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Factor Analysis for Multivariate Compositional Data and an 
Economic Application 
 
Abstract. This paper aims to address the lack of appropriate methods for analysing 
multivariate compositional data by introducing FAMCoDa, a factor analysis model tailored 
for such data, along with a two-step estimation method. First, we outline the mathematical 
framework of FAMCoDa and the procedures for estimating factor loadings and scores, 
validating its effectiveness through simulation experiments. We then apply FAMCoDa to 
analyse the industrial consumption structure data of 41 countries. The results reveal that 
FAMCoDa efficiently manages multivariate compositional data, identifying correlations 
between variables. Our contributions are threefold: (1) presenting a novel factor analysis 
model for multivariate compositional data, focusing on inter-variable correlations, unlike 
existing models; (2) devising a two-step estimation process, starting with multivariate CoDa 
PCA for initial loadings and refining them through variance rotation, followed by ilr 
transformation and OLS regression for factor scores; (3) ensuring the compositional 
structure of the extracted factors remains consistent with the original variables. This work 
has significant implications for economic applications. 
 
Keywords: multivariate compositional data, factor analysis, isometric logratio 
transformation, inter-variable correlations, industrial consumption structure. 
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1. Introduction 
 

There are now various data types in many fields with complex forms, such as 
compositional data (Fiksel et al., 2022; Greenacre et al., 2023), interval-valued data 
(Alcacer et al., 2024; Guan et al., 2020), distribution-valued data (Vo-Van & 
PhamToan, 2024; Zhao et al., 2022), and functional data (Li et al., 2022). 
Compositional data (CoDa) describe the relative information of components or parts 
in the whole, usually measured as a ratio or percentage, and are often found in 
practice, such as budget shares in microeconomics (Fry et al., 2000), gross domestic 
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product (GDP) at the industry level (Wang et al., 2013), sentiment structure in social 
media (Lu et al., 2021), environmental sciences (Buccianti & Pawlowsky-Glahn, 
2005; Engle et al., 2014; Wei et al., 2018), and geochemistry (Tolosana-Delgado & 
von Eynatten, 2009; Rieser and Filzmoser 2023). 

The use of CoDa reveals information on relative quantities often hidden behind 
absolute values, making it superior to numerical data. However, the unit-sum 
constraint introduces challenges for statistical modelling of CoDa. Classical 
statistical models and algorithms cannot be directly applied to CoDa due to this 
constraint. A common approach to addressing this issue is to eliminate the unit-sum 
constraint through some transformation methods before statistical modelling. This 
idea has led to the development of a family of log-ratio transformations, including 
additive log-ratio (alr, Aitchison, 1982), centred log-ratio (clr, Aitchison, 1983), 
isometric log-ratio (ilr, Egozcue et al., 2003) and 𝛼𝛼-transformation (Tsagris et al., 
2016). Detailed descriptions and comparisons of these transformation methods can 
be found in Alenazi (2023).  

Multivariate problems tend to receive more attention as people's access to data 
grows. When multiple variables are measured through compositional data (we refer 
to this situation as multivariate compositional data), it is the correlation structure of 
these multivariate compositional data that we often wish to analyse. For example, 
the proportion of a country's industrial products produced in each region constitutes 
compositional data, and when we consider multiple industrial products (e.g., coal, 
crude oil, cement, etc.), we obtain multivariate compositional data (Wang et al., 
2015). This kind of multivariate compositional data is also prevalent in other 
economic problems, such as the analysis of the industrial consumption structure and 
the consumption structure (Lu et al., 2024). Therefore, in recent years, many scholars 
have also begun to pay attention to the theory of statistical analysis of multivariate 
compositional data. Wang et al. (2015) proposed a principal component analysis 
method for multivariate compositional data, which is used to detect the correlation 
structure of a number of compositional data variables and to perform dimensionality 
reduction. Gu et al. (2021) established a new technological framework for the 
classification of multivariate compositional data, which both improves the quality of 
the data and solves the problem of the multivariate compositional data being 
recognised by machine learning methods.  

Factor analysis is one of the commonly used statistical tools to show properties 
inherent in multivariate data by summarising the multivariate information in a 
compact form (Basilevsky, 1995; Woods & Edwards, 2007). Approaches for factor 
analysis with compositional data have been suggested (e.g., Filzmoser et al., 2009; 
Tolosana-Delgado et al., 2005). However, these methods are only applicable to the 
case of single compositional data variable. Regarding the factor model for 
multivariate compositional data, to the best of our knowledge, only the PARAFAC 
model (Di Palma et al., 2018) is relevant. This model solves the problem of 
dimensionality reduction of observations, variables, and components simultaneously. 
However, the PARAFAC approach reduces the dimensional D-part to a (D-m) part, 
where 0<m<D, making it difficult to understand the analysis results. We argue that 
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the compositional structure within the same variable should remain unchanged 
before and after factor analysis. That is, the dimension reduction should be only for 
the variables, which is similar to the classical factor analysis. To this end, we 
innovatively propose factor analysis for multivariate compositional data 
(FAMCoDa), aimed at exploring the correlation structure among the observed 
multiple compositional variables. The proposed factor analysis model assumes the 
existence of a small set of uncorrelated CoDa variables or factors that explain the 
relationships between the observed CoDa variables. With these extracted factors, we 
can detect potential correlation structures between observed compositional variables, 
visualise these variables in a lower dimensional space spanned by fewer factors, and 
thus obtain an overall picture of the entire data set.  

Our main contributions are reflected in three aspects. First, we propose a novel 
factor analysis model for multivariate compositional data, which had not yet been 
studied to the best of our knowledge. This model focuses only on the correlation 
between multiple CoDa variables, rather than on the correlation between multiple 
components within the same variable, which is very different from the existing works 
(Filzmoser et al., 2009; Scealy et al., 2015). Therefore, our proposed model has a 
higher practical value in economic application scenarios with multiple compositional 
data variables. Second, we provide a two-step approach to estimate the factor 
loadings and factor scores of the model. Specifically, we first obtain an initial 
solution for the factor loadings using the multivariate CoDa variable PCA method, 
and then use variance rotation to obtain the loadings, which explains the extracted 
factors well; then we build a series of regression models to estimate the factor scores 
by ilr transformation and OLS, so that each factor is still a CoDa variable. Third, we 
assumed that the compositional structure of the factors extracted by the model 
remained consistent with that of the original observed variables, which are all D-
parts. We believe that this assumption is more in line with realistic application 
scenarios because the observed composition structure of CoDa usually has a specific 
meaning, e.g., industrial consumption structure and consumption structure. This 
structure should thereby remain unchanged after the factor analyses. 

The rest of the paper is organised as follows. Section 2 presents some 
preliminaries concerning CoDa. Section 3 provides a detailed introduction to our 
proposed model and a two-step estimation method. Sections 4 and 5 present a 
simulation study and an economic application, respectively. The conclusion is 
presented in Section 6. 

 
2. Preliminaries  

 

In this section, we will briefly review some algebraic operations of CoDa, the 
isometric logratio transformation, and the sample statistics of CoDa variable(s). 

 
2.1 Compositional data and algebraic operations 

 

A simplex space spanned by D-part CoDa is denoted as 𝑆𝑆𝐷𝐷 = �𝐱𝐱 =
[𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝐷𝐷]′;𝑥𝑥𝑖𝑖 ≥ 0, 𝑖𝑖 = 1,2, … ,𝐷𝐷;∑ 𝑥𝑥𝑖𝑖𝐷𝐷

𝑖𝑖=1 = 1� . For any two CoDa 𝐱𝐱, 𝐲𝐲 ∈ 𝑆𝑆𝐷𝐷 
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and any real number 𝛼𝛼 ∈ ℝ, the operations of addition and scalar-multiplication are 
defined, respectively, as (Aitchison, 1982; Greenacre et al., 2023): 

 
𝐱𝐱⊕ 𝐲𝐲 = 𝑪𝑪(𝑥𝑥1𝑦𝑦1,𝑥𝑥2𝑦𝑦2, … , 𝑥𝑥𝐷𝐷𝑦𝑦𝐷𝐷), 
𝛼𝛼 ⊙ 𝐱𝐱 = 𝑪𝑪(𝑥𝑥1𝛼𝛼 ,𝑥𝑥2𝛼𝛼, … , 𝑥𝑥𝐷𝐷𝛼𝛼), 

 
with 𝑪𝑪(⋅) being a closure operation that converts any D-dimensional positive real 
number vector 𝒛𝒛 = (𝑧𝑧1, 𝑧𝑧2,⋯ , 𝑧𝑧𝐷𝐷)′ ∈ ℝ+

𝐷𝐷 into a D-part CoDa by  
 

𝑪𝑪(𝐳𝐳) = �
𝑧𝑧1

∑ 𝑧𝑧𝑖𝑖𝐷𝐷
𝑖𝑖=1

,
𝑧𝑧2

∑ 𝑧𝑧𝑖𝑖𝐷𝐷
𝑖𝑖=1

, … ,
𝑧𝑧𝐷𝐷

∑ 𝑧𝑧𝑖𝑖𝐷𝐷
𝑖𝑖=1

�
′

. 

 
The inner product in simplex space is defined by: 
 

⟨𝐱𝐱, 𝐲𝐲⟩𝑆𝑆𝐷𝐷 = ∑ 𝑙𝑙𝑙𝑙 𝑥𝑥𝑖𝑖
𝑔𝑔(𝐱𝐱)

𝐷𝐷
𝑖𝑖=1 𝑙𝑙𝑙𝑙 𝑦𝑦𝑖𝑖

𝑔𝑔(𝐲𝐲)
 , 

 
where 𝑔𝑔(𝐱𝐱) = (∏ 𝑥𝑥𝑖𝑖𝐷𝐷

𝑖𝑖=1 )1/𝐷𝐷 , i.e., the geometric mean of a D-part CoDa. 
Accordingly, norm and distance in simplex space can be defined, respectively, as 
follows: 

‖𝐱𝐱‖𝑆𝑆𝐷𝐷 = �⟨𝐱𝐱, 𝐱𝐱⟩𝑆𝑆𝐷𝐷 , 
𝑑𝑑𝑆𝑆𝐷𝐷(𝐱𝐱, 𝐲𝐲) = ‖𝐱𝐱⊖ 𝐲𝐲‖𝑆𝑆𝐷𝐷 . 

 
2.2 Isometric logratio transformation 

 
To perform statistical analysis on CoDa, it is common to first apply a 

transformation to the data. Typically, CoDa in simplex space is transformed into 
numerical data in Euclidean space. This transformation addresses the unit-sum 
constraint of CoDa and allows the application of classical statistical models and 
algorithms. The isometric log-ratio (ilr) transformation (Egozcue et al., 2003) is a 
commonly used method. Based on a set of orthogonal bases, ilr converts CoDa to 
real coordinates without changing its metric properties. Taking 𝐞𝐞𝑖𝑖 (𝑖𝑖 = 1, 2,⋯ ,𝐷𝐷 −
1) to be a set of orthogonal bases in simplex space, the ilr transformation and its 
inverse transformation are respectively defined as: 

 
𝐱𝐱∗ = ilr(𝐱𝐱) = �⟨𝐱𝐱, 𝐞𝐞1⟩𝑆𝑆𝐷𝐷 , ⟨𝐱𝐱, 𝒆𝒆𝟐𝟐⟩𝑆𝑆𝐷𝐷 ,⋯ , ⟨𝐱𝐱, 𝐞𝐞𝐷𝐷−1⟩𝑆𝑆𝐷𝐷�, 
𝐱𝐱 = ilr−1(𝐱𝐱∗) = (𝑥𝑥1∗ ⊙ 𝐞𝐞1) ⊕⋯⊕ (𝑥𝑥𝐷𝐷−1∗ ⊙ 𝐞𝐞𝐷𝐷−1), 

 
where 𝐱𝐱 = [𝑥𝑥1,𝑥𝑥2, … , 𝑥𝑥𝐷𝐷]′ ∈ 𝑆𝑆𝐷𝐷  is a D-part CoDa, and 𝐱𝐱∗ = (𝑥𝑥1∗, 𝑥𝑥2∗,⋯ , 𝑥𝑥𝐷𝐷−1∗ ) ∈
𝑅𝑅𝐷𝐷−1 represents the numerical data vector after transformation.  

Obviously, the above two equations depend on the specific form of orthogonal 
basis 𝐞𝐞𝑖𝑖. One commonly used orthogonal basis is: 
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𝐞𝐞𝑖𝑖 = 𝑪𝑪

⎝

⎜
⎛

exp

⎝

⎜
⎛
�

1
𝑖𝑖(𝑖𝑖 + 1)

,⋯ ,�
1

𝑖𝑖(𝑖𝑖 + 1)���������������
𝑖𝑖 elements

,−�
𝑖𝑖

𝑖𝑖 + 1
, 0,⋯ ,0

⎠

⎟
⎞

⎠

⎟
⎞

. 

 
Thus, the corresponding ilr transformation and its inversed transformation can 

be written as: 

𝑥𝑥𝑖𝑖∗ = � 𝑖𝑖
𝑖𝑖+1

𝑙𝑙𝑙𝑙 �𝑔𝑔(𝑥𝑥1,⋯,𝑥𝑥𝑖𝑖)
𝑥𝑥𝑖𝑖+1

� ,  for 𝑖𝑖 = 1,2,⋯ ,𝐷𝐷 − 1, 

𝐱𝐱 = ilr−1(𝐱𝐱∗) = 𝑪𝑪(exp(𝑤𝑤1), exp(𝑤𝑤2),⋯ , exp(𝑤𝑤𝐷𝐷)), 
 

where 𝑤𝑤𝑖𝑖 = ∑ 𝑥𝑥𝑗𝑗∗�1 𝑗𝑗(𝑗𝑗 + 1)⁄𝐷𝐷
𝑗𝑗=𝑖𝑖 − 𝑥𝑥𝑖𝑖−1∗ �(𝑖𝑖 − 1) 𝑖𝑖⁄   with 𝑥𝑥0∗ = 𝑥𝑥𝐷𝐷∗ = 0. 

For any two CoDa 𝐱𝐱, 𝐲𝐲 ∈ 𝑆𝑆𝐷𝐷 and two real numbers 𝛼𝛼,𝛽𝛽 ∈ ℝ, it can be proved 
that the ilr transformation satisfies two properties as shown in the following two 
equations: 

 
ilr(𝛼𝛼 ⊙ 𝐱𝐱⊕𝛽𝛽⊙ 𝐲𝐲) = 𝛼𝛼ilr(𝒙𝒙) + 𝛽𝛽ilr(𝐲𝐲), 

⟨𝐱𝐱, 𝐲𝐲⟩𝑆𝑆𝐷𝐷 = ⟨ilr(𝐱𝐱), ilr(𝐲𝐲)⟩. 
 
In other words, the ilr transformation preserves the metric properties of CoDa 𝐱𝐱 

and 𝐲𝐲 . As a consequence, the following two analytical strategies for CoDa are 
equivalent: (S1) perform a statistical analysis on CoDa in simplex space using 
algebraic operations, such as those defined in Section 2.1; (S2) first transform CoDa 
to real coordinates using ilr transformation, then perform statistical analysis in 
Euclidean space, and back-transform the analytical results to simplex space using 
the inverse transformation of ilr. In this paper, a hybrid strategy is adopted; S1 is 
used to solve factor loading and S2 for calculating factor scores. More details will 
be provided in the next section. 
 
2.3 Compositional data variables and sample statistics 

 
We use 𝐗𝐗 to denote a multivariate CoDa dataset with n observations described 

by p D-part CoDa variables, i.e., 

𝐗𝐗 = �𝐗𝐗1,𝐗𝐗2, … ,𝐗𝐗𝑝𝑝� = �

𝐎𝐎1′

𝐎𝐎2′
⋮
𝐎𝐎𝑛𝑛′
� = �

𝐱𝐱11 𝐱𝐱12
𝐱𝐱21 𝐱𝐱22

… 𝐱𝐱1𝑝𝑝
… 𝐱𝐱2𝑝𝑝

⋮ ⋮
𝐱𝐱𝑛𝑛1 𝐱𝐱𝒏𝒏2

⋱ ⋮
… 𝐱𝐱𝑛𝑛𝑝𝑝

�, 

 
where 𝐱𝐱𝑖𝑖𝑗𝑗 = [𝑥𝑥𝑖𝑖𝑗𝑗1, 𝑥𝑥𝑖𝑖𝑗𝑗2, … , 𝑥𝑥𝑖𝑖𝑗𝑗𝐷𝐷]′ ∈ 𝑆𝑆𝐷𝐷(1 ≤ 𝑖𝑖 ≤ 𝑙𝑙, 1 ≤ 𝑗𝑗 ≤ 𝑝𝑝) is a D-part CoDa, 
𝐗𝐗𝑗𝑗 = (𝐱𝐱1𝑗𝑗, 𝐱𝐱2𝑗𝑗,⋯ , 𝐱𝐱𝑛𝑛𝑗𝑗)′ (𝑗𝑗 = 1,2, … ,𝑝𝑝)  is a CoDa variable, and 𝐎𝐎𝑖𝑖 =
(𝐱𝐱𝑖𝑖1, 𝐱𝐱𝑖𝑖2,⋯ , 𝐱𝐱𝑖𝑖𝑝𝑝)′ (𝑖𝑖 = 1,2, …𝑙𝑙) is a CoDa observation. 
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For any two CoDa variables 𝐗𝐗𝑗𝑗 and 𝐗𝐗𝑗𝑗′(1 ≤ 𝑗𝑗, 𝑗𝑗′ ≤ 𝑝𝑝) and any real number 𝛼𝛼 ∈
ℝ, addition and scalar-multiplication of CoDa variables are defined, respectively, as 
follows: 

𝐗𝐗𝑗𝑗 ⊕  𝐗𝐗𝑗𝑗′ = (𝐱𝐱1𝑗𝑗 ⊕ 𝐱𝐱1𝑗𝑗′ , 𝐱𝐱2𝑗𝑗 ⊕ 𝐱𝐱1𝑗𝑗′ ,⋯ , 𝐱𝐱𝑛𝑛𝑗𝑗 ⊕ 𝐱𝐱1𝑗𝑗′)′          
𝛼𝛼 ⊙ 𝐗𝐗𝑗𝑗 = (𝛼𝛼 ⊙ 𝐱𝐱1𝑗𝑗,𝛼𝛼 ⊙ 𝐱𝐱2𝑗𝑗,⋯ ,𝛼𝛼 ⊙ 𝐱𝐱𝑛𝑛𝑗𝑗)′                     

The sample mean, sample variance, and sample covariance are respectively 
defined by(Wang et al., 2015):   

𝐸𝐸𝑆𝑆𝐷𝐷(𝐗𝐗𝑗𝑗) = 𝑿𝑿�𝑗𝑗 = 𝑪𝑪(𝑔𝑔(𝐱𝐱�𝑗𝑗1),𝑔𝑔(𝐱𝐱�𝑗𝑗2),⋯ ,𝑔𝑔(𝐱𝐱�𝑗𝑗𝐷𝐷)), 
𝑉𝑉𝑉𝑉𝑟𝑟𝑆𝑆𝐷𝐷(𝐗𝐗𝑗𝑗) = 1

𝑛𝑛−1
∑ �𝐱𝐱𝑖𝑖𝑗𝑗 ⊖ 𝑿𝑿�𝑗𝑗�𝑆𝑆𝐷𝐷

2𝑛𝑛
𝑖𝑖=1 , 

𝐶𝐶𝐶𝐶𝑣𝑣𝑆𝑆𝐷𝐷(𝐗𝐗𝒋𝒋,𝐗𝐗𝒋𝒋′) = 1
𝑛𝑛−1

∑ �𝐱𝐱𝑖𝑖𝑗𝑗 ⊖ 𝑿𝑿�𝑗𝑗, 𝐱𝐱𝑖𝑖𝑗𝑗′ ⊖ 𝑿𝑿�𝑗𝑗′�𝑆𝑆𝐷𝐷
𝑛𝑛
𝑖𝑖=1 , 

where 𝐱𝐱�𝑗𝑗𝑗𝑗 = (𝑥𝑥1𝑗𝑗𝑗𝑗,𝑥𝑥2𝑗𝑗𝑗𝑗 , … , 𝑥𝑥𝑛𝑛𝑗𝑗𝑗𝑗)′ for 𝑘𝑘 = 1, 2, … ,𝐷𝐷.  

3. Model

3.1 Factor model for multivariate compositional data 

For a random D-part CoDa variable 𝐗𝐗𝑗𝑗(1 ≤ 𝑗𝑗 ≤ 𝑝𝑝), the factor analysis model 
for is defined as 

𝐗𝐗𝑗𝑗 = �𝑉𝑉𝑗𝑗1 ⊙ 𝐅𝐅1�⊕⋯⊕ �𝑉𝑉𝑗𝑗𝑗𝑗 ⊙ 𝐅𝐅𝑗𝑗�⊕ 𝛆𝛆𝑗𝑗,              (1) 

with 𝑚𝑚(𝑚𝑚 < 𝑝𝑝) D-part CoDa factors 𝐅𝐅𝑟𝑟(1 ≤ 𝑟𝑟 ≤ 𝑚𝑚), the error term 𝛆𝛆𝑗𝑗 , and the 
loading coefficient 𝑉𝑉𝑗𝑗𝑟𝑟 ∈ ℝ . Usually, we use 𝐀𝐀 = (𝑉𝑉𝑗𝑗𝑟𝑟)𝑝𝑝×𝑗𝑗 (𝑗𝑗 = 1,2,⋯ ,𝑝𝑝 ; 𝑟𝑟 =
1,2,⋯ ,𝑚𝑚) to denote the loading matrix.  

The model in Eq. (1) follows the usual factor model assumptions (Basilevsky, 
1995). Thus, we need to estimate the factor loading matrix 𝐀𝐀 ∈ ℝ𝑝𝑝×𝑗𝑗 and the factor 
score 𝐅𝐅𝑟𝑟 = (𝒇𝒇1𝑟𝑟,𝒇𝒇2𝑟𝑟,⋯ ,𝒇𝒇𝑛𝑛𝑟𝑟)′ for 𝑟𝑟 = 1,2,⋯ ,𝑚𝑚, where 𝒇𝒇𝑖𝑖𝑟𝑟 ∈ 𝑆𝑆𝐷𝐷(1 ≤ 𝑖𝑖 ≤ 𝑙𝑙).  

3.2 Estimation 

There are many estimation methods for factor analysis (Woods & Edwards, 
2007). In this paper, we mainly follow the principal factor analysis (PFA) procedure 
for factor loading estimation.  Similar to the PCA method proposed by Wang et al. 
(2015), we propose the following algorithm.  

Step 1: estimate the covariance matrix of 𝐗𝐗𝑗𝑗 by the sample covariance matrix 
𝜮𝜮 = (𝜎𝜎𝑗𝑗𝑗𝑗′)𝑝𝑝×𝑝𝑝 with 𝜎𝜎𝑗𝑗𝑗𝑗′ = 𝐶𝐶𝐶𝐶𝑣𝑣𝑆𝑆𝐷𝐷�𝐗𝐗𝒋𝒋,𝐗𝐗𝒋𝒋′� for 𝑗𝑗 ≠ 𝑗𝑗′ and 𝜎𝜎𝑗𝑗𝑗𝑗 = 𝑉𝑉𝑉𝑉𝑟𝑟𝑆𝑆𝐷𝐷(𝐗𝐗𝑗𝑗). 
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Step 2: estimate 𝜦𝜦 = 𝑑𝑑𝑖𝑖𝑉𝑉𝑔𝑔(𝜆𝜆1,𝜆𝜆2,⋯ , 𝜆𝜆𝑗𝑗)  and 𝑸𝑸 = (𝐞𝐞𝟏𝟏, 𝐞𝐞𝟐𝟐,⋯ , 𝐞𝐞𝒎𝒎)  by 
decomposing 𝜮𝜮 = 𝑸𝑸𝜦𝜦𝑸𝑸′ , where 𝜆𝜆𝑗𝑗  and 𝐞𝐞𝒋𝒋  are respectively the j-th 
eigenvalue and eigenvector.  

Step 3: compute the loading matrix by 𝐀𝐀� = ��𝜆𝜆1𝐞𝐞𝟏𝟏,�𝜆𝜆2𝐞𝐞𝟐𝟐,⋯ ,�𝜆𝜆𝑗𝑗𝐞𝐞𝒎𝒎�. 

Remark 1. The number of factors m can be determined by experience. Usually, a 
threshold value, such as 70% or 80%, should be set according to the application 
scenario. The cumulative contribution rate (CCR) of the first m eigenvalues, i.e., 
𝐶𝐶𝐶𝐶𝑅𝑅(𝑚𝑚) = ∑ 𝜆𝜆𝑟𝑟𝑗𝑗

𝑟𝑟=1 ∑ 𝜆𝜆𝑗𝑗
𝑝𝑝
𝑗𝑗=1� , should not be less than the pre-defined threshold 

value. Then, m can be determined. 
Remark 2. It is very often that the original solution of  𝐀𝐀� has a relatively low power 
of interpretation. The common practice is to use varimax rotation technique, i.e., 
multiplying 𝐀𝐀�  by an orthogonal matrix so that sum of variance of the squared 
loadings in the rotated matrix is maximised. For convenience, we still denote the 
rotated loading matrix as 𝐀𝐀�. 

In the case of compositional data, the estimation of factor score 𝐅𝐅1,𝐅𝐅2,⋯ ,𝐅𝐅𝑗𝑗 
cannot be traditionally done. The problem can be solved by considering Eq. (1) as a 
regression model, where 𝐗𝐗𝑗𝑗  is the dependent variable, the rotated factor loadings 
𝑉𝑉𝑗𝑗1,𝑉𝑉𝑗𝑗2,⋯ ,𝑉𝑉𝑗𝑗𝑗𝑗  are independent variables, factors 𝐅𝐅1,𝐅𝐅2,⋯ ,𝐅𝐅𝑗𝑗  are the to-be-
estimated coefficients, and 𝛆𝛆𝑗𝑗 is the error term. Such a model is called simplicial-
simplicial regression, where both sides of the equation contain compositional data.  

Most published papers regarding simplicial-simplicial regression involve 
transformations of both simplicial sides (Chen et al., 2017; Han & Yu, 2022; Hron 
et al., 2012; Wang et al., 2013). A log-ratio transformation is used for both the 
response and predictor variables and performed a multivariate linear regression 
model. Inspired by this, we propose the following regression method for factor score 
estimation.  

Step 1: perform ilr transformation on both sides of Eq. (1) to obtain the new 
regression models as: 

⎩
⎨

⎧
𝑥𝑥𝑖𝑖𝑗𝑗1∗ = 𝑉𝑉𝑗𝑗1𝑓𝑓𝑖𝑖11∗ +⋯+ 𝑉𝑉𝑗𝑗𝑗𝑗𝑓𝑓𝑖𝑖𝑗𝑗1∗ + 𝜖𝜖𝑖𝑖𝑗𝑗1∗

𝑥𝑥𝑖𝑖𝑗𝑗2∗ = 𝑉𝑉𝑗𝑗1𝑓𝑓𝑖𝑖12∗ +⋯+ 𝑉𝑉𝑗𝑗𝑗𝑗𝑓𝑓𝑖𝑖𝑗𝑗2∗ + 𝜖𝜖𝑖𝑖𝑗𝑗2∗
⋯

𝑥𝑥𝑖𝑖𝑗𝑗,𝐷𝐷−1
∗ = 𝑉𝑉𝑗𝑗1𝑓𝑓𝑖𝑖1,𝐷𝐷−1

∗ + ⋯+ 𝑉𝑉𝑗𝑗𝑗𝑗𝑓𝑓𝑖𝑖𝑗𝑗,𝐷𝐷−1
∗ + 𝜖𝜖𝑖𝑖𝑗𝑗,𝐷𝐷−1

∗

,            (2) 

where 𝑖𝑖𝑙𝑙𝑟𝑟�𝒙𝒙𝑖𝑖𝑗𝑗� = 𝒙𝒙𝑖𝑖𝑗𝑗∗ = �𝑥𝑥𝑖𝑖𝑗𝑗1∗ , 𝑥𝑥𝑖𝑖𝑗𝑗2∗ ,⋯ , 𝑥𝑥𝑖𝑖𝑗𝑗,𝐷𝐷−1
∗ �′ , 𝑖𝑖𝑙𝑙𝑟𝑟(𝒇𝒇𝑖𝑖𝑟𝑟) = 𝒇𝒇𝑖𝑖𝑟𝑟∗ =

�𝑓𝑓𝑖𝑖𝑟𝑟1∗ ,𝑓𝑓𝑖𝑖𝑟𝑟2∗ ,⋯ ,𝑓𝑓𝑖𝑖𝑟𝑟,𝐷𝐷−1
∗ �′ and 𝑖𝑖𝑙𝑙𝑟𝑟�𝛆𝛆𝑖𝑖𝑗𝑗� = 𝛆𝛆𝑖𝑖𝑗𝑗∗ = �𝜖𝜖𝑖𝑖𝑗𝑗1∗ , 𝜖𝜖𝑖𝑖𝑗𝑗2∗ ,⋯ , 𝜖𝜖𝑖𝑖𝑗𝑗,𝐷𝐷−1

∗ �′.

Step 2: for 𝑙𝑙 = 1,2,⋯ ,𝐷𝐷 − 1, estimate the l-th model in Eq. (2) via OLS method 
and obtain �𝑓𝑓𝑖𝑖1𝑙𝑙∗ ,𝑓𝑓𝑖𝑖2𝑙𝑙∗ ,⋯ ,𝑓𝑓𝑖𝑖𝑗𝑗𝑙𝑙

∗ �
′ = �𝐀𝐀�′𝐀𝐀��−1𝐀𝐀�𝑇𝑇�𝑥𝑥𝑖𝑖1𝑙𝑙∗ , 𝑥𝑥𝑖𝑖2𝑙𝑙∗ ,⋯ , 𝑥𝑥𝑖𝑖𝑝𝑝𝑙𝑙∗ �𝑇𝑇 .
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Step 3: perform the inversed ilr transformation on 𝒇𝒇�𝑖𝑖𝑟𝑟∗ = �𝑓𝑓𝑖𝑖𝑟𝑟1∗ ,𝑓𝑓𝑖𝑖𝑟𝑟2∗ ,⋯ ,𝑓𝑓𝑖𝑖𝑟𝑟,𝐷𝐷−1
∗ �′ 

to obtain the estimated factor score 𝒇𝒇�𝑖𝑖𝑟𝑟 = �𝑓𝑓𝑖𝑖𝑟𝑟1,𝑓𝑓𝑖𝑖𝑟𝑟2,⋯ ,𝑓𝑓𝑖𝑖𝑟𝑟𝐷𝐷�.  
So far, we have introduced the factor analysis model for multivariate 

compositional data and proposed a two-step estimation methos, referred to as 
FAMCoDa method hereinafter. The figure presents the framework of the FAMCoDa 
method. 

Figure 1. Flowchat of the proposed FAMCoDa method 
Source: Illustration by authors. 

4. Simulation studies

To demonstrate the performance of the proposed method, we present here a 
number of simulation experiments using synthetic data with predefined correlation 
structures. In each experiment, we generate a matrix 𝐗𝐗𝑛𝑛×(𝐷𝐷×𝑝𝑝), which contains 𝑙𝑙 
observations described 𝑝𝑝-dimensional 𝐷𝐷-part CoDa, by the following three steps.  

Step 1: generate 𝐷𝐷 − 1  (𝑝𝑝 × 𝑝𝑝) -dimensional correlation matrices 𝑅𝑅𝑙𝑙(𝑙𝑙 =
1,2, . . . ,𝐷𝐷 − 1)  satisfying a given correlation structure, whose details will be 
described later. For each 𝑅𝑅𝑙𝑙 , conduct an eigen-decomposition, i.e.,𝑅𝑅𝑙𝑙 = 𝑄𝑄𝑙𝑙Λ𝑙𝑙𝑄𝑄𝑙𝑙𝑇𝑇 , 
where 𝑄𝑄𝑙𝑙 is a matrix composing by the orthogonal eigenvectors of 𝑅𝑅𝑙𝑙, and Λ𝑙𝑙 is a 
diagonal matrix whose non-zero entries are the eigenvalues of 𝑅𝑅𝑙𝑙.  
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Step 2: Generate an (𝑙𝑙 × 𝑝𝑝)-dimensional matrix  𝐗𝐗𝑙𝑙∗, whose 𝑖𝑖-th (𝑖𝑖 = 1,2,⋯ ,𝑙𝑙) 
row �𝑥𝑥𝑖𝑖1𝑙𝑙∗ ,𝑥𝑥𝑖𝑖2𝑙𝑙∗ , … 𝑥𝑥𝑖𝑖𝑝𝑝𝑙𝑙∗ �  equals to 𝑄𝑄𝑙𝑙Λ𝑙𝑙

1 2⁄ 𝑄𝑄𝑙𝑙𝑇𝑇𝐔𝐔𝑖𝑖 , where 𝐔𝐔𝑖𝑖  is a vector randomly 
selected from 𝑝𝑝-dimensional normal distribution 𝑁𝑁(𝝁𝝁, Σ) with 𝝁𝝁 = 𝟎𝟎 and Σ as an 
identity matrix.  

Step 3: Let 𝐱𝐱𝑖𝑖𝑗𝑗∗ =�𝑥𝑥𝑖𝑖𝑗𝑗1∗ , 𝑥𝑥𝑖𝑖𝑗𝑗2∗ , … 𝑥𝑥𝑖𝑖𝑗𝑗(𝐷𝐷−1)
∗ �. Conduct an inversed ilr transformation 

to 𝐱𝐱𝑖𝑖𝑗𝑗∗  and obtain a 𝐷𝐷-part compositional data 𝐱𝐱𝑖𝑖𝑗𝑗 = [𝑥𝑥𝑖𝑖𝑗𝑗1, 𝑥𝑥𝑖𝑖𝑗𝑗2, … , 𝑥𝑥𝑖𝑖𝑗𝑗𝐷𝐷]′. 
Concerning the correlation structure in 𝑅𝑅𝑙𝑙, we design eight cases as shown in 

Table 1. In Case 1-2, there is only one factor. Case 3-5 and Case 6 respectively 
consider two and three factors. Within each group, it is regarded as highly correlated 
if correlation coefficient values are 0.8~1, and moderately correlated between 
0.5~0.8. For variables from different factors, correlation coefficient values are set to 
0~0.3. A total of 100 experiments are conducted. The parameters are set as 𝑝𝑝 = 8,
𝑙𝑙 = 100, 𝐷𝐷 = 3.  

Table 1. Experimental design 
Case Factor number Correlation structure 

1 1 𝑋𝑋1 − 𝑋𝑋8 are highly correlated. 
2 1 𝑋𝑋1 − 𝑋𝑋8 are moderately correlated. 

3 2 𝑋𝑋1 − 𝑋𝑋3 are highly correlated. 
𝑋𝑋4 − 𝑋𝑋8 are highly correlated. 

4 2 𝑋𝑋1 − 𝑋𝑋3 are highly correlated. 
𝑋𝑋4 − 𝑋𝑋8 are moderately correlated. 

5 2 𝑋𝑋1 − 𝑋𝑋3 are moderately correlated. 
𝑋𝑋4 − 𝑋𝑋8 are moderately correlated. 

6 3 
𝑋𝑋1 − 𝑋𝑋3 are highly correlated. 
𝑋𝑋4 − 𝑋𝑋6 are highly correlated. 
𝑋𝑋7 − 𝑋𝑋8 are highly correlated. 

Source: Values used by authors. 

In each case shown in Table 1, we build factor models based on the number of 
factors and observe whether the estimates of the factor models correctly reflect the 
correlation structure of the original variables designed in Table 1. For statistical 
analysis, we define a metric called the Correct Detection Ratio (CDR), which is the 
ratio of times in 100 experiments that the factor model correctly identifies no less 
than q of the original variables. We set q = 8, 7, 6 and 5. Next, we need to define 
what we mean by "correctly identified". Take Case 1 for example, at this point we 
set the number of factors to 1 and observe the loading coefficients of that factor on 
𝑋𝑋1 − 𝑋𝑋8. If the loading coefficients are all greater than 0.5 (in factor analysis, when 
the loading coefficients are greater than 0.5, the correlation between the factor and 
the original variable is generally considered to be high), then we can assume that 
𝑋𝑋1 − 𝑋𝑋8 are all correctly identified by the model. That is, the factor analysis model 
correctly captures the correlation structure in the original data. 
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Table 2 reports the results of the simulated studies. We can see that, in Case 1, 
2, 3 and 4, FAMCoDa method shows a nearly perfect performance in recovering the 
pre-defined correlation structure in 100 experiments. Nevertheless, the method 
behaves slightly different in Case 5 and 6. In Case 5, when two variable groups are 
designed as moderately correlated, our method well captures the structure in a 
frequency of only 34%. In Case 6, although the three variable groups are all highly 
correlated within each group, our method shows a relatively low ability of 
identifying such a structure.  

Table 2.  Correct Detect Ratio in six simulation cases 
Case q=8 q=7 q=6 q=5 

1 100 100 100 100 
2 100 100 100 100 
3 100 100 100 100 
4 98 100 100 100 
5 34 43 66 89 
6 52 69 80 80 

Source: Calculation by authors. 

5. Case study

Industrial consumption structure reflects the technological and economic links 
among different industrial sectors, referred to simply as ‘sectors’ hereinafter. On the 
one hand, it reflects the degree of dependence among these sectors, while, on the 
other hand, a difference in the industrial consumption structures of different 
countries can reflect a difference in the technological level of different sectors. 
Therefore, it is certainly of economic significance to show the differences among 
countries through industrial consumption structure data. The main purposes of this 
case is to use the factor model proposed in this paper to identify countries with a 
high correlation in industrial consumption structure and to classify these countries 
according to the compositional data that describes their industrial consumption 
structures. 

5.1 Data and explanatory analysis 

We use the World Input-Output Table (WIOD) published by the European 
Union, where country and sectoral classifications are harmonized over long time 
series, and which provides consistent single-country input-output tables for 
individual countries and sectors, which is more suitable for the analytical scenario 
of this case. The latest updated version of this data is up to the year 2014. According 
to the input-output table, the proportion of products or services consumed by each 
sector in each country and sector in the total global consumption of the sector is 
calculated and the industrial consumption structure data is obtained as compositional 
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data.  For example, consumption of products or services in 34 industry sectors of 
Australia's agriculture, forestry, animal husbandry, and fishery industry in 2014 can 
be expressed as a 34-part CoDa, i.e., (0.335, 0.004, …, 0.001, 0.015). For the 
remaining 33 sectors in Australia, we used a similar expression. Therefore, a 
country’s consumption of products or services is considered as a 34-part CoDa 
variable with 34 observations. We collected such data for 41 countries and regions 
and in this way obtained a dataset with 41 CoDa variables and 34 observations, as 
shown in Table 3. 

Table 3. Industrial consumption data expressed by multivariate compositional data 
Industries Australia … USA 
A01-A03 (0.335, 0.004, ... , 0.001, 0.015) … (0.372, 0.011, ... , 0.002, 0.004) 

B4 (0.008, 0.094, ... , 0.003, 0.056) … (0.001, 0.265, ... , 0.001, 0.003) 
… … … … 

P85 (0.004, 0.004, ... , 0.026, 0.050) … (0.003, 0.002, ... , 0.019, 0.023) 
O84&R_S&T&U (0.017, 0.004, ... , 0.007, 0.077) … (0.002, 0.005, ... , 0.011, 0.063) 

Source: Raw data from WIOD and processed by authors. 

5.2 Factor analysis 

The eigenvalues and the cumulative contribution rates are listed in Table 4. 
With regard to the cumulative contribution rate, we know that the first five factors 
are able to represent more than 75% of the original variables. Therefore, five factors 
are selected for further analysis. 

Table 4. Eigenvalues and cumulative contribution rate 
r  𝝀𝝀𝒓𝒓 𝐶𝐶𝐶𝐶𝑅𝑅(𝑚𝑚) r 𝝀𝝀𝒓𝒓 𝐶𝐶𝐶𝐶𝑅𝑅(𝑚𝑚) r 𝝀𝝀𝒓𝒓 𝐶𝐶𝐶𝐶𝑅𝑅(𝑚𝑚) 
1 28.103 68.545 15 0.358 86.411 29 0.214 95.606 
2 0.833 70.576 16 0.341 87.244 30 0.202 96.099 
3 0.680 72.235 17 0.330 88.047 31 0.193 96.570 
4 0.627 73.764 18 0.320 88.828 32 0.188 97.027 
5 0.624 75.287 19 0.305 89.572 33 0.180 97.467 
6 0.586 76.716 20 0.297 90.297 34 0.172 97.886 
7 0.522 77.988 21 0.289 91.003 35 0.164 98.285 
8 0.515 79.244 22 0.272 91.667 36 0.162 98.681 
9 0.480 80.415 23 0.264 92.311 37 0.149 99.045 

10 0.476 81.576 24 0.237 92.890 38 0.141 99.388 
11 0.435 82.637 25 0.236 93.466 39 0.135 99.717 
12 0.424 83.671 26 0.224 94.012 40 0.088 99.932 
13 0.392 84.628 27 0.222 94.553 41 0.028 100.000 
14 0.373 85.538 28 0.218 95.085 

Source: Calculation by authors. 
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The rotated factor loading matrix, as shown in Table 5, was solved using the 
maximum variance method. The fact that all the communalities were above 0.6 
indicates that the extracted factors are a better explanation for the variance of the 
original CoDa variables. To understand the meaning of the extracted factors, we took 
a close look at the loadings. The maximum loading in each row is highlighted in bold 
for the sake of clarity. Accordingly, factors 1–5 correspond to country groups 1–5, 
respectively.  The countries represented by Factor 1 are mainly concentrated in 
Central and Northern Europe. Their technological development level and 
socioeconomic status both rank first among European countries. The countries 
represented by Factor 2 include most non-European countries and four European 
countries closer to North Africa and West Asia. Factor 3 consists mainly of three 
countries that border the Mediterranean Sea: Cyprus, Greece and Malta. Services, 
mainly including tourism, transportation and finance, is the main industry for each 
of these three countries, accounting for more than 70% of each of their GDP in 2014. 
The countries represented by Factor 4 are concentrated in the Central and Eastern 
Europe. Most of these countries have an advantage in a particular aspect of industry. 
For instance, The Czech Republic, Slovakia, Slovenia, and Italy are prominent in the 
automobile industry, and Croatia and Lithuania are superior in the light industry. 
Factor 5 mainly represents India, a country that has developed rapidly in recent years. 
The outstanding feature of its industrial structure is that the proportion of its industry 
dedicated to agriculture is much higher than most other countries. 

Table 5. Factor loadings after rotation 
Country 𝑭𝑭𝟏𝟏 𝑭𝑭𝟐𝟐 𝑭𝑭𝟑𝟑 𝑭𝑭𝟒𝟒 𝑭𝑭𝟓𝟓 

AUT 0.542 0.403 0.274 0.453 0.310 
BEL 0.571 0.427 0.266 0.424 0.235 
CHE 0.539 0.387 0.290 0.382 0.343 
DEU 0.526 0.458 0.266 0.412 0.261 
DNK 0.512 0.445 0.362 0.359 0.203 
EST 0.484 0.440 0.246 0.517 0.217 
FIN 0.471 0.383 0.208 0.430 0.318 
GBR 0.552 0.490 0.277 0.317 0.199 
HUN 0.542 0.417 0.289 0.478 0.189 
IRL 0.744 0.278 0.182 0.189 0.016 
LVA 0.504 0.377 0.125 0.435 0.227 
NLD 0.577 0.408 0.303 0.407 0.162 
NOR 0.469 0.416 0.256 0.350 0.248 
POL 0.498 0.489 0.209 0.488 0.241 
PRT 0.502 0.479 0.298 0.436 0.246 
SWE 0.510 0.453 0.254 0.363 0.305 
FRA 0.376 0.642 0.259 0.288 0.205 
AUS 0.330 0.558 0.173 0.440 0.180 
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Country 𝑭𝑭𝟏𝟏 𝑭𝑭𝟐𝟐 𝑭𝑭𝟑𝟑 𝑭𝑭𝟒𝟒 𝑭𝑭𝟓𝟓 
BGR 0.460 0.476 0.285 0.294 0.352 
BRA 0.406 0.523 0.169 0.436 0.102 
CAN 0.301 0.746 0.197 0.315 0.166 
CHN 0.437 0.510 0.294 0.438 0.270 
ESP 0.460 0.573 0.276 0.352 0.237 
IDN 0.289 0.600 0.279 0.197 0.250 
JPN 0.354 0.641 0.238 0.272 0.260 
KOR 0.404 0.656 0.248 0.289 0.237 
ROU 0.120 0.528 0.348 0.487 0.165 
TUR 0.349 0.566 0.265 0.342 0.249 
TWN 0.379 0.650 0.286 0.307 0.190 
USA 0.383 0.556 0.354 0.269 0.197 
CYP 0.245 0.378 0.663 0.266 0.054 
GRC 0.399 0.242 0.556 0.029 0.453 
MLT 0.210 0.242 0.616 0.474 0.112 
ITA 0.488 0.465 0.229 0.516 0.188 
CZE 0.309 0.215 0.288 0.654 0.223 
HRV 0.396 0.398 0.416 0.454 0.236 
LTU 0.249 0.432 0.107 0.619 0.232 
SVK 0.429 0.400 0.289 0.598 0.136 
SVN 0.475 0.381 0.265 0.556 0.092 
IND 0.124 0.333 0.113 0.275 0.794 

Source: Calculation by authors. 

Using FAMCoDa, we also obtained the factor scores of the five country groups 
(see Table 6). The score of each factor, represented in CoDa, indicates the products 
or services consumed from a particular sector in this group as a proportion of their 
total consumption.  

Table 6. Factor scores 
F1 … F5 

A01-A03 (0.026, 0.023, …, 0.031, 0.030) … (0.017, 0.035, …, 0.035, 0.035) 
B4 (0.027, 0.020, …, 0.037, 0.031) … (0.043, 0.023, …, 0.014, 0.029) 
… … … … 

P85 (0.035, 0.025, …, 0.016, 0.025) … (0.025, 0.041, …, 0.020, 0.035) 
O84&R_S&T&U (0.029, 0.032, …, 0.029, 0.021) … (0.028, 0.037, …, 0.028, 0.025) 

Source: Calculation by authors. 
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6. Conclusions

In this paper, we propose factor analysis for multivariate compositional data and 
its two-step estimation method, i.e., FAMCoDa. We firstly present the mathematical 
model of FAMCoDa and provide the estimation methods of factor loadings and 
factor scores, and then validate the efficacy of FAMCoDa through comprehensive 
simulation experiments. Furthermore, we apply FAMCoDa to analyse the industrial 
consumption structure data of 41 countries. The results demonstrate that our 
proposed FAMCoDa can effectively handle multivariate compositional data, 
identifying complex inter-variable correlations and uncovering latent compositional 
factors. 

This study not only enriches the methodological toolkit for compositional data 
analysis but also highlights the potential of FAMCoDa in addressing practical 
economic challenges, particularly in fields dealing with large-scale compositional 
datasets. Future research can extend this work by exploring robust estimation 
methods for factor analysis of multivariate compositional data, developing 
confirmatory factor analysis techniques, and investigating potential applications in 
other domains such as environmental sciences and public health. 
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