑉𝑉(0, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎) ≈ 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) �
𝐼𝐼
𝑇𝑇
− 𝐾𝐾�

+
(6) 

(iii) Boundary Condition 2 for 𝑆𝑆 = 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 

𝑉𝑉(𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎) ≈ �𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) �
𝐼𝐼
𝑇𝑇
− 𝐾𝐾� + 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀

1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝑟𝑟𝑇𝑇 �
+

(7) 

(iv) Boundary Condition 3 for 𝐼𝐼 = 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 (≥ 𝐾𝐾𝑇𝑇) 

𝑉𝑉(𝑆𝑆, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡, 𝑟𝑟,𝜎𝜎) = 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) �
𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀
𝑇𝑇

− 𝐾𝐾� + 𝑆𝑆
1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝑟𝑟𝑇𝑇
. (8) 

 
BC (7) is approximated to provide an upper bound that is asymptotically 

consistent with the option price. BC (8) gives the exact value only when 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀  ≥ 𝐾𝐾𝑇𝑇. 
For TC and BCs, we generate 𝑛𝑛𝑃𝑃 vectors uniformly for each of the temporal and 
three spatial axes, resulting in 𝑁𝑁𝑃𝑃 = 4𝑛𝑛𝑃𝑃 vectors in total, denoted as 𝒟𝒟𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀.   

For the two-asset Asian basket options, the procedure is similar to that for the 
one-asset case, with differences only in the domain and boundary conditions. We 
consider the option price 𝑉𝑉(𝑆𝑆1,𝑆𝑆2, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌) within the domain [0, 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀] ×
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[0, 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀]  ×  [0, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀]  × [0,𝑇𝑇]  × [0, 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀]  ×  [0,𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀]  ×  [0,𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀]  ×
 [−𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀,𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀] . We consider the same ranges for 𝑆𝑆1  and 𝑆𝑆2  in this study for 
simplicity, but this can be easily adjusted to different ranges as required. We 
uniformly generate 𝑁𝑁𝑃𝑃 vectors in the domain for the collocation points 𝒟𝒟𝑃𝑃𝑃𝑃𝑃𝑃. 

The TC and five BCs for the two-asset case are as follows: 
 
(i) Terminal Condition at 𝑡𝑡 = 𝑇𝑇 

𝑉𝑉(𝑆𝑆1,𝑆𝑆2, 𝐼𝐼,𝑇𝑇, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌) = �
𝐼𝐼
𝑇𝑇
− 𝐾𝐾�

+
(9) 

(ii) Boundary Condition 1 for 𝑆𝑆1 = 0 

𝑉𝑉(0, 𝑆𝑆2, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌) = 𝑉𝑉one−asset �
𝑆𝑆2
2

, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎2� (10) 

(iii) Boundary Condition 2 for 𝑆𝑆1 = 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 

𝑉𝑉(𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 , 𝑆𝑆2, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌) ≈ �𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) �
𝐼𝐼
𝑇𝑇
− 𝐾𝐾� +

𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 + 𝑆𝑆2
2

×
1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝑟𝑟𝑇𝑇
�
+

(11) 

(iv) Boundary Condition 3 for 𝑆𝑆2 = 0 

𝑉𝑉(𝑆𝑆1, 0, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌) = 𝑉𝑉one−asset �
𝑆𝑆1
2

, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎1� (12) 

(v) Boundary Condition 4 for 𝑆𝑆2 = 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 

𝑉𝑉(𝑆𝑆1, 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 , 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌) ≈ �𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡) �
𝐼𝐼
𝑇𝑇
− 𝐾𝐾� +

𝑆𝑆1 + 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀
2

×
1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝑟𝑟𝑇𝑇
�
+

(13) 

(vi) Boundary Condition 5 for  𝐼𝐼 = 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 (≥ 𝐾𝐾𝑇𝑇) 

𝑉𝑉(𝑆𝑆1,𝑆𝑆2, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀, 𝑡𝑡, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌) = 𝑒𝑒−(𝑇𝑇−𝑡𝑡)𝑟𝑟 �
𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀
𝑇𝑇

− 𝐾𝐾� +
𝑆𝑆1 + 𝑆𝑆2

2
×

1 − 𝑒𝑒−𝑟𝑟(𝑇𝑇−𝑡𝑡)

𝑟𝑟𝑇𝑇
  (14) 

 
BCs (11) and (13) are approximations, and BC (14) holds only when 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 ≥

𝐾𝐾𝑇𝑇 , like the one-asset option. For BCs (10) and (12), the one-asset option price is 
required, which can be obtained from a PINN trained for the one-asset option. For 
TC and BCs, we uniformly generate 𝑛𝑛𝑃𝑃 vectors for each of the temporal and five 
spatial axes, resulting in 𝑁𝑁𝑃𝑃 = 6𝑛𝑛𝑃𝑃 vectors in total for 𝒟𝒟𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀.  

We train a NN 𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁, parameterised by 𝜃𝜃, which consists of weights and biases, 
to approximate the option value. The NN is trained by minimising the weighted sum 
of errors, defined as the loss function:  
 

ℓ ≡ 𝑤𝑤 ∗ ℓ𝑃𝑃𝑃𝑃𝑃𝑃 + ℓ𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀, 
 

where 𝑤𝑤 is a weight parameter, and ℓ𝑃𝑃𝑃𝑃𝑃𝑃 and  ℓ𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀 are the mean squared errors 
(MSE) for the PDE residuals and data (TC and BC), respectively, 
 

ℓ𝑃𝑃𝑃𝑃𝑃𝑃 ≡
1
𝑁𝑁𝑃𝑃

� �ℒ�𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁��𝒙𝒙�
2

 
𝒙𝒙∈𝒟𝒟𝑃𝑃𝑃𝑃𝑃𝑃

, 

ℓ𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀 ≡
1
𝑁𝑁𝑃𝑃

� �𝑉𝑉 − 𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁(𝒙𝒙)�
2

 
(𝒙𝒙,𝑉𝑉)∈𝒟𝒟𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑

. 
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ℒ[∙] is the operator in (3) or (4) for one or two assets respectively, see Algorithm 1. 
 
Algorithm 1: Training of PINNs for Asian Option Pricing 
 Input: number of epochs (𝑁𝑁epochs), learning rate (𝜂𝜂) 
 Output: a trained model 

1 For 𝑖𝑖 in {1, 2, … ,𝑁𝑁𝑡𝑡𝑝𝑝𝑒𝑒𝑒𝑒ℎ𝑠𝑠} 
2  ℓ𝑃𝑃𝑃𝑃𝑃𝑃 ← 0  
3  Randomly sample the datasets 𝒟𝒟𝑃𝑃𝑃𝑃𝑃𝑃, 𝒟𝒟𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀  
4  For 𝒙𝒙 in 𝒟𝒟𝑃𝑃𝑃𝑃𝑃𝑃 
5   ℓ𝑃𝑃𝑃𝑃𝑃𝑃 ← ℓ𝑃𝑃𝑃𝑃𝑃𝑃 + 1

𝑁𝑁𝑃𝑃
�ℒ�𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁��𝒙𝒙�

2
  

6  End 
7  ℓ𝑏𝑏 ← 0  
8  For (𝒙𝒙,𝑉𝑉) in 𝒟𝒟𝑏𝑏 
9   ℓ𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀 ← ℓ𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀 + 1

𝑁𝑁𝑃𝑃
�𝑉𝑉 − 𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁(𝒙𝒙)�

2
  

10  End 
11  ℓ ← 𝑤𝑤ℓ𝑃𝑃𝑃𝑃𝑃𝑃 + ℓ𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀  
12  𝜃𝜃 ← 𝜃𝜃 − 𝜂𝜂𝜂𝜂ℓ  
13 End 
14 Return 𝑢𝑢𝜃𝜃𝑁𝑁𝑁𝑁 

 
PINNs offer several advantages over classical numerical schemes. First, NNs, 

including PINNs, are universal function approximators, meaning that they can 
approximate any function with sufficient complexity. Second, partial derivatives can 
be computed efficiently using automatic differentiation without requiring finite 
difference approximations. Third, PINNs are mesh-free and do not require 
discretisation of the simulation domain. Additionally, once the training is completed, 
option valuation can be performed almost instantly, providing significant 
computational speedup compared to traditional numerical methods. This advantage 
is particularly notable when the model is trained to handle multiple input variables 
simultaneously, such as the risk-free interest rate 𝑟𝑟 and volatility 𝜎𝜎. In this case, 
option values for various scenarios can be obtained promptly and simultaneously 
without the need for retraining or additional computation.  

 
4. Numerical Results 

 
This section presents numerical experiments to evaluate the performance of the 

PINNs in pricing Asian options. The results obtained from the PINNs are compared 
with those from the traditional MC method, which serves as a baseline. The 
comparison focuses on two key aspects: relative error and computational efficiency. 
All experiments were conducted on an Intel(R) Xeon(R) Platinum 8175M CPU @ 
2.50GHz with 4 cores and 16GB of memory. The PINN training was performed on 
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a single NVIDIA L4 GPU, while the execution times reported herein are measured 
on the CPU, excluding the offline training time of the PINN. 
4.1 Monte Carlo Results 

To establish reference values for both one-asset and two-asset Asian option 
prices, we implemented the MC method with the antithetic variate technique for 
variance reduction. Figure 2 visually presents the estimated prices across various 
numbers of sample paths (𝑀𝑀)  and time steps (𝑁𝑁) . Option prices tend to be 
overestimated when a small number of time steps is used, and the variance of the 
estimation is high when the number of sample paths is low. Therefore, to obtain 
accurate prices using the MC method, it is necessary to simulate with sufficiently 
large numbers of sample paths and time steps, which leads to inefficiencies in both 
time and memory usage. For this study, the values obtained using 100,000 sample 
paths over 10,000 time steps are used as the reference values, 𝑉𝑉𝑅𝑅𝑡𝑡𝑅𝑅, resulting in 
execution times of 53 seconds and 120 seconds per option value for the one-asset 
and two-asset cases, respectively. 

 

   
    (a) One-asset Asian option                        (b) Two-asset Asian option  

 
Figure 2. Boxplots of the prices from MC simulations 

Source: Calculation made by authors. 
 
To measure the error for comparison, we use the mean absolute error (MAE) 

between the reference option prices �𝑉𝑉𝑅𝑅𝑡𝑡𝑅𝑅� and the estimated option prices �𝑉𝑉��, 
calculated across diverse asset prices. The MAE is defined as: 

MAE�𝑉𝑉𝑅𝑅𝑡𝑡𝑅𝑅 ,𝑉𝑉�� =
1

𝑁𝑁𝑝𝑝𝑟𝑟𝑖𝑖𝑒𝑒𝑡𝑡
��𝑉𝑉𝑅𝑅𝑡𝑡𝑅𝑅(𝑆𝑆𝑖𝑖) − 𝑉𝑉�(𝑆𝑆𝑖𝑖)� 
𝑖𝑖

, 

where 𝑁𝑁𝑝𝑝𝑟𝑟𝑖𝑖𝑒𝑒𝑡𝑡 is the total number of option prices compared.  
Table 1 presents the results obtained from the MC method for the one-asset case 

with 𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝜎𝜎 = 0.3,𝑇𝑇 = 1, and 𝑆𝑆(𝑡𝑡1) ranging from 0 to 300.  Table 2 
shows the results for the two-asset case with 𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝜎𝜎1 = 0.2,𝜎𝜎2 =
0.4,𝜌𝜌 = 0.5,𝑇𝑇 = 1,  and 𝑆𝑆1(𝑡𝑡1), 𝑆𝑆2(𝑡𝑡1)  ranging from 0 to 300. In both tables, 
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increasing the number 𝑀𝑀 of sample paths leads to a decrease in the corresponding 
MAE; however, this also results in longer execution time. 

 
Table 1. The errors of the one-asset Asian option prices from MC simulations  

(𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝜎𝜎 = 0.3,𝑇𝑇 = 1, 𝑆𝑆(𝑡𝑡1) ∈ [0, 300]) 
𝑴𝑴 (Number  

of sample paths) 
𝑵𝑵 (Number  

of time steps) MAE Execution time (s) 

1,000 100 0.088 2.8 × 10−3 
1,000 0.103 2.2 × 10−2 
10,000 0.073 3.1 × 10−1 

10,000 100 0.034 2.4 × 10−2 
1,000 0.032 3.9 × 10−1 
10,000 0.033 5.0 × 100 

100,000 100 0.029 4.8 × 10−1 
1,000 0.015 4.6 × 100 

Source: Calculation made by authors. 
 
Table 2. The errors of the two-asset Asian basket option prices from MC simulations  

(𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝜎𝜎1 = 0.2,𝜎𝜎2 = 0.4,𝜌𝜌 = 0.5,𝑇𝑇 = 1,𝑆𝑆(𝑡𝑡1), 𝑆𝑆(𝑡𝑡2) ∈ [0, 300]) 
𝑴𝑴 (Number of 
sample paths) 

𝑵𝑵 (Number of time 
steps) MAE Execution time (s) 

1,000 100 0.111 6.8 × 10−3 
1,000 0.101 6.2 × 10−2 
10,000 0.113 7.0 × 10−1 

10,000 100 0.046 7.1 × 10−2 
1,000 0.035 1.0 × 100 
10,000 0.035 1.0 × 101 

100,000 100 0.036 9.2 × 10−1 
1,000 0.016 1.1 × 101 

Source: Calculation made by authors. 
 

4.2 PINNs for the one-asset Asian options 
 

We trained the PINNs to solve the PDE in Equation (3) for one-asset Asian 
options with 𝐾𝐾 = 1, 𝑇𝑇 = 1, and various values of 𝑆𝑆, 𝐼𝐼, 𝑟𝑟, and 𝜎𝜎 from 𝑆𝑆 ∈ [0, 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀],
𝐼𝐼 ∈ [0, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀], 𝑟𝑟 ∈ [0, 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀], and 𝜎𝜎 ∈ [0,𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀], where 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = 3, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 = 1, 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 =
0.5, and 𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀 = 1. It is important to note that although the PINNs are trained with 
𝐾𝐾 = 1, once trained, the model can be extended to any strike value 𝐾𝐾′ using the 
following transformation: 

option value for strike 𝐾𝐾′ = 𝐾𝐾′ ⋅ 𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁 �
𝑆𝑆′

𝐾𝐾′ , 0, 0, 𝑟𝑟,𝜎𝜎� , 

where 𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁(𝑆𝑆, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎)  is the solution from the PINNs for one-asset options trained 
with 𝐾𝐾 = 1. This extension is valid under the assumption that the market model 
follows a geometric Brownian motion. In all evaluations conducted in this study, we 
consider the strike price 𝐾𝐾′ = 100 and the asset price 𝑆𝑆′ ∈ [0, 100 ∗  𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀]. 



Sungwon Park, Kyoung-Sook Moon, Hongjoong Kim 

14   Vol. 59, Issue 1/2025 

We employed a 4-layer multi-layer perceptron (MLP) with a Gaussian Error 
Linear Unit (GELU) activation function (Hendrycks and Gimpel, 2016), defined by: 
 

GELU(𝑥𝑥) = 𝑥𝑥Φ(𝑥𝑥), 
 

where Φ is the cumulative distribution function of the standard Gaussian distribution. 
The model was trained using the Adam optimiser (Kingma and Ba, 2015), a first-
order method with momentum acceleration, for 500,000 epochs. To facilitate 
convergence in this non-convex problem, we decreased the learning rate from 0.001 
to 0 using cosine annealing (Loshchilov and Hutter, 2016). The learning rate 𝜂𝜂𝑘𝑘 in 
the 𝑘𝑘th iteration is given by: 
 

𝜂𝜂𝑘𝑘 =
𝜂𝜂0
2 �1 + cos�

𝜋𝜋𝑘𝑘
𝑁𝑁𝑡𝑡𝑝𝑝𝑒𝑒𝑒𝑒ℎ𝑠𝑠

��, 

 
where 𝜂𝜂0 is the initial learning rate. We used a single cycle, making this equivalent 
to weight decay. During each training iteration, we uniformly sampled 𝑁𝑁𝑃𝑃 = 1000  
collocation points in the domain and 𝑛𝑛𝑃𝑃 = 100 points for each of temporal and three 
spatial axes, resulting in 𝑁𝑁𝑃𝑃 = 4 × 𝑛𝑛𝑃𝑃 = 400 vectors in 𝒟𝒟𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀.  

Table 3 presents the results for various numbers of nodes in a NN with 𝐾𝐾 =
100, 𝑟𝑟 = 0.05,𝜎𝜎 = 0.3,𝑇𝑇 = 1 and 𝑆𝑆(𝑡𝑡1) from 0 to 300. The offline training times, 
ranging from approximately 446 to 909 seconds, occur only once during the training 
phase. As the number of nodes increases, the network size grows, enhancing its 
representation capacity and consequently reducing both the training error and the 
MAE. Since we trained the model with parameters such as the risk-free interest rate 
and volatility, we can calculate option prices for any parameter values almost 
instantaneously. Notably, even when the number of nodes in NN is increased to 160 
nodes, the CPU execution time remains extremely fast at just 2.3 × 10−5 seconds, 
significantly outperforming the MC method, which requires up to 4.6 seconds. 

 
Table 3. Performance of PINNs on the one-asset Asian options with different numbers 

of nodes (𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝜎𝜎 = 0.3,𝑇𝑇 = 1, 𝑆𝑆(𝑡𝑡1) ∈ [0, 300]) 
Number of nodes Final training error MAE Execution time (s) 
10 3.412 × 10−5 0.140 1.6 × 10−5 
20 2.294 × 10−6 0.030 1.4 × 10−5 
40 4.821 × 10−7 0.023 1.6 × 10−5 
80 2.242 × 10−7 0.011 1.8 × 10−5 
160 9.284 × 10−8 0.012 2.3 × 10−5 

Source: Calculation made by authors. 
 

Figure 3 provides a compelling visual comparison of the MAE and the 
execution time for both methods in the one-asset case across various parameters. The 
results demonstrate the superior performance of PINNs. Not only do PINNs exhibit 
remarkably shorter computation times, but they also achieve lower error rates 
compared to the MC method. Most notably, PINN configurations with 80 and 160 
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nodes consistently outperform all MC results in accuracy, while dramatically 
reducing execution time.  

 

  
Figure 3. Comparison between PINNs and MC for one-asset options  

Source: Calculation made by authors. 
 

Figure 4(a) illustrates the option prices calculated by the PINN with 160 nodes 
compared to the reference values, while Figure 4(b) shows the delta values. Both 
sets of results are almost identical to their respective reference values. The PINNs 
demonstrate the ease of calculating Greeks, such as delta, due to the automatic 
differentiation capabilities of neural networks. The PINN computes delta in 
6.3× 10−4  seconds, while the reference value from the MC method takes 146 
seconds. The proposed approach allows for efficient and accurate computation of 
these sensitivities without relying on finite difference approximations, providing 
valuable insights into the behaviour of option prices with respect to underlying 
parameters. 
 

  
   (a) prices                                                          (b) delta  

 Figure 4. Estimated prices and delta for the one-asset Asian option using the PINN 
(𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝜎𝜎 = 0.3,𝑇𝑇 = 1, 𝑆𝑆(𝑡𝑡1) ∈ [0, 300])  

Source: Calculation made by authors. 
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Table 4 presents the comparisons of one-asset option prices calculated by the 

PINNs and the MC for various values of 𝑆𝑆 and 𝜎𝜎. The PINN with 160 nodes was 
used and the reference MC results were obtained with 𝑀𝑀 = 100,000 and 𝑁𝑁 = 1,000. 
PINNs achieve consistently low errors in various scenarios, demonstrating efficiency 
and accuracy. This result highlights the PINN method's ability to deliver high-quality 
outcomes with much less computational resources, marking a substantial 
advancement in option pricing techniques. 
 

Table 4. Prices of the one-asset Asian options calculated using PINN and MC 
(𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝑇𝑇 = 1) 

𝑺𝑺 𝝈𝝈 𝑽𝑽𝑹𝑹𝑹𝑹𝑹𝑹 PINNs MC 
(90% confidence interval) 

90 0.1 0.210 0.213 [0.207, 0.212] 
0.2 1.576 1.564 [1.557, 1.581] 
0.3 3.366 3.381 [3.365, 3.412] 

100 0.1 3.646 3.647 [3.638, 3.653] 
0.2 5.787 5.772 [5.747, 5.786] 
0.3 7.905 7.947 [7.927, 7.987] 

110 0.1 12.214 12.214 [12.211, 12.216] 
0.2 13.049 13.052 [13.042, 13.068] 
0.3 14.651 14.653 [14.626, 14.681] 

Source: Calculation made by authors. 
 

4.3 PINNs for the two-asset Asian options 
 
Neural networks offer advantages in approximating high-dimensional functions, 

which circumvent the curse of dimensionality, where the problem space expands 
exponentially with dimensionality. Therefore, PINNs can be effectively used for 
calculating option prices for multi-asset options as well. In this section, we trained 
the PINNs to solve the two-asset PDE in Equation (4) with 𝐾𝐾 = 1, 𝑇𝑇 = 1, and 
various values of 𝑆𝑆1,𝑆𝑆2, 𝐼𝐼, 𝑟𝑟,𝜎𝜎,𝜌𝜌 in 𝑆𝑆1 ∈ [0, 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀],𝑆𝑆2 ∈ [0, 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀], 𝐼𝐼 ∈ [0, 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀], 𝑟𝑟 ∈
[0, 𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀],𝜎𝜎 ∈ [0,𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀]  and 𝜌𝜌 ∈ [−𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀,𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀] , where 𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀 = 3 , 𝐼𝐼𝑀𝑀𝑀𝑀𝑀𝑀 = 1 ,  
𝑟𝑟𝑀𝑀𝑀𝑀𝑀𝑀 = 0.5, 𝜎𝜎𝑀𝑀𝑀𝑀𝑀𝑀 = 1, and 𝜌𝜌𝑀𝑀𝑀𝑀𝑀𝑀 = 1. Like the one-asset options, despite training 
the PINNs for 𝐾𝐾 = 1, we can compute the option value for an arbitrary strike value 
𝐾𝐾′ using the following transformation: 

option values for strike 𝐾𝐾′ = 𝐾𝐾′ ⋅ 𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁 �
𝑆𝑆1′

𝐾𝐾′ ,
𝑆𝑆2′

𝐾𝐾′ , 0, 0, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌� , 

where 𝑉𝑉𝜃𝜃𝑁𝑁𝑁𝑁(𝑆𝑆1,𝑆𝑆2, 𝐼𝐼, 𝑡𝑡, 𝑟𝑟,𝜎𝜎1,𝜎𝜎2,𝜌𝜌)  is the PINNs for two-asset options trained with 
𝐾𝐾 = 1. Throughout our evaluations of two-asset options, we specifically consider 
𝐾𝐾′ = 100 and the asset prices 𝑆𝑆1′ ,  𝑆𝑆2′ ∈ [0, 100 ∗  𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀]. 

We employed a model with the same configurations as in the one-asset case, 
consisting of a 4-layer MLP with a GELU activation function. The model was trained 
using the Adam optimiser for 500,000 iterations, starting with an initial learning rate 
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of 0.001, which was decreased to 0 using cosine annealing. In each training iteration, 
we uniformly sampled 𝑁𝑁𝑃𝑃 = 1000 collocation points within the domain and 𝑛𝑛𝑏𝑏 =
100 points for each of temporal and five spatial axes, resulting in 𝑁𝑁𝑃𝑃 = 6 × 𝑛𝑛𝑃𝑃 =
600 vectors in 𝒟𝒟𝑑𝑑𝑀𝑀𝑡𝑡𝑀𝑀. 

Table 5 presents the performance of the PINNs with varying numbers of nodes 
for 𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝜎𝜎1 = 0.2,𝜎𝜎2 = 0.4,𝜌𝜌 = 0.5,𝑇𝑇 = 1, and 𝑆𝑆1, 𝑆𝑆2 ranging from 
0 to 300. The offline training times, ranging from 748 to 1928 seconds, occur only 
once. Similar to the one-asset case (as shown in Table 3), as the number of nodes 
increases, the PINNs achieve lower final training errors and MAE values. 
Remarkably, the PINN’s execution time is reported at 2.4 × 10−5  seconds per 
option price even with 160 nodes, significantly faster than the MC method.  

 
Table 5. Performance of PINNs on the two-asset Asian basket option  

with different numbers of nodes  
(𝐾𝐾 = 100, 𝑟𝑟 = 0.05,𝜎𝜎1 = 0.2,𝜎𝜎2 = 0.4,𝜌𝜌 = 0.5,𝑇𝑇 = 1,𝑆𝑆(𝑡𝑡1), 𝑆𝑆(𝑡𝑡2) ∈ [0, 300]) 

Number of nodes Final training 
error MAE Execution time (s) 

10 1.239 × 10−4 0.196 1.5 × 10−5 
20 2.893 × 10−5 0.054 1.6 × 10−5 
40 4.372 × 10−6 0.032 1.8 × 10−5 
80 1.844 × 10−6 0.023 2.0 × 10−5 
160 5.929 × 10−7 0.016 2.4 × 10−5 

Source: Calculation made by authors. 
 

Figure 5 visually compares the MAE and the execution time of the two methods 
across various parameters. Extending its superiority from the one-asset scenario, 
PINNs show remarkably faster computation times while achieving similar or even 
lower MAE. Most impressively, PINNs with 160 nodes consistently outperform all 
configurations of the MC method, excelling in both speed and accuracy.  
 

 
Figure 5. Comparison between PINNs and MC for two-asset options  

Source: Calculation made by authors. 
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Figure 6(a) and (b) present the prices and delta values of the two-asset Asian 
basket option calculated using the PINN with 160 nodes, compared to reference 
values. Like the one-asset case, the PINN computes both accurately and efficiently, 
calculating delta values in 9.8 × 10−4 seconds compared to the MC method’s 225 
seconds. This performance highlights the PINN's scalability and potential as a 
powerful tool for pricing and risk management in multi-dimensional financial 
instruments. 

 

 
(a) prices                                                          (b) delta 

Figure 6. Estimated prices and delta for the two-asset Asian basket option using PINN 
(𝐾𝐾 = 1, 𝑟𝑟 = 0.05,𝜎𝜎1 = 0.2,𝜎𝜎2 = 0.4,𝜌𝜌 = 0.5,𝑇𝑇 = 1)  

Source: Calculation made by authors. 
 
Table 6 compares two-asset Asian basket option prices calculated by the PINN 

and the MC for various values of 𝑆𝑆1, 𝜎𝜎1, and 𝜎𝜎2. The PINN with 160 nodes was used 
and the MC results were obtained with 𝑀𝑀 = 100,000  and 𝑁𝑁 = 1,000 . PINN 
consistently achieves low errors across a variety of scenarios, highlighting its 
effective and precise calculation and robustness in complex multi-asset scenarios. 
 

Table 6. Prices of the two-asset Asian basket options calculated using PINN and MC 
 (𝐾𝐾 = 100, 𝑆𝑆2 = 100, 𝑟𝑟 = 0.05,𝜌𝜌 = 0.5,𝑇𝑇 = 1) 

𝑆𝑆1  𝜎𝜎1(= 𝜎𝜎2)  𝑉𝑉𝑅𝑅𝑡𝑡𝑅𝑅 PINN MC 
(90% confidence interval) 

90 0.1 0.916 0.908 [0.905, 0.916] 
0.2 2.683 2.658 [2.665, 2.695] 
0.3 4.519 4.509 [4.503, 4.549] 

100 0.1 3.376 3.375 [3.371, 3.382] 
0.2 5.188 5.175 [5.172, 5.213] 
0.3 7.060 7.064 [7.046, 7.104] 

110 0.1 7.451 7.433 [7.447, 7.454] 
0.2 8.619 8.604 [8.601, 8.628] 
0.3 10.282 10.248 [10.229, 10.283] 

Source: Calculation made by authors. 



Asian Option Pricing Using the Physics-Informed Neural Networks Method 

Vol. 59, Issue 1/2025   19 

5. Conclusions 
 
This study introduces an efficient method for pricing Asian options in financial 

markets using PINNs. By integrating physical laws into the learning process, PINNs 
enhance both accuracy and interpretability. This approach minimises the need for 
extensive training data and improves generalisation in solving differential equations.  

As illustrated in Figures 3 and 5, PINNs achieve low error rates more efficiently 
than the traditional MC method for both one-asset and two-asset Asian options. 
Unlike the MC method, which requires recalculations for each set of parameters, 
PINNs can instantly compute prices for arbitrary parameters once trained.  

Furthermore, the PINN methodology has the potential for accurate pricing of 
other complex exotic options and could be extended to applications in optimal 
control and asset allocation problems. 
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