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Abstract. In this paper, a distributed real-time pricing algorithm based on social welfare 
maximisation is proposed to institute electricity buying-back schemes for the smart grid that 
contains multiple providers and integrated with renewable energy (RE) and storage devices. 
In the proposed model, a profit function is introduced to encourage people to use more RE, 
and the depreciation of the storage capacity is considered. By dual decomposition, the primal 
multiseller-multibuyer problem is decoupled into a set of single-buyer and single-seller-
single-time-slot subproblems, through which the relationship between prices of electricity 
and Lagrangian multipliers is derived. Then, a distributed algorithm is further designed to 
obtain the optimal solution. The strong duality of the original problem is also demonstrated. 
With this approach, subproblems are solved by each user and utility company, respectively, 
which ensures privacy and system scalability. Numerical results show that the proposed 
method has good performance in reducing peak-time loading and balancing system energy 
distribution. 
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1. Introduction 
 

Currently, there are increasing renewable energy (RE) and storage devices 
incorporated into power grids, which is beneficial for grid dependability and 
resiliency (Miner et al., 2012; Tan et al., 2015). However, due to the uncontrollability 
of RE and the uncertainty of demand, the power grid faces great challenges in energy 
supply and demand. 

However, as reform and deregulation in the power industry proceed, there are 
more than one utility company is emerging in the power market (Dai et al., 2017; 
Deng et al., 2015). How to devise a real-time demand response for the multiseller-
multibuyer smart grid with RE and storage devices has become a critical problem. 

Dynamic pricing is one of the most essential demand-side management 
techniques to encourage users to consume energy more carefully and wisely, helping 
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the smart grid operator better alleviate peak-time loading and balance energy 
provisioning. With the integration of bidirectional communication and advanced 
control technologies for power systems, real-time pricing (RTP) has become the 
most direct and efficient dynamic pricing (Hussain & Gao, 2018; Namerikawa et al., 
2015; Siano & Sarno, 2016). 

Social welfare maximisation is a basic model of RTP. Samadi et al. formulated 
RTP scheme into a social welfare maximisation model and designed distributed 
gradient algorithm to get RTP(Goudarzi et al., 2011; Samadi et al., 2010). In Nguyen 
et al. (2017), an alternating direction method of multipliers (ADMM) approach was 
used to solve the social welfare maximisation model. In Li et al. (2021) and Wang 
& Gao (2019), Karush–Kuhn–Tucker (KKT) conditions were used to obtain RTP. 
(Gao, 2022)investigated the relationship between the shadow price and the Lagrange 
multiplier for a non-smooth optimisation problem. In Li & Gao (2023), the startup 
cost of the supply side was incorporated into the pricing framework, and the convex 
hull method was used to calculate the convex hull price. 

Besides, Qian et al. (2013) proposed a RTP scheme that reduces the peak-to-
average load ratio by solving a two-stage optimisation problem. Kobayashi et al. 
(2014), Tao & Gao (2020), and Zhu et al. (2018) employed a game or dynamic 
stochastic process to study RTP.  

The existing literature used to assume that there is only one provider in the smart 
grid. In reality, there are increasing numbers of providers emerging in the power 
market. Meanwhile, a large amount of RE and storage devices incorporated into 
power grids make the existing RTP infeasible. Deng et al. (2015) proposed a 
distributed real-time demand response algorithm for smart grid with multisellers. 
Kamyab et al. (2016) addressed the interaction among multiple utility companies and 
multiple customers in smart grid and formulated the DR problem into two 
noncooperative games. However, these works did not discuss RE and storage devices. 

In this paper, we focus on the complex smart grid where there are multiple 
sellers and multiple users, and each user is equipped with RE and storage devices. 
We propose a distributed real-time pricing algorithm for utility companies to institute 
electricity buying-back schemes based on social welfare maximisation, in which we 
consider coupled constraints that couple the energy demand of all users and over all 
time slots. In the proposed model, profit function of RE is introduced to encourage 
people to use more renewable energy. In addition, RE is assumed to be kept for the 
user’s own use or to be sold to the smart grid and the depreciation of the storage 
capacity is considered. By applying the dual decomposition method, we divide the 
primal problem into a set of single-buyer and single-seller-single-time-slot 
subproblems, through which we derive the relationship between prices of electricity 
and Lagrangian multipliers and further design a distributed algorithm to obtain its 
optimal solution. In addition, we demonstrate the strong duality of the original 
problem. The distributed approach can help reduce the difficulty to exchange private 
information of users and utility companies. At the same time, it ensures the 
scalability of the system. The contributions of this paper are summarised as follows. 



Junfeng Cui, Li Tao 

310   Vol. 59, Issue 1/2025 

1) A multi-time slots distributed real-time pricing algorithm is designed for 
multiple-seller smart grid to institute electricity buying-back schemes based on 
social welfare maximisation. 

2) Dual decomposition is introduced to separate the primal problem into a set 
of single-buyer and single-seller-single-time-slot subproblems, through which the 
relationship between prices of electricity and Lagrangian multipliers is derived. 

3) The strong duality of the original problem is demonstrated, and a distributed 
algorithm is further designed to determine appropriate prices for energy sales and 
buying-back. 

The rest of the paper is organised as follows. The system model is proposed in 
Section 2. In Section 3, we formulate RTP framework based on social welfare 
maximisation and further divide the primal optimisation problem into subproblems 
by Lagrangian dual decomposition. Besides, we demonstrate the Lagrangian duality 
of the original problem. In Section 4, a distributed algorithm is presented. In Section 
5, simulation results and analysis are reported. Section 6 concludes this paper. 

 
2. System model 

 
Our grid system includes multiple utility companies and multiple users, which 

are denoted by { }1,2, , M= M  and { }1,2, , N= N  respectively. Let T
{ }1,2, ,T=   denote the set of time slots. A day is divided into T  time slots. Each 

user is equipped with an energy storage device and distributed renewable resources 
such as wind turbines and solar photovoltaics. Storage devices charge or discharge 
electricity with certain depreciation. Each user installs a smart metre to control 
energy consumption and determine the amount of RE sold back to the grid. The users 
and the utility companies exchange information related to selling/buying-back 
pricing, energy requirements, and RE sale schedules through a communication 
infrastructure such as a local area network. 

 
2.1 Users  

 
Let k

ijx  denote the amount of energy consumed by user i  supplied by utility 
company j  in time slot k . Considering both the baseline and semi-inelastic demand 
requirement, we have the following users' demand constraints: 

, , ,k k
ij i

j
x b i k

∈

≥ ∀ ∈ ∀ ∈∑
M

N T                                                          (1) 

, , ,k k
ij i i

k j k
x b e i k

∈ ∈ ∈

≥ + ∀ ∈ ∀ ∈∑ ∑ ∑
MT T

N T                                           (2) 

where k
ib  represents the baseline demand of user i  in time slot k , ie  denotes the 

total energy consumption of semi-inelastic load of user i .  
Each user has RE, i.e., dispatchable resources and nondispatchable renewable 

energy sources. Nondispatchable RE has fixed cost, and is generated at its maximum 
available power, therefore, there is no strategy regarding energy production. Denote 



Distributed Real-Time Pricing for Smart Grid with Multiple Sellers and … 

Vol. 59, Issue 1/2025   311 

the output of the nondispatchable RE of microgrid i  in time slot k  as ,1
k
ig , which 

has fixed value. Let ,1
k
ijg  denote the amount of nondispatchable renewable energy 

sold back to utility company j or kept for its own use with utility company j  by 
user i  in time slot k . It satisfies 

 

,1 ,1
k k
ij i

j
g g

∈

=∑
M

.                                                          (3) 

 
The output and cost of the dispatchable resources are variable; therefore, the 

microgrids are interested in optimising their dispatchable resources production 
strategies. Let ,2

k
ig  denote the dispatchable resources of user i  in time slot k , ,2

k
ijg  

denote the amount of dipatchable RE sold back to utility company j or kept for its 
own use with utility company j  by user i  in time slot k . It satisfies 

,2 ,2
k k
ij i

j
g g

∈

=∑
M

,                                                           (4) 

,max
,2 ,20 k k

ij i
j

g g
∈

≤ ≤∑
M

,                                                  (5) 

where ,max
,2
k
ig  is the maximum energy production capability for microgrid i  in time 

slot k .  
Suppose that each user is equipped with a storage device, energy is stored with 

depreciation rate γ , and the energy stored by user i  at the beginning slot is 0
iS . 

Denote iB  as the maximum storage capacity. The maximum charging and 
discharging rates of the battery are identical and denoted by bg . Define k

ijr  as the 
amount of energy charged or discharged from by user i  in time slot k , we have 

,k k k
i ij b i b

j
r r g r g

∈

= − ≤ ≤∑
N

. Since the stored energy cannot exceed the storage capacity, 

we have 
1 0

1
0 (1 ) (1 )

k
k k t t

i i i
t

S r Bγ γ− −

=

≤ − + − ≤∑ , k∀ ∈T .                               (6) 

Let k
ijl  denote the energy load of user i  from utility company j  in time slot k . 

k
ijl  satisfies 

,1 ,2
k k k k k
ij ij ij ij ijl x r g g= + − − .                                                   (7) 

when 0,k
ijl >  user i  needs to load electricity from utility company j . Otherwise, 

user i  sells back the surplus RE or dispatchable resources. 
1) Utility function 
The utility function represents the level of satisfaction obtained by the user as a 

function of its power consumption. It is increasing and concave(Samadi et al., 2010). 
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The quadratic utility function is usually considered, corresponding to decreasing 
marginal benefit. For example, for user i  in time slot k , the utility derived by 
energy demand is denoted as 

2

2

( ) ,0 ,
2

( , )
( )

, ,
2

k k
ij ijk k k k

ij ij ij ij k
ijk k

ij ij k k
ij ijk

ijk k
ij ij

x x x

U x

x

α ω
ω

α
ω

ω ω
α α


− ≤ ≤

= 
 ≥


                                         (8) 

where ,k k
ij ijω α  are parameters, k

ijω  represents user’s preference. 
2) Energy storage cost function 
When an energy storage device charges and discharges electricity from the 

electric company, it causes operating cost, which depends on how much/quickly it 
charges and discharges electricity from the electric company. The same as Chiu et 
al. ( 2017), we consider the cost of operating energy storage to be a convex function 
of k

ijr  as follows: 
2( ) ( )k k k k

s ij ij ij ijD r rδ β= ∗ + ,                                                             (9) 

where 0,k k
ij ijδ β> are parameters. 

3) Cost function of dispatchable RE  
Let ,2( )k

iCW g  denote the variable production cost for generating ,2
k
ig  

dispatchable RE in time slot k , which is convex and increasing, with (0) 0CW = . 
The same as Atzeni et al. (2013), ,2( )k

iCW g  is defined as 
k k k 2 k k
i,2 i,2 i,2 i,2 i,2CW(g )= * (g ) + gδ σ ,                                      (10) 

where ,2 ,20,k k
i iδ σ>  are given parameters. 

 
4) Profit function of distributed energy 
When user i  generates k

ig  RE (including nondispatchable RE and dispatchable 
resources) in time slot k , the user can translate carbon footprints reduction into 
substantial profits through carbon emission trading. The same as Chiu et al. (2017), 
the profit that user i  corresponding to the amount of RE can obtain is denoted as 
follows: 

2( ) ( )k k k
i i iH g m g ng= − + ,                                                (11) 

where 0m > , n  are given parameters. 
User i  charges/discharges k

ijr  from utility company j , and generates ,1
k
ig  

nondispatchable renewable energy and ,2
k
ig  dispatchable renewable energy in time 

slot k. Electricity from utility company j  is charged at price k
jP . Consequently, the 

welfare for each user can be denoted as 
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,2 ,1 ,2( , ) ( ( ( , ) ( ) ( ) * ( ))k k k k k k k k k k k
ij ij ij i S ij ij j ij ij ij ij

k j
W x U x D r CW g P x r g gω ω

∈ ∈

= − − − + − −∑ ∑
T M

 

,1 ,2( ) ( ))k k
i iH g H g+ + ,                                                                         (12) 

where (.)U  denotes the user’s utility function, (.)H  is the profit from carbon 
emissions trading, ,2 ,1 ,2( ) (g )+ ( )k k k k k k k

S ij ij j ij ij ij ijD r CW P x r g g+ + − −  is the user’s 

cost. When ,1 ,2 0,k k k k k
ij ij ij ij ijl x r g g= + − − >  user i  needs to load electricity from the 

utility company j , which means that the user needs to pay the utility company for 
loading electricity. Otherwise, the user obtains the pay from the utility company. 
 
2.2 Utility sellers 

 
There are M  utility sellers in the supply side. Utility sellers not only determine 

how much electricity should be generated but also consider which user and how 
much electricity they should sell. Let k

jL  denote the total electricity supplied by 
utility company j  in time slot k . Due that the amount of electricity of utility 
company j  in time slot k  cannot exceed the maximum supply capacity of utility 
company j , k

jL  satisfies the following constraint: 
,max0 k k

j jL L≤ ≤ ,                                                           (13) 

where ,maxk
jL  the maximum supply capacity in time slot k  

For utility sellers, when they generate electricity, the production cost arises. 
Suppose ( )k

kj jC L indicates the production cost of the utility company j  to generate 
k
jL  electricity in time slot k . From the perspective of microeconomics, the 

production cost is increasing and convex. We model it as Samadi et al. (2010):  
2( ) ( )k k k

kj j kj j kj j kjC L a L b L c= + + ,                                             (14) 

where 0; , 0kj kj kja b c> ≥  are predetermined parameters.  

In time slot k , utility seller generates k
jL  electricity and sells it to users at price 

k
jP . Hence, the net profit of utility company j  is represented as: 

( ) ( )k k k k
j j j kj jL P L C Lπ = − ,                                               (15) 

where (.)kjC  represents the cost of generating electricity, k k
j jP L  is the profit from 

selling energy to end users. 
 

3. Problem formulation and transformation 
 
In this section, we formulate the RTP scheme for the above smart grid based on 

social welfare maximisation. In addition, to solve the problem in a distributed 
fashion efficiently, we introduce dual decomposition and divide the primary problem 
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into a set of single-user and single-seller-single-time-slot subproblems, which can be 
individually solved by users and utility companies. 

 
3.1 Problem formulation 

 
Considering the interconnection of different time slots and from the perspective 

of social fairness, we formulate an RTP scheme for the multiseller-multibuyer smart 
grid integrated with RE and storage devices into a convex optimisation problem as 
follows: 

 
(P1)       

,2 ,1 ,2max ( ( ( ) ( ) ( ( ) ( )) ( )k k k k k k
ij ij S ij i i kj jz k i j k j

U x CW g D r H g H g C L
 

− − + − 
 
∑∑ ∑ ∑∑) ) +    (16) 

s.t. (1) (7), (13),−                                      

,1 ,2( ) , , ,k k k k k
ij ij ij ij j

i
x g g r L j k

∈

− − + ≤ ∀ ∈ ∀ ∈∑
N

M T                                       (17) 

here { },1 ,2, , , , , ,k k k k k
ij ij ij ij jz x g r g L i j k= ∈ ∈ ∈N M T . ( )k

ijU x , ( )k
S ijD r  and ,2( )k

ijCW g  are 
defined in (8), (9) and (10) respectively. The equalities or inequalities (1)-(7) are 
constraints about the baseline and semi-inelastic home appliances, RE and storage 
devices. Some of them couple all time slots together, such as (2) and (6). ( )k

kj jC L  are 
specified in (14), which represents cost of utility company j  in time slot k . The 
inequality (17) represents the net requirement of all users from utility company j
cannot exceed the electricity that utility company j  generates in time slot k . 

For simplicity, we denote the opposite of the objective function of Problem (P1) 

as ( )f z , ,1 ,2( ) ( )k k k k k
kj ij ij ij ij j

i
g z x g g r L

∈

= − − + −∑
N

, , .j k∈ ∈M T.  Then (P1) can be 

further denoted as the following optimal problem: 
 
(P2)                          

min ( )f z                                                                              (18) 
s.t. (1) (7), (13),−   

                                                ( ) 0,kjg z ≤ , ,j k∈ ∈M T.                                 (19) 

Because ( )k
ijU x , ( )k

S ijD r , ,2( )k
ijCW g , (.)H are convex, the objective function in (18) 

is convex. In addition, the constraints (1)-(7), (13) and (19) are linear functions, so 
the feasible set is a convex set. Thus, optimisation problem (P2) is convex and we 
can solve it in a central manner in which we need to know the exact information of 
users and utility companies. In practice, due to that the information of users and 
utility companies are private, we may not have sufficient information to solve the 
problem (P2).  
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3.2  Lagrangian dual method 
 
Constraint (19) couple all users and utility companies. Such constraints make 

Problem (P2) difficult to solve in a distributed way. Due to that Problem （P2） is 
convex, we use Lagrangian multiplier to relax the constraints and transform the 
primal optimisation problem into the dual argument. That is, Problem （P2） can 
be solved through minimising its Lagrangian and maximising the corresponding dual 
function. The Lagrangian function corresponding to (P2) is as follows: 

( , )L z λ  
) ( )kj kj

k j
f(z g zλ

∈ ∈

= + ∑ ∑
T M

 

,2 ,1 ,2( ( ( ) ( ) ( )) ( ) ( )) ( )k k k k k k
ij ij S ij i i j

k i j k j
U x CW g D r H g H g C L

∈ ∈ ∈ ∈ ∈


= − − − + + −


∑∑ ∑ ∑∑

T N M T M
 

( ( ) )k k k k k
kj ij ij ij ij j

k j i
x y z r Lλ

∈ ∈ ∈


− − − + − 


∑ ∑ ∑

T M N
 

,2 ,1 i 2( ( ( ) ( ) ( )) ( ) ( ))k k k k k
ij ij S ij i

k i j
U x CW g D r H g H g

∈ ∈ ∈


= − − − + +


∑∑ ∑ ，

T N M
 

,1 ,2( ) ( ( ))k k k k k k
kj ij ij ij ij kj j j

k j i k j
x g g r L C Lλ λ

∈ ∈ ∈ ∈ ∈


− − − + + − 


∑ ∑ ∑ ∑∑

T M N T M
 

,2 ,1 ,2( ( ( ) ( ) ( )) ( ) ( )k k k k k
ij ij ij i i

i k j
U x CW g D r H g H g

∈ ∈ ∈


= − − − + +


∑∑ ∑

N T M
 

,1 ,2( g )) [ ( )]k k k k k k
kj ij ij ij ij kj j j

j j k
x r g L C Lλ λ

∈ ∈ ∈


− + − − + − 


∑ ∑ ∑

M TM
,                         (20) 

where { }0 ,kj k jλ λ= > ∈ ∈T M  are Lagrangian multipliers. The corresponding 
dual function is as follows: 

( ) min ( , )
z

g L zλ λ=  

( ) ( )i j
i j

φ λ ψ λ
∈

 
= − + 

 
∑ ∑

N
,                                      (21) 

where  

,1 ,2
,2 ,1 ,2

,g ,g ,

,1 ,2

( ) max ( ( ( , ) ( ) ( ) * ( ))

( ) ( ))
s.t . (1) (7),

k k k k
ij ij ij ij

k k k k k k k k
i ij i S ij ij kj ij ij ij ij

x r k j

k k
i i

U x D r CW g x r g g

H g H g

φ λ ω λ
∈ ∈

= − − − + − −

+ +

−

∑ ∑
T M

  (22) 

and 

, , ,
( ) max [ ( )]

s.t . (13).

k k k k
ij ij j j

k k
j kj j j

L Q L Q k
L C Lψ λ λ

∈

= −∑
T                                                (23) 
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Now we have separated the Lagrange dual function into a set of single-user 
subproblems (22) and single-company subproblems (23). If we set k

j kjP λ= , 
subproblems (22) and (23) are, respectively, equal to the maximisation of the user 
welfare function and the company profit function. In addition, because the objective 
function and the constraints in (23) are separable in each time slot, the subproblem 
(23) can be further transformed into a set of single-company-single-time-slot 
optimisation problems as follows: 

( ) max( ( )),

s.t . (13).

k
j

k k
jk kj j j

L
L C Lψ λ λ= −

                                      (24) 

The dual problem of the primal optimisation problem (P2) is  
max ( )g

λ
λ                                                             (25) 

Theorem 1. Problem (P2) satisfies strong duality condition and there is zero 
duality gap between (P2) and its dual problem.  

Proof: According to Section 3.1, (P2) is convex. Besides, because the inequality 
and equality constraint functions (1)-(7), (13) and (19) are affine, (P2) satisfies Slater 
conditions. Therefore, the extreme value point *z is the KKT point, i.e., there is 

* *( , )z λ  that satisfies the following KKT conditions:  
* *( *) ( ) 0kj kj

k j
f z g zλ

∈ ∈

∇ + ∇ =∑ ∑
T M

，                                       (26) 
* * * *0, ( ) 0, ( ) 0,kj kj kj kjg z g zλ λ≥ ≤ = , ,j k∈ ∈M T.                       (27) 

 
Because ( ),f z  ( ),kjg z ,j k∈ ∈M T. are all convex, the condition (26) is 

equivalent to * * *( , = min ( , )
z

L z L zλ λ） , i.e. * * *( , ) ( , )L z L zλ λ≤ . On the other hand, 
* * * *( , ( ) ( , , )L z = f z L zλ λ µ≥） . Therefore, * *( , )z λ is a saddle point. Consequently, *z  

and { }* *,λ µ  are the solutions of the primal problem (P2) and the dual problem (25) 

respectively. At the same time, we have * * * *( ) ( , ) max ( , )f z L z L z
λ

λ λ= = , thus there is 
no duality gap. This completes the proof. 

According to Theorem 1, we can solve the dual problem instead of the primal 
problem. Furthermore, we can solve the dual problem in a distributed fashion, 
because ( )g λ  has been decomposed into independent subproblems in the form of 
(22) and (24), respectively, representing the user and company sides. Meanwhile, we 
can obtain the price of electricity by Lagrangian multipliers, because the selling price 
satisfies k

j kjP λ= . 
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4. Distributed RTP algorithm 
 
In this section, we design distributed algorithms to solve the dual problem and 

obtain the price of electricity. We use the gradient projection method to obtain the 
optimal solution of the dual problem in an iterative manner as follows: 

1 ( )

t
kj kj

t t
kj kj t

kj

g

λ λ

λλ λ ρ
λ

+

+

=

 ∂ = +
 ∂
 

 

,* ,* ,* ,* ,*
,1 ,2( ( ( ) ( ) ( ) ( )) ( ))t k t k t k t k t k t

kj t ij kj ij kj ij kj ij kj j kj
i

x r g g Lλ ρ λ λ λ λ λ
+

∈

 
= + + − − − 
 

∑
N

,   (28) 

where 1,t∈T  1T  denotes the set of iteration instances, tρ  is the step size of the sub-
gradient method. { },* ,* ,* ,*

,1( ( ), ( ), ( ), ( )) |k t k t k t k t
ij kj ij kj ij kj ij kjx g g r kλ λ λ λ ∈T is the optimiser of 

subproblem (22) for user i , and { },* ( ) |k t
j kjL kλ ∈T  is the optimiser of subproblem (24) 

for a given { }( ) |t
kj kλ ∈T . 

The interactions between users and utility sellers are shown in Figure 1. In the 
whole RTP scheme, each utility seller first sets selling prices 0 , 1,2,kj k Tλ =  , and 
sends them to users. Each user obtains the optimal solution by solving (24) for the 
given prices. Based on this feedback, the company calculates new prices to maximise 
profits, and then continues to update and resend the new pricing information to all 
users. This loop is guaranteed to eventually converge to an optimal solution if tρ  

follows two rules: 2
i

i k
ρ

∞

=

< ∞∑  and i
i k

ρ
∞

=

= ∞∑ . When this loop converges to the 

optimal solution, we obtain the electricity price ,*{ | , }t
kj k jλ ∈ ∈T M . 

 

Each user 

Load update

Each utility company

Capacity update

Price update
,* ,* ,* ,*

,1 ,2{ , , , | } arg )k k k k
ij ij ij ij ix g g r k φ λ∈ = （

{ | } arg ( )k
j jL k ψ λ∈ =

,* ,* ,* ,*
,1 ,2,g ,g ,k k k k

ij ij ij ijx r

t
kjλ

1 ,* ,*( ( ( ) ( )t t k t k t
kj kj ij kj ij kj

i
x rλ λ ρ λ λ+

∈


= + +


∑


),* ,* ,*
,1 ,2( ) ( )) ( ))k t k t k t

ij kj ij kj j kjg g Lλ λ λ
+

− − −

 

Figure 1. Interactions between users and utility companies 
Source: Figure 1 is drawn by authors based on Microsoft word.  
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The distributed algorithms of each user and each utility seller are summarised 
in Algorithms 1 and 2, respectively. In Algorithm 1, in Step 0, each user starts with 
its initial condition, which is assumed to be random. In Steps 1 to 5, each user 
receives pricing information, obtains the optimal values of 

,* ,* ,*
,1 ,2( ), ( ), ( )k t k t k t

ij kj ij kj ij kjx g gλ λ λ and ,* ( )k t
ij kjr λ  by solving subproblem (22) and sends the 

updated values of ,* ,* ,*
,1 ,2( ), ( ), ( )k t k t k t

ij kj ij kj ij kjx g gλ λ λ and ,* ( )k t
ij kjr λ  to the utility companies. 

The loop in Steps 1 to 5 continues during the operational cycle of the system. In 
Algorithm 2, each utility company starts with random initial conditions in Step 0. 
The loop in Steps 1 to 5 continues during the operational cycle of the system. Within 
this loop, each utility seller calculates ,* ( )k t

j kjL λ by solving the subproblem (24), 

updates t
kjλ  in each instance t ∈ T, and further sends the new pricing information to 

users.  
 

Algorithm 1 Performed by each user 
Step 0: Initialisation. 
Step 1: 
Step2: 

for each 1t∈T  

Obtain the optimal solutions ,* ,* ,*
,1 ,2( ), ( ), ( )k t k t k t

ij kj ij kj ij kjx g gλ λ λ and
,* ( )k t

ij kjr λ  by solving subproblem (22) for the given pricing information t
kjλ . 

Step 3: 
Step 4: 

Send  ,* ,* ,*
,1 ,2( ), ( ), ( )k t k t k t

ij kj ij kj ij kjx g gλ λ λ and ,* ( )k t
ij kjr λ  to utility 

companies. 
end for 

 
5. Numerical tests 

 
In this section, we perform a simulation to illustrate the effectiveness of the 

proposed RTP scheme.  
Suppose that there are 2 electric sellers and 10 residential users. The whole day 

is divided into 24 time slots. Each utility company has cost as 2ax bx c+ + , where 
parameter a  is randomly chosen from uniform distribution [0.01, 0.02], =0, =0b c . 
Each user has utility function as (6), where w  is randomly selected from the interval 
[0.5, 4.5]. The parameter α  of the utility function is set as 0.1. Each user has a 
storage device with a depreciation rate of 0.1 and the maximum charging and 
discharging rates of 2 kw . We assume that each user deploys solar PV 
following a normal distribution with an expectation of 3 and a variance of 1 in their 
homes. The generation cost parameters are supposed to be 0.1. The parameters of 
the profit function of carbon emission trading are set as 0.001m =  and 4n = . The 
total load of semi-inelastic appliances of each user follows a uniform distribution 
[14, 18]. To demonstrate the effectiveness of the proposed algorithm, we study the 
convergence of prices. In the meantime, to show the load balance of the whole 
system, we use gird variance to evaluate the smoothness of the grid load curve over 
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a day. The maximum grid loading is also an important consideration for smart grids 
to prevent power outages. Thus, the peak-to-average ratio (PAR), a widely adopted 
metric used in previous studies of smart grid operations, is used to demonstrate that 
our pricing scheme can efficiently reduce peak-time loading without incurring power 
outages. Besides, we compare the social welfare of the proposed algorithm with that 
of the other two methods.  

By running the above algorithm, we obtain the optimal RTP of electricity and 
RE to be announced by the providers. Meanwhile, the optimal power consumption, 
storage, and RE sold back to grid planning for each user and the optimal power 
production and assignment scheduling for the utility companies can be derived. 

 

 

Figure 2. Convergence of electricity price 
Source: Figure 2 is obtained by authors based on Matlab 2021b. 

 

 

Figure 3. Convergence of RES price 
Source: Figure 3 is obtained by authors based on Matlab 2021b. 
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Figure 4. Impact of initial value on convergence 

Source: Figure 4 is obtained by authors based on Matlab 2021b. 
 

 

Figure 5. Analysis of demand and supply 
Source: Figure 5 is obtained by authors based on Matlab 2021b. 

 
Figure 2 and Figure 3 indicate that the real-time prices of electricity and RE will 

converge to the global optimum solutions with the growth of the number of iterations. 
In Figure 4, we change the initial value of the prices of electricity and RE. We 

find that the prices finally converge to the same equilibrium regardless of any initial 
value. In Figure 5，the numerical results show that the optimal solution with our 
proposed algorithm satisfies each user’s demand constraint, each utility company’s 
supply constraint and the demand-supply balance constraint. 

In Figure 6, we compare the social welfare in three different pricing strategies, 
i.e. flat selling with flat buyback pricing (FSFB), dynamic selling with flat buyback 
pricing (DSFB), and dynamic selling with dynamic buyback pricing (DSDB). As 
shown in Fig.6, the social welfare of our proposed algorithm (DSDB) is bigger than 
that of the other two traditional pricing strategies. That indicates that our approach 
is more suitable and attractive for utility companies. 

0 50 100 150 200 250 300 350 400 450 500

Iteration

0

0.5

1

1.5

2

2.5

3

3.5

Pr
ic

e 
($

/k
w

h)

0 5 10 15 20 25

Time slot

0

50

100

150

200

250

300

Po
w

er
 (k

w
h)

users

providers

minimum

maximun



Distributed Real-Time Pricing for Smart Grid with Multiple Sellers and … 

Vol. 59, Issue 1/2025   321 

Furthermore, we further compare the variance of grid loading to demonstrate 
the performance of our approach. Figure 7 shows that the PAR in our pricing strategy 
is lower than in the other two pricing strategies. Thus, our approach not only 
increases the social welfare of the whole grid but also guarantees that both users and 
utility companies’ benefit, providing a win-win outcome for smart grids. 
 

 

Figure 6. Comparison of social welfare 
Source: Figure 6 is obtained by authors based on Matlab 2021b. 

 

 

Figure 7. Comparison of PAR 
Source: Figure 6 is obtained by authors based on Matlab 2021b. 
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to be sold to the smart grid and the depreciation of the storage capacity was taken 
into account, which are widespread in reality. The situation considered in this paper 
is of generality. The other situations can be regarded as its special ones. By 
Lagrangian dual decomposition, we divided the primal optimisation into a set of 
single-user and single-company-single-time-slot subproblems. With this method, 
each utility company can individually set clearing price to match supply and demand, 
and each user can individually decide from which utility company to buy electricity 
and how much to buy, which is beneficial to protecting privacies of any entity, 
lowering the complexity of operation and keeping the system scalability. Simulation 
results have shown that the algorithm can increase benefits of both users and utility 
companies while reducing the peak load by shifting the load demand to off-peak 
periods and balancing supply and demand. Therefore, the proposed method can be 
employed to effectively balance the energy allocation in the future smart grid. In the 
future work, we may focus on the impact of some other factors on RTP, such as 
uncertainties of the RE, some special load pattern adopted by users, etc.  
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