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Abstract. Inventory control is a widely discussed topic in the real world, with organisations
increasingly turning to Machine Learning models to manage stock levels based on specific
product demand. This article presents an inventory model that addresses imperfect and
deteriorating products within a fuzzy environment. It allows for shortages, which may be
partially backlogged, and connects closely with concerns about carbon emissions and global
warming. Traditional inventory models, often based on integer-order differential equations,
typically overlook the system’s memory aspect. Addressing inventory management is crucial
in our efforts to combat global warming. This paper introduces a novel approach by
integrating carbon emission costs within a fuzzy environment. To capture the memory effect
of the system, Fractional Calculus is a powerful mathematical tool is employed. In the real
world, entrepreneurs frequently face challenges in pinpointing exact parameter values.
Therefore, this study considers uncertain factors such as ordering costs, deterioration rates,
and demand rates, treating them as triangular fuzzy numbers. The objective is to determine
the optimal ordering quantity and replenishment period to minimise average overall costs,
including carbon emissions. The defuzzification process utilises the Graded mean integration
method (GMIM), Centroid methods (CM), and Signed Distance method (SDM). Seasonal
demand forecasting is approached using Machine Learning methodologies. Numerical
results are analysed through the lens of memory concepts to validate the proposed
mathematical model.

Keywords: inventory control, Machine Learning algorithms, Fractional Calculus
Derivatives, carbon emission costs, seasonal demand forecasting.

JEL Classification: 90B05, 90B60, 91B42.

1. Introduction

Seasonal and weather conditions exert a significant influence on global market
demand, a pivotal factor in inventory management across all business sectors due to
its inherent challenges. Seasonal demand, exacerbated by events like Christmas or
Black Friday, drives heightened consumer spending, while weather conditions
directly impact sales, such as increased garden furniture purchases in spring. Despite
most studies relying on deterministic demand models, real-world demand fluctuates
seasonally. Accurate demand forecasting enables companies to optimise inventory
management, curb unnecessary costs, and elevate customer service levels. Machine
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learning (ML) stands out as an innovative tool to enhance the precision and reliability
of demand forecasts. Its applications span diverse fields including retail, economics,
military, and healthcare, with researchers actively developing algorithms like
Decision Tree-based Approaches to bolster demand forecasting capabilities (de
Almeida Neto and Castro, 2017). In our study, we implement the decision tree
classifier algorithm for seasonal demand forecasting. The deterioration of physical
products over time, such as flowers, vegetables, and medicines, poses substantial
challenges during transit and storage. Deterioration, defined as damage that renders
a product unfit for its intended use, contributes significantly to food waste, estimated
at 20-40% between harvest and consumption (Sethi, 2006). Products are seldom
perfect due to manufacturing defects, handling issues, and transit of economic
phenomena, operations research, mathematical programming, game theory,
marketing, statistical analysis methods and techniques, artificial intelligence, expert
systems, neuronal networks, and software tools for modelling and analysis of
economic phenomena.

Damage, complicating inventory management. While traditional models
assume deterministic deterioration rates, real-world rates are uncertain and can be
treated as fuzzy variables in advanced inventory models. Fuzzy inventory models,
accommodating uncertain deterioration rates, have been extensively studied
(Naserabadi, 2014). The unpredictability extends to defective product percentages in
deliveries, also treated as fuzzy variables. Modern concerns about carbon emissions
from industrial activities underscore the imperative to reduce the environmental
impact in inventory management practices. To the best of our knowledge, the impact
of demand forecasting on imperfect deteriorating products has rarely been addressed.
With this in mind, two research problems emerge: (a) How can machine learning-
based demand forecasting techniques enhance the accuracy and predictability of
seasonal demand forecasts for deteriorating products? (b) What are the advantages
of employing machine learning-based monthly predicted demand over fixed demand
in inventory management, integrated with metaheuristic algorithms? To tackle these
challenges, this article develops a machine learning-based fuzzy inventory model
considering imperfect deteriorating items under carbon emissions.

2. Literature review

In contemporary business strategies, the primary objective of inventory
management is increasingly focused on reducing carbon emissions (Singh and
Mishra, 2021). Many organisations are committed to this goal as a means to address
the challenge of global warming, which is exacerbated by carbon emissions. To
encourage sustainable practices, carbon emission costs are now integrated into
inventory models. Memory-based inventory systems, including fractional order
Economic Order Quantity (EOQ) and Economic Production Quantity (EPQ) models
(Pakhira et al., 2023), have emerged as pivotal aspects of modern inventory
management. Traditionally, the integer-order EOQ model has dominated the
literature but has shown limitations in accurately capturing the intricate dynamics of
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real-world demand patterns. This limitation has spurred researchers to explore
fractional order models, rooted in fractional calculus concepts introduced by
mathematicians such as Riemann and Liouville. These models incorporate past input
influences to determine future outputs, offering a more adaptable representation of
memory-affected systems in inventory management. For retailers who navigate this
terrain, it is crucial to model inventory systems that account for memory effects on
consumer behaviour influenced by factors such as advertisements. Recent advances
have particularly focused on scenarios involving deteriorating items with partial
backlogging and quadratic demand rate dynamics, showcasing the effectiveness of
fractional calculus in handling these complexities (Ghosh et al., 2022; Thirthar et al.,
2023; Jana et al., 2024). In a broader context, fuzzification is utilised to manage
uncertainties inherent in system components, providing a more realistic approach.

In the realm of inventory systems, various cost parameters exhibit time-
dependent uncertainty, underscoring the necessity for models that operate within a
fuzzy environment (Kumar et al., 2023). The globally recognised vehicle
manufacturer Ford has significantly increased the use of green and renewable energy
sources, bolstering the efficiency of its global production operations. Ruidas et al.
(2022) explored an interval-valued green pro- duction inventory model that
integrates controllable carbon emissions and green subsidies using particle swarm
optimisation. Their study highlighted a direct correlation between product
environmental sustainability and government subsidy intensity. It also underscored
positive outcomes for both manufacturing firms investing in green innovation (Gl)
and emission reduction technology (ERT), as well as environmental benefits.

Recently, Paul et al. (2022) applied meta-heuristic algorithms to develop a
production inventory model incorporating green investments and managed carbon
emissions. Our research focuses on the critical challenge of reducing industrial
carbon emissions through innovative manufacturing strategies and technologies. We
emphasise the significant role of regulatory policies and emission reduction
technologies (ERTS) in addressing environmental challenges on a global scale.
Introducing the Graded Mean Integration Method (GMIM), our study employs this
mathematical tool to represent fuzzy numbers in the context of environmental
sustainability and industrial emission reduction. The GMIM is chosen for its balance
of simplicity and accuracy, aligning seamlessly with our goal of providing clear and
precise representations in the complex realms of environmental assessment and
fuzzy logic, particularly concerning fuzzy environmental data associated with
industrial sector carbon emissions. In summary, the deliberate use of GMIM in our
research meets the demand for precise and manageable representations in the
intricate fields of environmental sustainability and industrial emission reduction.
These mathematical methods significantly enhance the clarity and accuracy of our
findings, enabling us to navigate the complex landscape of fuzzy environmental data
effectively.

The existing literature on the field of machine learning for demand forecasting
is limited, and the use of forecasting tools in business strategy is an ongoing debate.
Demand forecasting for business strategy is one of the most challenging tasks in
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modern business research. Generally, the global market demand depends on seasonal
and weather conditions. The demand forecasting model helps to predict the
overstocking and under-stocking situations and when demand rises or falls (Wright
& Schultz, 2018). For example, on Christmas Day, Amazon sells more goods than
on other days of the year. Therefore, instead of fixing demand, forecasted demand is
necessary. Different researchers used different forecasting methods over time in
inventory management. (Kirshners et al., 2010) studied the joint analysis of
continuous and discrete data using inductive decision trees. Recently, (Zohdi et al.,
2022) implemented various machine learning algorithms such as K-nearest
neighbours, decision tree, and gradient boosting to forecast demand and examine its
accuracy and performance compared to other approaches. But the forecasting
approach in inventory modelling has not been addressed. Therefore, this study
outlines the use of machine learning for demand forecast in inventory management
systems. This paper conducts a thorough review of the current literature on pricing
strategies and market analysis, with a focus on integrating machine learning models
for personalised dynamic pricing and predicting market trends. Its goals include
providing scalable pricing solutions, assisting retailers in making informed decisions
swiftly, and establishing reliable pricing strategies. Methodologically, the study
emphasises meticulous data preprocessing, feature engineering, exploratory data
analysis, and developing innovative features to enhance machine learning model
performance. Ensemble learning technique such as Decision Tree Classifier Singh
(as see in Fig. 2) and Mishra (2024) is introduced for their speed and accuracy
advantages with Fuzzy and Fuzzy learning both approaches.

2.1 Research Gap

In recent papers (Mishra et al.,2021; Jaggi et al., 2023; Rahaman et al., 2022;
Santra et al., 2023), ordinary differential equations have been utilised to develop
models incorporating fractional calculus in inventory systems or accounting for car-
bon emission costs. This research addresses this gap by formulating an inventory
model in a fuzzy setting that considers memory-dependent factors along with
associated carbon emission costs. Key gaps identified are:

1. We find that traditional inventory models often overlook the uncertain- ties in
deterioration rates and defective percentages, which can impact the accuracy of
demand forecasts and inventory management.

2. In existing models, we typically observe a reliance on fixed demand assumptions
rather than incorporating dynamic, machine learning-based demand forecasting
methods.

3. We note a lack of focus on integrating carbon emission costs into inventory models,
which is crucial for addressing sustainability concerns.

4. We have incorporated memory-effect factors, which are rarely considered in inventory
models, despite their potential to enhance understanding of how past actions influence
current inventory systems.
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2.2 Research contribution

o  We utilised fractional calculus to introduce memory effects into the inventory model
within a fuzzy environment, capturing the impact of past actions on the inventory
system.

e We extended the inventory model by including carbon emission costs, transforming it
into a green inventory model that reflects growing environmental sustainability
concerns.

e We developed a machine learning-based fuzzy inventory model using a decision tree
classifier to accurately forecast seasonal demand for deteriorating products.

o We demonstrated through numerical experiments that using seasonally forecasted
demand significantly reduces overall costs compared to relying on fixed demand
assumptions.

e We innovatively combined memory effects and carbon emission costs within a fuzzy
and fuzzy learning environment, providing a multidimensional approach to inventory
management.

e We showcased the potential for businesses to reduce their ecological footprint by
optimising ordering quantities and replenishment periods to minimise total average
costs, including carbon emission costs.

In summary, our study focuses on enhancing inventory management by
introducing memory effects, accounting for carbon emissions, and exploring their
interactions in a fuzzy environment. This multidimensional approach offers a
comprehensive understanding of inventory systems and paves the way for more
sustainable and efficient inventory management practices.

3. Model Formulation
3.1 Notations

In the subsection 3.1 the notations are outlined in Table 1 and rest of the notation
as usual meaning. In the subsection 3.2, the assumptions of the model are discussed.

Table 1. Notations

Notations
dr Forecasted Demand,
E, Carbon emission cost associated with item ordering,
0. Ordering cost/Setup cost,

Of. Ordering cost/Setup cost in fuzzy environment,

A, B Memory effects parameters related to total average cost,

TCy Minimised total average cost with fuzzy parameters,

TCy Minimised total average cost with fuzzy learning parameters,
HCf(a,, 5, | Total carrying cost in fractional-order model with fuzzy parameters,
HCrya,, 5, | Total carrying cost in fractional-order model with fuzzy learning

parameters,
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Notations
SCrappy | Total shortage cost for fractional order model with fuzzy parameters,
SCritamp,) | Total shortage cost for fractional order model with fuzzy learning
parameters,
LC¢(qa,, 5, | Total Lost sales cost for fractional order model with fuzzy parameters,
LCri(apmp,) | Total Lost sales cost for fractional order model with fuzzy learning
parameters,
PCria,) Total purchasing cost for fractional order model with fuzzy parameters,
PCri(a,y Total purchasing cost for fractional order model with fuzzy learning
parameters,
De Purchasing cost for fractional order model,
Pfe Purchasing cost for fractional order model with fuzzy parameters,
Pfic Purchasing cost for fractional order model with fuzzy learning parameters,
S¢ Shortage cost for fractional order model,
Sfc Shortage cost for fractional order model with fuzzy parameters,
Sfic Shortage cost for fractional order model with fuzzy learning parameters,
L. Lost sale cost for fractional order model,
Ly, Lost sale cost for fractional order model with fuzzy parameters,
L Lost sale cost for fractional order model with fuzzy learning parameters,
h. Holding cost for fractional order model,
hyc Holding cost for fractional order model with fuzzy parameters,
heic Holding cost for fractional order model with fuzzy learning parameters,
h; Holding cost with fuzzy learning rate,
s Shortage cost with fuzzy learning rate,
12 Purchasing cost with fuzzy learning rate,
L, Lost sale cost with fuzzy learning rate,
0, Ordering cost with fuzzy learning rate.

Source: Author’s own creation.

3.2 Presumptions

e Lead time is negligible.

e Aninfinite time horizon is considered.

e  The demand pattern of green products is based on forecasted demand.

e Shortages are allowed which are partially backlogged, and lost sales are also considered.

e The holding cost, ordering cost, shortage cost, and purchasing cost are represented as
triangular fuzzy numbers.

e Carbon emission costs are factored in for acquisition, transportation, ordering, inventory
holding, and shortages.

e The model focuses on a single type of deteriorating product with an infinite replenishment
rate.
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e  Defective products arise from imperfect manufacturing and handling issues, with k
represented as an interval trapezoidal fuzzy number and k is considered an interval
trapezoidal fuzzy number.

e  Retailers conduct a 100% screening process to identify defective products, which are
removed after screening.

e Screening and demand rates occur simultaneously, with the screening rate exceeding the
demand rate.

4. Model Formulation

To account for the impact of memory effects, we can express the following
differential equations:

dly(t)
= —d,, 0<t<t 1
dt f 1 1)
dl,(t)
o= —%dy, ty <t<Ty (2)
By incorporating kernel functions, the differential equations can be expressed as:
dll(t)—jtkt t")dqdt’ 0<t<t
dt ), ( )drdt, -
dl,(t) t , ,
dt =6ka(t—t)dfdt, tlstSTf

Incorporating the kernel function, denoted as k(t—t"), is crucial. This specific
type of kernel, k(t—t'), often exhibits inherent scaling characteristics, making it a
prevalent choice in modelling various natural phenomena. To create a fractional-
order model, we define the kernel function as:

k(t—t) = = (t—t"He2

1
(a—1)
where 0 <a <1 and I'(a) represents the gamma function. By applying the definition
of the Caputo fractional-order derivative (Ghosh et al.,2015; Pakhira et al., 2024),
we can express equations (1)-(2) as fractional differential equations with fractional
integration in the following form:

Ly (t
;E ) _ —M}%d,, 0o<t<t (3)
dL,(t
;E )_ —M}%8dy 4L <t<Ty (4)

Vol. 58, Issue 4/2024 329



Mamta Keswani

Next, we apply the Caputo fractional derivative of order (o. — 1) to both sides of
equations (3) and (4). Utilising the inverse relationship between derivatives and
integrals, we can retrieve the original fractional differential equations (3) and (4) for
the model:

- L Fos
o \ %, \ =
= > z
W =
3 NE AN 2
= [+) = —
g \ & 20N\ z
z 1 T E \ =
2 & 3 =
o g “ =
° = & TIME PERIOD (t)
\ x

Figure 1. Graphical representation of the proposed inventory model
Source: Author’s own creation.

d”I(¢)
= — <t<
dt f 0<t<ty (5)
d%l,(t
dzt( ) - ~8;d; t <t<Ty (6)

subject to boundary conditions: I, (t;) = 0 and I,(t;) = 0.

4.1 Analysis of the economic order quantity (EOQ) model with memory effects
The fractional-order inventory model described by equations (5)-(6) is operated

upon by the fractional integral operator on both sides, with the initial conditions

I;(t;) = 0and I,(t;) = 0, as follows:

dr(tf —t)

h® =T ™
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a a
o = 2D ®)

(¢ —-1)

In this context, I; (t) represents the memory-dependent positive inventory level
at time t, and I, (t) signifies the memory-dependent negative inventory level at time
t. Within this framework, o denotes the order of the fractional derivative, which
signifies the rate of change in the inventory level, commonly referred to as the
differential memory index.

Given that the inventory level diminishes over time (t), we define the maximum
positive inventory level I,,,,, att= 0 in the following manner:

dr(ty
Lpax = 1(0) = % 9

Here, the maximum backorder units during shortage time becomes,
8pds (T — t)
I'a-1)

Hence, the order size denoted as @ during the entire ordering interval [0, T¢] is
the combination of the maximum positive inventory level and the maximum
backorder units, given by

Smax = _Il(Tf) = (10)

Q = Lnax + Smax (11)

Our main objective is to minimise the costs associated with the inventory
system, which include holding costs and shortage costs. The total average cost is
calculated as the average of holding costs, shortage costs, purchasing costs, and
ordering costs over the ordering interval. The individual costs for this system
affected by memory effects are evaluated as follows:

4.2 Some Associated Inventory Costs
Holding costs vary over time and are not constant throughout the entire cycle
of the system. Therefore, we assume the inventory holding cost per unit as a time-

dependent function in the form of hg.t* This leads to the calculation of the RS
order inventory holding cost, denoted as

HC(a 5,0 (Tp) = hecM™Fm(t*my (t)) (12)

In this context, the symbol M—Pm for 0 < t < t; signifies the fractional
integration of order B,,, which is employed in the Riemann-Liouville sense.
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The parameter ,,, indicates the integral memory index. The computation of the
Btrorder shortage cost with fractional effects, denoted as:

SCiay, py) = SrcM™Pml,(t) (13)

Here, for the time interval t; <t < Ty, M ~Pm represents fractional
integration of order f3,,, used in the Riemann-Liouville sense. Additionally, sy

denotes the shortage cost per unit item.
The purchasing cost for the fractional-order model, indicated as:

PCr(ap) = pc* Q (14)

The Lost sale cost for the fractional-order model, indicated as:

LCf () = LyeM™Pm(1-6f) d; (15)

where, py. is considered as per unit cost, Q is the total order quantity. Hence, the
total average cost for the fractional-order inventory model in a fuzzy environment
can be expressed as:

_ HCr (a8, T SCr(ambm) T PCriam) + LCr(apm Bm) + Ec + Opc
T
i

TC;

Similarly, the total average cost for the fractional-order inventory model in
fuzzy learning environment can be expressed as:

_ HCrua, )  SCritamm) T PCricam) + LCri(an Bm) T Ec + Ofc

TC
f1
Ty
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Algorithm 1 Decision Tree Regression for Seasonal Demand Forecasting
1: Import Libraries
2: import pandas as pd
3: import numpy as np
4: from sklearn.model.selection import train.test_split
: from sklearn.tree import DecisionTreeRegressor
6: from sklearn.metrics import mean squared.error, mean absolute.error,
r2.score
7: import matplotlib.pyplot as plt
s: from sklearn.tree import plot._tree
9: Create Dataset
10: Define data as a dictionary and create DataFrame df
11: Convert Categorical Data
12: Convert ‘season’ column to numerical codes
13: Define Features and Target
14: X = df [[‘month ’, ‘season’]]
15: y = df [‘demand ’]
16: Split Data
17: X.train, X_test, y.train, y_test = train test_split(X, y,
test_size=(0.3, random_state=i)
1s: Train Model
19: Create a DecisionTreeRegressor object and fit it to X_train and y_train
20: Predict
21: Use the trained model to predict y_pred for X_test
: Evaluate
: Calculate and print Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and R-squared (R2)
: Show Predictions
: Create a DataFrame of actual vs. predicted values and print it
: Monthly Predictions
: Create a DataFrame months for each month with corresponding season, convert
‘season’ to numerical codes, predict demand for each month, and print the results
Plot Decision Tree
: Plot the Decision Tree using plot_tree with features *month’ and ‘season’

o

g8

g8

E

Figure 2. Algorithmic approach of Decision tree classifier method
Source: Author’s own creation.

where, the learning rate of holding cost is as below similarly for other shortage, lost
sale, setup, and purchasing cost also.

h
hﬂc=hc+l—;,o<,1<1
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4.3 Proposed Methodology for data forecasting of seasonal demand

Decision trees are highly effective methods widely used in fields such as
machine learning, image processing, and pattern recognition (Charbuty &
Abdulazeez, 2021). These models work by successively combining a series of basic
tests in an efficient and cohesive manner, where the numeric features are compared.
The construction of conceptual rules in decision trees is significantly simpler than
developing the numerical weights used in neural networks (Priyanka & Kumar,
2020). Primarily utilised for classification, decision trees consist of nodes and
branches; each node represents features within a category to be classified, and each
subset defines a potential value for the node (Mahesh, 2020). Due to their simplicity
and accuracy across various data types, decision trees have been widely implemented
in numerous applications.

4.4 Resulting optimisation problem

For Optimisation applying four methods three with triangular fuzzy parameters
i.e., Graded mean integration method (GMIM), Centroid methods (CM) and Signed
Distance method (SDM) and other is applying fuzzy learning method. In the
numerical section, a example is provided to validate the model’s application. The
author estimates the seasonal demand for a deteriorating product based on the
observed data trends. Seasonal demand data is presented in Tables 2 and 3 and the
dataset is then divided into training and testing sets. Three forecasting methods are
employed: a Decision Tree-based classifier (Algorithm 1). Eighty percent of the data
is used for training, and the remaining twenty percent is reserved for testing. The
month-wise forecasted demand is then obtained by inputting the month value as a
parameter.

The complete initial data for the numerical example is as follows:

Table 2. Empirical Parameters for solving numerical

Parameters Units Data
U, B unit 0.3,1.0

g $/unit/year 0.05
(hl, k2 K3) $/unit/year (2.5,2.6,2.7)
(sk,s2,s3) $/unit/year (1.2,1.3,1.4)
(01,02 02) $/unit/year (25,26,27)
(pl,p3,p3) $/unit/year (20,22,27)
(L%, I2,13) $/unit/year (2.2,2.3,2.4)

Source: Author’s own creation.
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Table 3. Season-wise product demand

Season name Month Product demand
Winter 12,1 1.0-1.2
Spring 2,3 1.2-1.3
Summer 45,6 1.3-1.4
Monsoon 7,8,9 1.4-1.6
Autumn 10,11 1.6-1.8

Source: Author’s own creation.

After getting month-wise demand, the outcome of the optimal total cost for an
individual month per unit time for Example 1 with both approaches i.e., Fuzzy and
Fuzzy learning are depicted in Table 4a and 4b. Due to the highly non-linear cost
function, we have used MAPLE and PYTHON software to determine optimal values.

Table 4a. Tabular Representation of Decision Tree-based Classifier Optimal Results
by using Graded mean integration method (GMIM) and Centroid Method (CM)

Forecasted Graded mean integration method Centroid Method
Demand (DTC) (GMIM) (C™M)

Values tf TF | TCS 5 | Q° tf TF | TCS 5. Q¢
1.15 046 | 7.03 | 31.48 121 0.31 5.18 42.26 1.08
145 0.57 7.93 50.90 1.61 0.37 5.95 66.86 1.44
147 0.58 | 8.02 | 52.70 1.64 0.38 6.03 69.11 1.46
1.32 0.50 7.44 40.97 1.42 0.33 5.53 54.35 1.27
1.35 0.52 7.54 43.02 1.46 0.34 5.61 56.95 131
1.37 0.53 7.61 44.46 1.49 0.35 5.67 58.77 1.33
142 0.55 | 7.80 | 48.36 1.56 0.36 5.84 63.67 1.39
1.49 0.59 8.10 54.57 1.67 0.39 6.11 71.46 1.49
1.60 0.66 8.64 66.55 1.85 0.51 7.42 77.06 1.73
1.62 0.68 | 8.75 | 69.06 1.88 0.44 6.69 89.45 1.68
1.10 045 | 6.96 | 29.25 1.15 0.30 5.12 39.39 1.03

Source: Author’s own creation.

Table 4b. Tabular Representation of Decision Tree-based Classifier Optimal Results
by using Signed Distance Method (SDM), and Fuzzy Learning (FL)

Forecasted Demand Signed Distance Method (SDM) Fuzzy Learning (FL)

(DTC)

Values t5 8 [ 71cs 5l @F ¢! T/t | el o Q"
1.15 0.36 5.91 37.16 113 3.06 12.78 22.30 1.94
145 0.44 6.74 59.36 1.50 3.54 12.62 33.69 2.52
147 0.45 6.82 61.40 1.53 3.59 12.61 34.75 2.57
1.32 0.40 6.29 48.04 1.33 3.25 12.69 27.88 2.25
1.35 0.41 6.38 50.38 1.37 331 12.67 29.08 231
1.37 0.41 6.45 52,03 1.39 3.35 12.66 29.92 2.35
142 0.46 6.63 56.46 1.46 347 12.64 32.20 2.46
1.49 0.43 6.91 63.53 1.56 3.65 12.60 35.85 2.61
1.60 0.53 6.59 86.34 1.65 3.99 12.57 42.97 2.86
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1.62 0.51 7.53 79.89 1.76 4.06 12.56 44.49 291
1.10 0.36 5.85 34.58 1.08 3.06 12.79 20.96 1.85
Source: Author’s own creation.
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Figure 3. Comparative performance of Graded mean integration method (GMIM),
Centroid Method (CM), Signed Distance Method (SDM), and Fuzzy Learning (FL)

with respectto ¢y , Ty, TCy, and Q

Source: Author’s own creation.

4.5 Results and Discussions

Table 4 and Figure 3 presents the optimal results of a Decision Tree-based
classifier using three fuzzy methods: Graded Mean Integration Method (GMIM),
Centroid Methods (CM), and Signed Distance Method (SDM), along with Fuzzy
Learning (FL). The parameters considered include the forecasted demand (DTC),
replenishment cycle start time ¢, replenishment cycle finish time T; total cost

rc)! ., and order quantity (Q).
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Analysis of Methods

Graded Mean Integration Method (GMIM): GMIM generally shows moderate
values for t; , Tr and Q across different forecasted demands. The total cost rcg , in
GMIM ranges from 29.25 to 69.06, indicating relatively lower total costs compared
to other methods, which suggests its efficiency in cost management. The order
guantity (Q) is also stable, ranging from 1.15 to 1.88.

. CM has the lowest start times ¢, and finish times T indicating a quicker cycle, but this
comes with higher total costs. The total cost TCofm,ﬁm ranges from 39.39 to 89.45, which
is the highest among the methods, indicating that while CM may be faster, it is not cost-
effective. The order quantities (Q) are slightly lower than GMIM, ranging from 1.03 to
1.73.

e  SDM shows intermediate values for ¢, , Tr and Q. The total cost Tcgm_ﬁm ranges from

34.58 to 79.89, higher than GMIM but lower than CM. The order quantity (Q) is relatively
consistent with a range of 1.08 to 1.76.

e  FL method results show a significant deviation in replenishment cycle start time t;and
finish time T with notably higher values compared to other methods. The total cost

TCC’:;ﬁmin FL ranges from 20.96 to 44.49, demonstrating that FL is effective in cost

management, potentially the most efficient in terms of total cost. The order quantities (Q)
for FL are higher, ranging from 1.85 to 2.91, indicating that FL suggests higher inventory
levels.

Discussion

e  GMIM and FL show better performance in terms of minimising total cost compared to
CM and SDM. This is significant for businesses looking to optimise their inventory
systems while keeping costs low. FL particularly stands out with the lowest total cost
values, suggesting it may be the most effective method for cost-sensitive environments.

e  CM provides the quickest replenishment cycles with the lowest ¢; and T, making it
suitable for environments where quick turnaround is crucial despite higher costs. GMIM
and SDM offer a balanced approach with moderate cycle times and costs.

e The higher order quantities in FL suggest a more conservative approach, ensuring ample
inventory. In contrast, CM recommends lower order quantities, potentially reducing
holding costs but risking stockouts. GMIM and SDM provide middle ground solutions,
balancing between inventory levels and holding costs.

e As the forecasted demand (DTC) increases, the total costs and order quantities (Q) also
increase across all methods. This trend aligns with the expectation that a higher demand
requires more frequent and larger replenishments.

e Businesses can choose the appropriate method based on their priorities. For cost
efficiency, GMIM and FL are preferable, while for quicker replenishment cycles, CM is
better suited. The choice of method should align with the company's inventory strategy,
considering factors like cost sensitivity, demand variability, and service level
requirements.
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5. Conclusions

This study has comprehensively addressed the complexities of modern
inventory management, integrating green practices, memory effects, and uncertain
parameters modelled as fuzzy variables. By incorporating carbon emission costs and
addressing backlogging scenarios during shortage periods, we have highlighted the
nuanced trade-offs and strategies essential for optimising profitability and
sustainability in inventory systems. Our findings underscore that the accounting for
memory effects in inventory dynamics significantly impacts profitability.
Specifically, scenarios with long or strong memory effects tend to yield higher
profits, emphasising the need for adaptive inventory policies tailored to different
environmental and operational conditions. Sensitivity analysis identified shortage
costs and demand rates as critical factors influencing profitability, guiding effective
decision-making in inventory management.

Furthermore, leveraging machine learning techniques, such as the Decision
Tree-based Classifier, has enhanced the realism and efficiency of inventory models
for imperfect deteriorating products. By treating deterioration rates and defective
guantities as fuzzy variables and directly forecasting seasonal demand, our approach
demonstrated substantial cost savings over traditional fixed-demand strategies.
These results show that the Fuzzy Learning method provides the best performance
in terms of minimising total costs, making it highly effective for cost-sensitive
environments. The Graded Mean Integration Method also shows strong performance
with low costs and stable order quantities, making it a reliable choice.

We expand the current model by integrating alternative demand forecasting
approaches such as the Autoregressive Integrated Moving Average (ARIMA) and
AdaBoost classifier methods. Additionally, conducting comparative studies among
various forecasting techniques could enhance model robustness. Future extensions
may incorporate type-2 fuzzy variables to handle uncertain parameters more
effectively.
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