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Abstract.  The wage gap between men and women is an issue that has become relevant in 
recent years. Factors such as experience and years of study can affect their salaries 
differently. This paper presents a multiple regression where wages by gender are analysed 
using OWA aggregation operators. With the use of aggregation operators, numerous 
scenarios can be analysed when the obtained OWA parameters are overestimated or 
underestimated. In our case, the regression has given us information on how the gap 
behaves, becoming larger according to the educational level, this information taking into 
account the ENIGH database of INEGI in Mexico. 
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1. Introduction 
 

In the world, since all times, men and women with the same job do not have the 
same salaries. In particular, the wage gap that exists in Mexico is greater than 10%, 
depending on the educational level of men and women, and can even reach close to 
40%. There are different tools with which the salary gap is estimated; one of them is 
simply taking the average salary, another slightly more complex methodology is to 
consider the Mincer Equation and observe the behaviour of the salary. Mendoza 
(Mendoza et al., 2022) took these wages and classified them by running regressions. 

It is important to point out that despite the fact that the wage gap has been 
calculated, there are still several pending issues to be addressed, such is the case of 
making more precise weightings. The OWA operator allows us to perform a 
reordering, consider maximums and minimums, in addition to giving importance to 
certain variables of interest, as is the case of taking IOWA (Merigó & Gil-Lafuente, 
2009a). 

Since the OWA operator began to be studied, it has been used in various 
applications. The ordered weighted average operator is a very common aggregation 
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method that includes maximum, minimum, and average as special cases. It also 
provides a parameterised family of aggregation operators (Yager, 1988). 

An operator in which the reordering step is induced by another device such that 
the order and position of the arguments depend on the values of their associated 
order-inducing variables (constructed by Yager and Filev as an extension of the 
OWA operator) is called induced ordered weighted average (IOWA) operator (Yager 
et al., 1999), so the difference with respect to OWA is that the reordering step is not 
carried out with the values of the arguments. With this operator, we can create other 
types of operators such as the generalised OWA operator (GOWA) which, as its 
name indicates, generalises the OWA operator using generalised means (Yager, 
2004). GOWA generalises a variety of average operators, such as the Induced 
Generalised Ordered Weighted Averaging (IGOWA) this operator uses the moving 
average and the induced operator (Merigó & Gil-Lafuente, 2009b). 

Another extension of the OWA operator is called the ordered weighted 
averaging–weighted average (OWAWA) and the induced ordered weighted 
averaging–weighted average (IOWAWA) operator, which have been created by 
Merigó (Merigó, 2011; Merigó et al., 2015). 
 
2. Preliminaries 
 

The section presents a review of the OWA operators and its family used, and 
additionally a brief of linear regression is presented. 
 
2.1 OWA operators 

 
An aggregation operator that provides a parameterised family of operators to 

consider the arithmetic mean, the maximum, and minimum is the OWA operator 
(Yager, 1988). This uses a vector of weights that accompany a vector of arguments 
reordered according to specific criteria. It is defined as follows: 

Definition 1. It is an OWA operator with dimensions n if exist a model 
𝑂𝑂𝑂𝑂𝑂𝑂: 𝑅𝑅𝑛𝑛 → 𝑅𝑅 such that it has a weights vector 𝑊𝑊 thus the components are 𝑤𝑤𝑖𝑖 ∈
[0,1] and ∑ 𝑤𝑤𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 , and then: 
 OWA(a1, a2, … , an) = ∑ wjbjn

j=1 ,     (1) 
where 𝑏𝑏𝑗𝑗 is the jth largest argument 𝑎𝑎𝑖𝑖. The OWA operator considers several 
properties as monotonicity, idempotence, and symmetry (Yager, 1988). 

An popular extension of the family OWA is the induced OWA (IOWA) 
operator (Yager & Filev, 1999). The IOWA operator introduces an induced vector 
that reorders the arguments. The new order can model the arguments in different 
situations (Yager, 2003). It can be defined as follows: 

Definition 2. An IOWA operator of dimension n is a mapping 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑅𝑅𝑛𝑛 → 𝑅𝑅 
with a weights vector 𝑊𝑊 =  [𝑤𝑤1,𝑤𝑤2, . . ,𝑤𝑤𝑛𝑛]𝑇𝑇 where 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1  and ∑ 𝑤𝑤𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 , 
and an induced vector 𝑈𝑈 =  [𝑢𝑢1,𝑢𝑢2, . . ,𝑢𝑢𝑛𝑛]𝑇𝑇. Then: 
 IOWA(〈u1, a1〉〈u2, a2〉, … , 〈un, an〉) = ∑ wjbjn

j=1  , (2) 
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where 𝑏𝑏𝑗𝑗 is the argument 𝑎𝑎𝑖𝑖 that have the jth largest 𝑢𝑢𝑖𝑖. The IOWA operator 
also includes the proprieties monotonicity, idempotence, and symmetry.  

Another interesting OWA extension is when the arguments are drawn from the 
unit interval. The Generalised Ordered Weighted Aggregation operator (GOWA) 
(Yager, 2004) provides an additional way to analyses more scenarios on OWA 
means. So: 

Definition 3. It is a GOWA operator with mapping 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺:𝑅𝑅𝑛𝑛 → 𝑅𝑅 if it has an 
associated weights vector 𝑊𝑊 thus 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1 and 𝑤𝑤𝑖𝑖 + ⋯+ 𝑤𝑤𝑛𝑛 = 1, and a lambda 
parameter 𝜆𝜆 ∈ [−∞,∞] is considered. So: 
 

GOWA(a1, a2, … , an) = ��wjbj
λ

n

j=1

�

1
λ�

, (3) 

where 𝑏𝑏𝑗𝑗 is the jth largest 𝑎𝑎𝑖𝑖. According to the value of the 𝜆𝜆 parameter, the GOWA 
operator analyse different special cases. If 𝜆𝜆 = 1, the GOWA operator is the OWA 
operator (Yager, 1988), When 𝜆𝜆 = 0, the GOWA operator is the OWG operator 
(Chiclana, Herrera, & Herrera-Viedma, 2000).  When 𝜆𝜆 = −1 the aggregation is the 
OWHA operator (Chen et al., 2004), and when 𝜆𝜆 = 2, we form the OWQA operator 
(Dyckhoff & Pedrycz, 1984).  

An OWA extension that considers additional weights unifying the OWA operator 
and weighted average (WA) in the same formulation is the ordered weighted 
averaging-weighted average (OWAWA) operator (Merigó, 2011) It. The definition 
is as follows: 
 

Definition 4. the OWAWA operator of dimension n is a mapping 
𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂:  𝑅𝑅𝑛𝑛 → 𝑅𝑅 that has two vectors, the 𝑊𝑊 with a set 𝑤𝑤𝑖𝑖 =∈ [0,1] and 
∑ 𝑤𝑤𝑖𝑖 = 1𝑛𝑛
𝑖𝑖=1 , and the V such that  𝑣𝑣𝑖𝑖 =∈ [0,1] and ∑ 𝑣𝑣𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 , the equation is as 
follows: 

 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) = ∑ 𝑣𝑣𝚥𝚥�𝑛𝑛
𝑗𝑗=1 𝑏𝑏𝑗𝑗, (4) 

where 𝑏𝑏𝑗𝑗 is the jth largest 𝑎𝑎𝑖𝑖. 𝑣𝑣𝑗𝑗 is a vector of weights composed of vectors W and 
V, considering the degree of importance of each one. So,  𝑣𝑣𝚥𝚥� = 𝛽𝛽𝑤𝑤𝑗𝑗 + (1 − 𝛽𝛽)𝑣𝑣𝑗𝑗 
with β ∈ [0, 1]. The OWAWA operator has the same properties as the OWA 
operator.    

The OWA family commonly unites two or more operators into one. Therefore, the 
IOWAWA operator can be combined with the IOWA operator. The IOWAWA 
operator uses a weighted average weighted vector and an induced vector with the 
attributes. This is: 
 

Definition 5. An IOWAWA operator of dimension n is a model 
𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂: 𝑅𝑅𝑛𝑛 → 𝑅𝑅 with a weight vector 𝑊𝑊 =  [𝑤𝑤1,𝑤𝑤2, . . ,𝑤𝑤𝑛𝑛]𝑇𝑇 such that 𝑤𝑤𝑖𝑖 =∈
[0,1] and 𝑤𝑤𝑖𝑖 + ⋯+ 𝑤𝑤𝑛𝑛 = 1, and a second weight vector 𝑉𝑉 with ∑ 𝑣𝑣𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1  and 
𝑣𝑣𝑖𝑖 ∈ [0,1], then an induced IOWA pair (𝑣𝑣𝑖𝑖,𝑎𝑎𝑖𝑖) is considered for the reorder of the 
arguments, so: 
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𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(〈𝑢𝑢1,𝑎𝑎1〉〈𝑢𝑢2,𝑎𝑎2〉, … , 〈𝑢𝑢𝑛𝑛,𝑎𝑎𝑛𝑛〉) = �𝑣𝑣𝚥𝚥�

𝑛𝑛

𝑗𝑗=1

𝑏𝑏𝑗𝑗,     (5) 

where 𝑏𝑏𝑗𝑗 is the attribute with the jth largest value of the induce vector. 𝑣𝑣𝚥𝚥� = 𝛽𝛽𝑤𝑤𝑗𝑗 +
(1 − 𝛽𝛽)𝑣𝑣𝑗𝑗 with β ∈ [0, 1]. The IOWAWA operator is monotonicity, idempotence, 
and symmetry. 

The IOWAWA can also analyse more scenarios using generalised means. The 
IGOWAWA operator (Merigó, 2009) considers a second weight vector, with 
induced variables and a lambda parameter. The definition is as follows: 
 

Definition 6. An IGOWAWA operator of dimension n is a model 
𝐼𝐼𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂: 𝑅𝑅𝑛𝑛 → 𝑅𝑅 with a weight vector 𝑊𝑊 such that 0 ≤ 𝑤𝑤𝑖𝑖 ≤ 1 and 𝑤𝑤𝑖𝑖 + ⋯+
𝑤𝑤𝑛𝑛 = 1, and an additional weight vector 𝑉𝑉 with ∑ 𝑣𝑣𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1  and 𝑣𝑣𝑖𝑖 ∈ [0,1], then an 
induced IOWA pair (𝑣𝑣𝑖𝑖,𝑎𝑎𝑖𝑖) is considered for the reorder of the arguments, so: 

 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) = ��𝑣𝑣�𝑗𝑗𝑏𝑏𝑗𝑗
𝜆𝜆

𝑛𝑛

𝑗𝑗=1

�

1
𝜆𝜆�

 

 

(6) 

where 𝑏𝑏𝑗𝑗 is the argument 𝑎𝑎𝑖𝑖 that have the jth largest 𝑢𝑢𝑖𝑖. 𝑣𝑣𝚥𝚥� = 𝛽𝛽𝑤𝑤𝑗𝑗 + (1 − 𝛽𝛽)𝑣𝑣𝑗𝑗 with 
β ∈ [0, 1]. 𝜆𝜆 ∈ [−∞,∞].  
 
2.2 Linear regression  
 

In the area of modelling and estimation, linear regression is one of the 
fundamental methodologies. The LR is an approach to understanding the mutual 
effects of an independent variable on the response variables (Kneip et al., 2016; 
Schmidt & Finan, 2018). A model with two or more response variables is a multiple 
regression. The linear fitting in multiple linear regression is attempted by keeping 
constant all but one of the predictor variables (Moreira, 2016; Leung et al., 2017). It 
can be defined as follows: 
 

Definition 7. A multiple regression is a set of variables (𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘) where  
k = 1, … ,𝐾𝐾:  𝑥𝑥𝑘𝑘 ∈ 𝑈𝑈𝑛𝑛, 𝑦𝑦𝑘𝑘 ∈ 𝑈𝑈, 𝑧𝑧𝑘𝑘 ∈ 𝑈𝑈𝑛𝑛, then, exist a model 𝑓𝑓𝜃𝜃:𝑅𝑅𝑛𝑛 → 𝑅𝑅, 
parameterised by a parameter vector 𝜃𝜃 = 𝛼𝛼,𝛽𝛽2,𝛽𝛽3. Multiple linear regression 
develops in a following equation: 
 yj = α + β1xj + β2zj. (7) 

A common framework for estimating the parameter vector is the ordinary least-
squares OLS (Gujarati & Porter, 2009; Bun & Harrison, 2019). This minimising the 
sum of the squared error between the predicted and actual observations as ∑𝑢𝑢�𝑖𝑖2 as 
𝑀𝑀𝑀𝑀𝑀𝑀 ∑𝑢𝑢�𝑖𝑖2 = ∑(𝑦𝑦𝑖𝑖 − 𝛼𝛼 − 𝛽𝛽1𝑥𝑥𝑖𝑖 − 𝛽𝛽2𝑧𝑧𝑖𝑖)2. The formulation for each parameter is as 
follows: 
 α = Y� − β1X� − β2Z� (8) 
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 β1

=
(∑ yixi)�∑ zi2� − (∑ yizi)(∑ xizi)

(∑ xi2)(∑ zi2) − (∑ xizi)2
                                                       

=
[Cov(y, x)][var(z)] − [Cov(y, z)][Cov(x, z)]

[var(x)][var(z)] − [Cov(x, z)]2  

(9) 

 
 

β2 =
(∑ yizi)�∑ xi2� − (∑ yixi)(∑ xizi)

(∑ xi2)(∑ zi2) − (∑ xizi)2

=
[Cov(y, z)][var(x)] − [Cov(y, x)][Cov(x, z)]

[var(x)][var(z)] − [Cov(x, z)]2  
(10) 

 
where 𝑥̅𝑥, 𝑦𝑦�, and 𝑧𝑧̅ are the averages in the sets 𝑥𝑥𝑘𝑘 ,𝑦𝑦𝑘𝑘 , 𝑧𝑧𝑘𝑘 severally.  
 
3. OWA operator in multiple linear regression 
 

The main idea of the multiple linear regression with OWA operators is to 
estimate the means in the OLS process by ordering and weighting the arguments. 
This is, OWA variances and covariances are used (Merigó et al., 2015; Blanco-Mesa 
et al., 2019).  

Therefore, if weighted weights are used on the means of the OLS estimate, we 
obtain the MLR-OWAWA. It can be used in cases where the uncertainty of the data 
demands greater complexity in the estimation process. The definition can be 
developed as follows: 

 
Definition 8. An OWAWA multiple linear regression with two response 

variables of dimension n is a model 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂: 𝑅𝑅𝑛𝑛 → 𝑅𝑅 given the parameters  𝑥𝑥𝑘𝑘 ∈
𝑈𝑈𝑛𝑛, 𝑦𝑦𝑘𝑘 ∈ 𝑈𝑈  and 𝑧𝑧𝑘𝑘 ∈ 𝑈𝑈𝑛𝑛  such have two weights vector 𝑊𝑊 and V with 𝑤𝑤𝑖𝑖 =∈ [0,1] 
; ∑ 𝑤𝑤𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 , and  0 ≤ 𝑣𝑣𝑖𝑖 ≤ 1 ;, where the model is as follows: 
 𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝛼𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 + 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑥𝑥𝑗𝑗 + 𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑧𝑧𝑗𝑗 (11) 

 
where 𝛼𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂, 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 and 𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 are estimated through OLS method with 
OWAWA variances and covariances as follows: 
 
𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

=
[𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑦𝑦, 𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑦𝑦, 𝑧𝑧)][𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥, 𝑧𝑧)]

[𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥, 𝑧𝑧)]2  

 
 
𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑥𝑥𝑗𝑗−𝜇𝜇�
𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�

2𝑘𝑘
𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 �

�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�
2𝑘𝑘

𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�
2𝑘𝑘

𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�𝑘𝑘
𝑘𝑘=1 �

2   (12) 
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where 𝑥𝑥𝑗𝑗, 𝑧𝑧𝑗𝑗 and 𝑦𝑦𝑗𝑗 is the jth largest data in the variables x, z and y severally, and µ, 
ν  and υ are OWAWA means.  

For 𝛽𝛽2 estimation the formula is developed as follows:  
 
𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂

=
[𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑦𝑦, 𝑧𝑧)][𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑦𝑦, 𝑥𝑥)][𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥, 𝑧𝑧)]

[𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥, 𝑧𝑧)]2  

 
 𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =

�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑧𝑧𝑗𝑗−𝜈𝜈�
𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�

2𝑘𝑘
𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑥𝑥𝑗𝑗−𝜇𝜇�

𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 �

�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�
2𝑘𝑘

𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�
2𝑘𝑘

𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�𝑘𝑘
𝑘𝑘=1 �

2 ,  

 

(13) 

where 𝑥𝑥𝑗𝑗, 𝑧𝑧𝑗𝑗 and 𝑦𝑦𝑗𝑗  is the jth largest arguments in the variables x, z and y severally, 
and µ, ν  and υ are OWAWA means. So, let us into the estimation of α using 𝛽𝛽1 and 
𝛽𝛽2 as follows: 
 
 𝛼𝛼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜐𝜐 − 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝜇𝜇 − 𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝜈𝜈, (14) 

where µ, ν  and υ are OWAWA means. 
The MLR-OWAWA shares some special cases with OWA operators. 

Depending on the ordering weights in variance and covariance, we can obtain 
maximus. Then: 

The MAX- 𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is as follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑉𝑉𝑉𝑉𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 = �𝑤𝑤𝑗𝑗𝐷𝐷𝑗𝑗

𝑛𝑛

𝑗𝑗=1

, (15) 

where 𝐷𝐷𝑗𝑗 is the largest of the (𝑎𝑎𝑖𝑖 − 𝜇𝜇)2, using 𝜇𝜇 as OWAWA minimum, and  
𝑤𝑤𝑗𝑗 = 1. In a similar way MAX- 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 is developed as follows: 
 

𝑀𝑀𝑀𝑀𝑀𝑀 − 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂 = �𝑤𝑤𝑗𝑗𝐾𝐾𝑗𝑗

𝑛𝑛

𝑗𝑗=1

, (16) 

where 𝐾𝐾𝑗𝑗 is the jth largest of the (𝑥𝑥𝑖𝑖 − 𝜇𝜇)(𝑦𝑦𝑖𝑖 − 𝜈𝜈), and 𝜇𝜇 and 𝜈𝜈 are OWAWA 
minimum of X and Y respectively and 𝑤𝑤𝑗𝑗 = 1. 

Then, an MLR-OWAWA with maximums can be calculated as follows: 
𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑀𝑀𝑀𝑀𝑀𝑀 = 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑥𝑥𝑖𝑖 + 𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝑧𝑧𝑖𝑖. (17) 

 
 𝛽𝛽1𝑀𝑀𝑀𝑀𝑀𝑀 =

[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑦𝑦,𝑥𝑥)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑧𝑧)]−[𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑦𝑦,𝑧𝑧)𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥,𝑧𝑧)]
[𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑧𝑧)]−[𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥,𝑧𝑧)]2

.  (18) 

 
 𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀 =

[𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑦𝑦,𝑧𝑧)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)]−[𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑦𝑦,𝑥𝑥)𝑀𝑀𝑀𝑀𝑀𝑀 𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥,𝑧𝑧)]
[𝑀𝑀𝑀𝑀𝑀𝑀𝑣𝑣𝑣𝑣𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥)𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑧𝑧)]−[𝑀𝑀𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂(𝑥𝑥,𝑧𝑧)]2

.  
 

(19) 
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 𝛼𝛼𝑀𝑀𝑀𝑀𝑀𝑀 = 𝜐𝜐 − 𝛽𝛽1𝑀𝑀𝑀𝑀𝑀𝑀𝜇𝜇 − 𝛽𝛽2𝑀𝑀𝑀𝑀𝑀𝑀𝜈𝜈. 
 (20) 

Note that the use of variances and covariances maximum can be used in 
different parts of the estimate. Therefore, a large number of combinations can be 
made at the convenience of the decision maker. 

Because the OWAWA variances and covariances tend to zero when the 
minimum is investigated, the MLR-OWAWA calculation with minimums is 
indeterminate. 

The multiple linear regression also can be joined with induced operators. The 
MLR-IOWAWA is a multiple regression estimated with variances and covariances 
using IOWAWA means, where the order of these depends on an induced vector. This 
is: 

 
Definition 9.  It is an MLR-IOWAWA with two response variables if exist a 

model 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑅𝑅𝑛𝑛 → 𝑅𝑅 given the sets  𝑋𝑋,𝑌𝑌,𝑍𝑍, such have two weights vector 𝑊𝑊 
and V with components that have values from zero to one and the sum of them is 
equal to one. The model is defined as follows: 
 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥𝑗𝑗 + 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧𝑗𝑗 (21) 

 
Where the parameters are estimated as follows: 

 
𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

=
[𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑧𝑧)][𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧)]

[𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧)]2  

 

𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑥𝑥𝑗𝑗−𝜇𝜇�

𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�

2𝑘𝑘
𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 �

�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�
2𝑘𝑘

𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�
2𝑘𝑘

𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�𝑘𝑘
𝑘𝑘=1 �

2         (22) 

 
𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

=
[𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑧𝑧)][𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑥𝑥)][𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧)]

[𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧)]2  

 
 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑧𝑧𝑗𝑗−𝜈𝜈�
𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�

2𝑘𝑘
𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑥𝑥𝑗𝑗−𝜇𝜇�

𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 �

�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�
2𝑘𝑘

𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�
2𝑘𝑘

𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�𝑘𝑘
𝑘𝑘=1 �

2 ,  

 

(23) 

 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜐𝜐 − 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜇𝜇 − 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜈𝜈, (24) 
where 𝑥𝑥𝑗𝑗, 𝑧𝑧𝑗𝑗 and 𝑦𝑦𝑗𝑗  is the jth largest data in the variables x, z and y, and µ, ν  and υ 
are IOWAWA means.  

The MLR-IOWAWA has the properties of OWA operators, so:  
• The MLR-IOWAWA is monotonic if let a further ordered argument vector 

𝑤𝑤 = [𝑏𝑏1,𝑏𝑏2, … , 𝑏𝑏𝑛𝑛] where 𝑎𝑎𝑗𝑗 ≥ 𝑏𝑏𝑗𝑗 then 𝐹𝐹(𝑦𝑦𝑜𝑜𝑜𝑜𝑜𝑜(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛)) ≥
𝐹𝐹(𝑦𝑦𝑂𝑂𝑂𝑂𝑂𝑂(𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏3)). 
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• Symmetry if two ordered argument vectors (𝐴𝐴 = 𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛;𝐴𝐴´ =
𝑎𝑎1´𝑎𝑎2´, … ,𝑎𝑎𝑛𝑛´) are A=A´, then 𝐹𝐹�𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛)� =
𝐹𝐹(𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎1´,𝑎𝑎2´, … ,𝑎𝑎𝑛𝑛´). 

• An MLR-IOWAWA is idempotent if 𝑎𝑎𝑗𝑗 = 𝑎𝑎, for all 𝑗𝑗 = 1, … ,𝑛𝑛, then 
𝐹𝐹(𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑛𝑛) = 𝑎𝑎. 

In order to analyse additional scenarios of the estimators in MLR-IOWAWA, 
the generalisation of these is proposed. The MLR-IGOWAWA is a tool that 
estimates parameters in a linear regression with two variables using means that 
consider two vectors of weights, the arguments are ordered according to induction, 
and a parameter lambda is considered. The definition is as follows: 
 

Definition 10. It is an MLR-IGOWAWA with two response variables if there 
is a model 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼: 𝑅𝑅𝑛𝑛 → 𝑅𝑅 given three sets 𝑥𝑥𝑘𝑘 ∈ 𝑈𝑈𝑛𝑛, 𝑦𝑦𝑘𝑘 ∈ 𝑈𝑈  and 𝑧𝑧𝑘𝑘 ∈ 𝑈𝑈𝑛𝑛  
and a weight vector 𝑊𝑊 =  [𝑤𝑤1,𝑤𝑤2, . . ,𝑤𝑤𝑛𝑛]𝑇𝑇 such that 𝑤𝑤𝑖𝑖 =∈ [0,1] ; ∑ 𝑤𝑤𝑖𝑖 = 1𝑛𝑛

𝑖𝑖=1 , and 
a second weight vector 𝑉𝑉 =  [𝑣𝑣1,𝑣𝑣2, . . , 𝑣𝑣𝑛𝑛]𝑇𝑇  0 ≤ 𝑣𝑣𝑖𝑖 ≤ 1 ; 𝑣𝑣𝑖𝑖 + ⋯+ 𝑣𝑣𝑛𝑛 =
1, additionally a parameter 𝜆𝜆 ∈ [−∞,∞] is defined. So: 
 𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 + 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥𝑗𝑗 + 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧𝑗𝑗 (25) 

 
Where the parameters are estimated as follows: 

 
𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

=
[𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑧𝑧)][𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧)]

[𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧)]2  

 
 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑥𝑥𝑗𝑗−𝜇𝜇�
𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�

2𝑘𝑘
𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 �

�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�
2𝑘𝑘

𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�
2𝑘𝑘

𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�𝑘𝑘
𝑘𝑘=1 �

2 ,  

 

(26) 

 
𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼

=
[𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑧𝑧)][𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑥𝑥)][𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧)]

[𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥)][𝑣𝑣𝑣𝑣𝑣𝑣𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧)] − [𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧)]2  

 
 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =

�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑧𝑧𝑗𝑗−𝜈𝜈�
𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�

2𝑘𝑘
𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑦𝑦𝑗𝑗−𝜐𝜐��𝑥𝑥𝑗𝑗−𝜇𝜇�

𝑘𝑘
𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�

𝑘𝑘
𝑘𝑘=1 �

�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇�
2𝑘𝑘

𝑘𝑘=1 ��∑ 𝑤𝑤𝑗𝑗�𝑧𝑧𝑗𝑗−𝜈𝜈�
2𝑘𝑘

𝑘𝑘=1 �−�∑ 𝑤𝑤𝑗𝑗�𝑥𝑥𝑗𝑗−𝜇𝜇��𝑧𝑧𝑗𝑗−𝜈𝜈�𝑘𝑘
𝑘𝑘=1 �

2 ,  

 

(27) 

 
 𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜐𝜐 − 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜇𝜇 − 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝜈𝜈, (28) 

where 𝑥𝑥𝑗𝑗, 𝑧𝑧𝑗𝑗 and 𝑦𝑦𝑗𝑗  is the jth largest data in the variables x, z and y severally, and µ, 
ν  and υ are IGOWAWA means.  
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An interesting issue in the application of the OWA operators is the weights and 
their analysis. Using different measures of weight vector, some information can be 
obtained.  

The orness and the entropy of dispersion (Yager, 1988) can be defined as 
follows: 

If occur that the first weight 𝑤𝑤1 = 1, a pure “or” operator appears. Then, the 
closer all the total weights to being in  𝑤𝑤1 is the degree of orness, the formulation is 
as following: 
 𝛼𝛼(𝑊𝑊) = ∑ 𝑤𝑤𝑗𝑗∗ �

𝑛𝑛−𝑗𝑗
𝑛𝑛−1

�𝑛𝑛
𝑗𝑗=1 , (29) 

where 𝑤𝑤𝑗𝑗∗ is the 𝑤𝑤𝑗𝑗 weight with the jth largest 𝑎𝑎𝑖𝑖. 
The variability and the use of the inputs by the OWA weights are captured by 

the entropy of dispersion, so: 
 𝐻𝐻(𝑊𝑊) = −∑ 𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗=1 ln (𝑤𝑤𝑗𝑗). (30) 
Balance operator (Yager, 1996) measures the degree of relationship between 

favouring the higher valued elements or lower-valued elements in an OWA operator, 
we use: 
 𝐵𝐵𝐵𝐵𝐵𝐵(𝑊𝑊) = ∑ �𝑛𝑛+1−2𝑗𝑗

𝑛𝑛−1
�𝑛𝑛

𝑗𝑗−1 𝑤𝑤𝑗𝑗. (31) 
Finally, divergence (Yager, 2002) distinguishes between two OWA weights 

vectors. The formulation is as follows: 
 𝐷𝐷𝐷𝐷𝐷𝐷(𝑊𝑊) = ∑ 𝑤𝑤𝑗𝑗𝑛𝑛

𝑗𝑗=1 �𝑛𝑛−𝑗𝑗
𝑛𝑛−1

− 𝛼𝛼(𝑊𝑊)�
2
. (32) 

The measurement of the weight vector can measure the vectors in α, 𝛽𝛽1 and 𝛽𝛽2. 
In order to clarify the operation of the MLR-IGOWMA, a numerical example 

is presented below. 
Example. Considering the following set for the variables (𝑌𝑌 = 3, 5, 2), (𝑋𝑋 =

2, 4, 3) and (𝑍𝑍 = 4, 5, 6), with a weighting vector (𝑊𝑊 = 0.4, 0.3, 0.3. ), the induced 
vector (𝑈𝑈 = 1, 2, 4) and the second weight vector (𝑉𝑉 = 0.5, 0.2, 0.3. ) are 
considered. Then we have 𝛽𝛽 = 0.6 and 𝜆𝜆 = 2. First the 𝑣𝑣𝚥𝚥�  is: 

𝑣𝑣𝚥𝚥� = 0.44, 0.26, 0.3 
then the IOWA is defined: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑦𝑦 = [0.44(2)2 + 0.26(5)2 + 0.3(3)2]1/2 = 3.31 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥 = [0.44(3)2 + 0.26(4)2 + 0.3(2)2]1/2 = 3.05 
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧 = [0.44(6)2 + 0.26(5)2 + 0.3(4)2]1/2 = 4.98 
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The elements of variance and covariance are as follow: 
(𝑦𝑦 − 𝜐𝜐) (𝑥𝑥 − 𝜇𝜇) �𝑧𝑧𝑗𝑗 − 𝜈𝜈� (𝑥𝑥 − 𝜇𝜇)2 �𝑧𝑧𝑗𝑗 − 𝜈𝜈�2 (𝑥𝑥 − 𝜇𝜇)(𝑦𝑦

− 𝜐𝜐) 
(𝑥𝑥 − 𝜇𝜇)(𝑧𝑧
− 𝜈𝜈) 

(𝑦𝑦 − 𝜐𝜐) 
(𝑧𝑧 − 𝜈𝜈) 

-1.31 -0.05 1.02 0.003 1.040 0.069 -0.054 -1.337 

1.69 0.95 -0.98 0.897 0.960 1.600 -0.928 -1.656 

-0.30 -1.05 -0.98 1.109 0.960 0.327 1.032 0.304 

 
Variances and covariances IGOWAWA are calculated: 

𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥) = [0.44(0.03)2 + 0.26(0.897)2 + 0.3(1.109)2]1/2 = 0.76 
𝑉𝑉𝑉𝑉𝑉𝑉𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑧𝑧) = [0.44(1.040)2 + 0.26(1.96)2 + 0.3(1.96)2]1/2 = 0.99 

𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥,𝑦𝑦) = [0.44(0.069)2 + 0.26(1.600)2 + 0.3(0.327)2]1/2 = 0.83 
𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑦𝑦, 𝑧𝑧) = [0.44(−0.054)2 + 0.26(−0.928)2 + 0.3(1.032)2]1/2

= 0.73 
𝐶𝐶𝐶𝐶𝐶𝐶𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼(𝑥𝑥, 𝑧𝑧) = [0.44(−1.337)2 + 0.26(−1.656)2 + 0.3(0.304)2]1/2

= 1.23 
The 𝛼𝛼, 𝛽𝛽1and 𝛽𝛽2 are estimated: 

𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
(0.83 ∗ 0.99) − (1.23 ∗ 0.73)

(0.76 ∗ 0.99)− (0.73)2
= −0.36 

𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 =
(1.23 ∗ 0.76) − (0.83 ∗ 0.73)

(0.76 ∗ 0.99) − (0.73)2
= 1.51 

𝛼𝛼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 3.31− (−0.36 ∗ 3.05)− (1.51 ∗ 4.98) = −3.09 
We have the following model: 

𝑦𝑦𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = −3.09 − 0.36𝑥𝑥 + 1.51𝑧𝑧 
Note that this example can be applied in MLR-OWAWA and MLR-IOWAWA.  

 
4. Estimating salary by gender in Mexico 
 

We are interested in taking into consideration real data from Mexico, in which 
we can weigh the salaries between men and women with the previously described 
and achieve a result that allows us to make decisions. That is why this study is based 
on the National Survey of Household Income and Expenses (ENIGH) 2018 of the 
National Institute of Statistics and Geography (INEGI). 

This article presents an estimate of salaries in Mexico by gender using a model 
that considers years of study and years of work experience. The models consider 
different OWA operators; therefore, six models are developed as follows: 
For women: 

1. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤      𝑆𝑆𝑤𝑤𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜐𝜐 − 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑌𝑌𝑌𝑌𝑊𝑊 − 𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑊𝑊𝑊𝑊𝑊𝑊 
2. 𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑤𝑤      𝑆𝑆𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜐𝜐 − 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑌𝑌𝑌𝑌𝑊𝑊 − 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊 
3. 𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑤𝑤      𝑆𝑆𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴 = 𝜐𝜐 − 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑌𝑌𝑌𝑌𝑊𝑊 − 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑊𝑊𝑊𝑊 
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For men: 
1. 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚      𝑆𝑆𝑚𝑚𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = 𝜐𝜐 − 𝛽𝛽1𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑌𝑌𝑌𝑌𝑚𝑚 − 𝛽𝛽2𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑊𝑊𝑊𝑊𝑚𝑚 
2. 𝐼𝐼𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑚𝑚      𝑆𝑆𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜐𝜐 − 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑌𝑌𝑌𝑌𝑚𝑚 − 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑊𝑊𝑚𝑚 
3. 𝐼𝐼𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑚𝑚      𝑆𝑆𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 𝜐𝜐 − 𝛽𝛽1𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑌𝑌𝑌𝑌𝑚𝑚 − 𝛽𝛽2𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑊𝑊𝑊𝑊𝑚𝑚 
Where S is salary, YS is years of study and WE is work experience.  
 
Calculating the parameters of the models 
 
The parameters in OWA models by gender are calculated as equations 11, 21 

and 25 using OWAWA, IOWAWA and IGOWAWA. For this, we perform the 
following steps: 

Step 1: Defining the number of elements considered in the variable models. 
Fifteen ranges have been developed in the information of salaries, years of education, 
and work experience. The average has been calculated from these ranges, which are 
the series with which this application works. Table 1 shows the data. 
 

Table 1. Model and vectors weights 
Sw YSw WEw Sm YSf WEf w v 

15858.86 15.28 2.72 35611.06 16.75 75.46 0.07 0.10 
23138.39 16.35 6.65 34668.78 16.51 70.38 0.08 0.09 
26336.59 16.75 11.25 32856.17 16.35 65.24 0.09 0.09 
28451.30 16.51 16.49 32093.36 16.11 59.70 0.04 0.08 
30304.01 16.11 21.89 30304.01 15.72 54.11 0.07 0.08 
32093.36 15.72 27.28 28458.70 15.57 48.54 0.07 0.07 
34668.78 15.57 32.43 28451.30 15.57 42.95 0.06 0.07 
35611.06 15.57 37.43 26336.59 15.28 37.43 0.06 0.06 
32856.17 15.05 42.95 24932.93 15.05 32.43 0.08 0.06 
28458.70 14.46 48.54 23138.39 14.46 27.28 0.09 0.06 
24932.93 13.89 54.11 22369.85 13.89 21.89 0.05 0.06 
22369.85 13.30 59.70 22025.56 13.30 16.49 0.05 0.05 
20493.54 12.76 65.24 20898.75 12.76 11.25 0.06 0.05 
22025.56 12.62 70.38 20493.54 12.62 6.65 0.08 0.04 
20898.75 12.54 75.46 15858.86 12.54 2.72 0.05 0.04 

Source: Own elaboration based on data from the National Survey of Household Income and 
Expenditure (ENIGH) 2018, INEGI. 

 
Step 2: the construction of weights vector w for IOWA and IOWAWA are 

developed. Weights vectors are shown in Table 1. The vector of weights w is defined 
randomly, while the vector v is overestimating the first elements of the ordering, 
which in this case will be the largest values. 

Step 3: the OWA means are calculated for the different OWAs and models. 
Note that, 𝝎𝝎  is the salary OWAs mean, 𝜌𝜌 is the years education OWAs mean and 𝜑𝜑 
is the OWAs mean in work experience. The table shows the results: 
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Table 2. Analysis of OWAs means 
 𝝎𝝎 𝝆𝝆 𝝋𝝋 
OWAWAw 24931.48 15.07 41.42 
IOWAWAw 24479.96 15.04 34.95 
IGOWAWAw 23995.41 14.82 12.54 
OWAWAm 27342.89 15.03 41.36 
IOWAWAm 26621.03 15.01 34.98 
IGOWAWAm 25308.13 14.87 14.03 

Source: Own elaboration based on data from the National Survey of Household Income and 
Expenditure (ENIGH) 2018, INEGI. 

 
Step 4: For the variance and covariance OWA, we consider the same weight vector 
used in OWA means. Two variances are considered for years of education and work 
experience, and the covariances are for the relationship between the three variables. 
The results are in Table 3.  
 

Table 3. Variances and covariances OWA 
 Var(YE) Var(WE) Cov(S, YE) Cov(YE, WE) Cov(S, WE) 

OWAWAw 3.25 538.78 5374.67 41.29 70414.79 
IOWAWAw 3.17 535.54 1649.77 -38.56 -327.66 
IGOWAWAw 0.47 35.11 710.78 -60.25 -31625.60 
OWAWAm 1.92 522.15 7377.45 30.86 125913.92 
IOWAWAm 1.89 516.31 3162.58 -28.31 -3958.05 
IGOWAWAm 0.26 39.74 4461.25 -1979.86 -54041.51 

Source: Own elaboration based on data from the National Survey of Household Income and 
Expenditure (ENIGH) 2018, INEGI. 

 
Step 4: the parameters are estimated: α, 𝛽𝛽1, and 𝛽𝛽2 are calculated with the 

variance and covariance OWA. Table 4 shows 𝑡𝑡ℎ𝑒𝑒 𝛽𝛽1 parameters.  
 

Table 4. Results 
 α 𝜷𝜷𝟏𝟏 𝜷𝜷𝟐𝟐 

OWAWAw -264.71 150.97 22,666.65 
OWAWAm -672.56 280.88 25,831.72 
IOWAWAw 4,132.51 296.94 -48,048.09 
IOWAWAm 8,792.62 474.36 -121,933.65 

IGOWAWAw 520.33 -7.77 16,380.21 
IGOWAWAm 27.25 -2.24 24,934.36 

Source: Own elaboration based on data from the National Survey of Household Income and 
Expenditure (ENIGH) 2018, INEGI. 
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The results are represented in the following model: 
 

𝑆𝑆𝑤𝑤𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = −264.72 + 150.98𝑌𝑌𝑌𝑌𝑊𝑊 + 22,666.66𝑊𝑊𝑊𝑊𝑊𝑊 
𝑆𝑆𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 4132.51 + 296.95𝑌𝑌𝑌𝑌𝑊𝑊 − 48,048.10𝑊𝑊𝑊𝑊𝑊𝑊 
𝑆𝑆𝑤𝑤𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 520.34− 7.78𝑌𝑌𝑌𝑌𝑊𝑊 + 16,380.22𝑊𝑊𝑊𝑊𝑊𝑊 
𝑆𝑆𝑚𝑚𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 = −672.56 + 280.89𝑌𝑌𝑌𝑌𝑚𝑚 + 25,831.72𝑊𝑊𝐸𝐸𝑚𝑚 
𝑆𝑆𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 8,792.63 + 474.36𝑌𝑌𝑌𝑌𝑚𝑚 − 121,933.65𝑊𝑊𝑊𝑊𝑚𝑚 
𝑆𝑆𝑚𝑚𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 = 27.25− 2.25𝑌𝑌𝑌𝑌𝑚𝑚 + 24,934.36𝑊𝑊𝑊𝑊𝑚𝑚 

 
The general results describe how the years of experience have a more significant 

impact than years of study on salaries for both women and men. When we use a 
second weighting vector, giving greater importance to the highest salaries on the 
IOWAWA models, the years of study and expertise multiply men's wages to a 
greater extent than women's. In this case an interesting situation is observed because 
without years of study and without experience, women would have lower salaries 
than men. Additionally, when greater importance is given to higher salaries, it is 
observed that experience has a more negative impact on men than on women. In the 
case of the IGOWAWA models, they also confirm that years of study and expertise 
give men a higher salary than women. 
 
5. Conclusions 

 
The differences in salaries between men and women have been studied in recent 

years. Knowing the scenarios and magnitude where this occurs brings us closer to 
identifying the problem and trying to overcome it. 

This work proposes a multiple regression with OWA aggregation operators in 
order to obtain estimates where the parameters can be underestimated and 
overestimated depending on the scenario to be analysed. The proposal has been 
called MLR-IGOWAWA. 

The application of this tool has focused on the effect that experience and years of 
study have on the salaries of men and women. The results show that men tend to earn 
higher salaries, and this wage increases as higher salaries are taken into account. In 
other words, there is a difference in salaries between men and women, and this 
difference grows larger as salaries increase.  

The proposed tool has been applied to a particular country. That is why future 
research will seek to corroborate results in other countries. 
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