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Abstract. Inventory control is a widely discussed topic in the real world, with organisations 

increasingly turning to Machine Learning models to manage stock levels based on specific 

product demand. This article presents an inventory model that addresses imperfect and 

deteriorating products within a fuzzy environment. It allows for shortages, which may be 

partially backlogged, and connects closely with concerns about carbon emissions and global 

warming. Traditional inventory models, often based on integer-order differential equations, 

typically overlook the system’s memory aspect. Addressing inventory management is crucial 

in our efforts to combat global warming. This paper introduces a novel approach by 

integrating carbon emission costs within a fuzzy environment. To capture the memory effect 

of the system, Fractional Calculus is a powerful mathematical tool is employed. In the real 

world, entrepreneurs frequently face challenges in pinpointing exact parameter values. 

Therefore, this study considers uncertain factors such as ordering costs, deterioration rates, 

and demand rates, treating them as triangular fuzzy numbers. The objective is to determine 

the optimal ordering quantity and replenishment period to minimise average overall costs, 

including carbon emissions. The defuzzification process utilises the Graded mean integration 

method (GMIM), Centroid methods (CM), and Signed Distance method (SDM). Seasonal 

demand forecasting is approached using Machine Learning methodologies. Numerical 

results are analysed through the lens of memory concepts to validate the proposed 

mathematical model. 
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1. Introduction 

 

Seasonal and weather conditions exert a significant influence on global market 

demand, a pivotal factor in inventory management across all business sectors due to 

its inherent challenges. Seasonal demand, exacerbated by events like Christmas or 

Black Friday, drives heightened consumer spending, while weather conditions 

directly impact sales, such as increased garden furniture purchases in spring. Despite 

most studies relying on deterministic demand models, real-world demand fluctuates 

seasonally. Accurate demand forecasting enables companies to optimise inventory 

management, curb unnecessary costs, and elevate customer service levels. Machine 
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learning (ML) stands out as an innovative tool to enhance the precision and reliability 

of demand forecasts. Its applications span diverse fields including retail, economics, 

military, and healthcare, with researchers actively developing algorithms like 

Decision Tree-based Approaches to bolster demand forecasting capabilities (de 

Almeida Neto and Castro, 2017). In our study, we implement the decision tree 

classifier algorithm for seasonal demand forecasting. The deterioration of physical 

products over time, such as flowers, vegetables, and medicines, poses substantial 

challenges during transit and storage. Deterioration, defined as damage that renders 

a product unfit for its intended use, contributes significantly to food waste, estimated 

at 20-40% between harvest and consumption (Sethi, 2006). Products are seldom 

perfect due to manufacturing defects, handling issues, and transit of economic 

phenomena, operations research, mathematical programming, game theory, 

marketing, statistical analysis methods and techniques, artificial intelligence, expert 

systems, neuronal networks, and software tools for modelling and analysis of 

economic phenomena. 

Damage, complicating inventory management. While traditional models 

assume deterministic deterioration rates, real-world rates are uncertain and can be 

treated as fuzzy variables in advanced inventory models. Fuzzy inventory models, 

accommodating uncertain deterioration rates, have been extensively studied 

(Naserabadi, 2014). The unpredictability extends to defective product percentages in 

deliveries, also treated as fuzzy variables. Modern concerns about carbon emissions 

from industrial activities underscore the imperative to reduce the environmental 

impact in inventory management practices. To the best of our knowledge, the impact 

of demand forecasting on imperfect deteriorating products has rarely been addressed. 

With this in mind, two research problems emerge: (a) How can machine learning-

based demand forecasting techniques enhance the accuracy and predictability of 

seasonal demand forecasts for deteriorating products? (b) What are the advantages 

of employing machine learning-based monthly predicted demand over fixed demand 

in inventory management, integrated with metaheuristic algorithms? To tackle these 

challenges, this article develops a machine learning-based fuzzy inventory model 

considering imperfect deteriorating items under carbon emissions.  

 

2. Literature review 

 

In contemporary business strategies, the primary objective of inventory 

management is increasingly focused on reducing carbon emissions (Singh and 

Mishra, 2021). Many organisations are committed to this goal as a means to address 

the challenge of global warming, which is exacerbated by carbon emissions. To 

encourage sustainable practices, carbon emission costs are now integrated into 

inventory models. Memory-based inventory systems, including fractional order 

Economic Order Quantity (EOQ) and Economic Production Quantity (EPQ) models 

(Pakhira et al., 2023), have emerged as pivotal aspects of modern inventory 

management. Traditionally, the integer-order EOQ model has dominated the 

literature but has shown limitations in accurately capturing the intricate dynamics of 
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real-world demand patterns. This limitation has spurred researchers to explore 

fractional order models, rooted in fractional calculus concepts introduced by 

mathematicians such as Riemann and Liouville. These models incorporate past input 

influences to determine future outputs, offering a more adaptable representation of 

memory-affected systems in inventory management. For retailers who navigate this 

terrain, it is crucial to model inventory systems that account for memory effects on 

consumer behaviour influenced by factors such as advertisements. Recent advances 

have particularly focused on scenarios involving deteriorating items with partial 

backlogging and quadratic demand rate dynamics, showcasing the effectiveness of 

fractional calculus in handling these complexities (Ghosh et al., 2022; Thirthar et al., 

2023; Jana et al., 2024). In a broader context, fuzzification is utilised to manage 

uncertainties inherent in system components, providing a more realistic approach. 

In the realm of inventory systems, various cost parameters exhibit time-

dependent uncertainty, underscoring the necessity for models that operate within a 

fuzzy environment (Kumar et al., 2023). The globally recognised vehicle 

manufacturer Ford has significantly increased the use of green and renewable energy 

sources, bolstering the efficiency of its global production operations. Ruidas et al. 

(2022) explored an interval-valued green pro- duction inventory model that 

integrates controllable carbon emissions and green subsidies using particle swarm 

optimisation. Their study highlighted a direct correlation between product 

environmental sustainability and government subsidy intensity. It also underscored 

positive outcomes for both manufacturing firms investing in green innovation (GI) 

and emission reduction technology (ERT), as well as environmental benefits.  

Recently, Paul et al. (2022) applied meta-heuristic algorithms to develop a 

production inventory model incorporating green investments and managed carbon 

emissions. Our research focuses on the critical challenge of reducing industrial 

carbon emissions through innovative manufacturing strategies and technologies. We 

emphasise the significant role of regulatory policies and emission reduction 

technologies (ERTs) in addressing environmental challenges on a global scale. 

Introducing the Graded Mean Integration Method (GMIM), our study employs this 

mathematical tool to represent fuzzy numbers in the context of environmental 

sustainability and industrial emission reduction. The GMIM is chosen for its balance 

of simplicity and accuracy, aligning seamlessly with our goal of providing clear and 

precise representations in the complex realms of environmental assessment and 

fuzzy logic, particularly concerning fuzzy environmental data associated with 

industrial sector carbon emissions. In summary, the deliberate use of GMIM in our 

research meets the demand for precise and manageable representations in the 

intricate fields of environmental sustainability and industrial emission reduction. 

These mathematical methods significantly enhance the clarity and accuracy of our 

findings, enabling us to navigate the complex landscape of fuzzy environmental data 

effectively.  

The existing literature on the field of machine learning for demand forecasting 

is limited, and the use of forecasting tools in business strategy is an ongoing debate. 

Demand forecasting for business strategy is one of the most challenging tasks in 
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modern business research. Generally, the global market demand depends on seasonal 

and weather conditions. The demand forecasting model helps to predict the 

overstocking and under-stocking situations and when demand rises or falls (Wright 

& Schultz, 2018). For example, on Christmas Day, Amazon sells more goods than 

on other days of the year. Therefore, instead of fixing demand, forecasted demand is 

necessary. Different researchers used different forecasting methods over time in 

inventory management. (Kirshners et al., 2010) studied the joint analysis of 

continuous and discrete data using inductive decision trees. Recently, (Zohdi et al., 

2022) implemented various machine learning algorithms such as K-nearest 

neighbours, decision tree, and gradient boosting to forecast demand and examine its 

accuracy and performance compared to other approaches. But the forecasting 

approach in inventory modelling has not been addressed. Therefore, this study 

outlines the use of machine learning for demand forecast in inventory management 

systems. This paper conducts a thorough review of the current literature on pricing 

strategies and market analysis, with a focus on integrating machine learning models 

for personalised dynamic pricing and predicting market trends. Its goals include 

providing scalable pricing solutions, assisting retailers in making informed decisions 

swiftly, and establishing reliable pricing strategies. Methodologically, the study 

emphasises meticulous data preprocessing, feature engineering, exploratory data 

analysis, and developing innovative features to enhance machine learning model 

performance. Ensemble learning technique such as Decision Tree Classifier Singh 

(as see in Fig. 2) and Mishra (2024) is introduced for their speed and accuracy 

advantages with Fuzzy and Fuzzy learning both approaches. 

 

2.1 Research Gap  

 

In recent papers (Mishra et al.,2021; Jaggi et al., 2023; Rahaman et al., 2022; 

Santra et al., 2023), ordinary differential equations have been utilised to develop 

models incorporating fractional calculus in inventory systems or accounting for car- 

bon emission costs. This research addresses this gap by formulating an inventory 

model in a fuzzy setting that considers memory-dependent factors along with 

associated carbon emission costs. Key gaps identified are: 

1. We find that traditional inventory models often overlook the uncertain- ties in 

deterioration rates and defective percentages, which can impact the accuracy of 

demand forecasts and inventory management. 

2. In existing models, we typically observe a reliance on fixed demand assumptions 

rather than incorporating dynamic, machine learning-based demand forecasting 

methods. 

3. We note a lack of focus on integrating carbon emission costs into inventory models, 

which is crucial for addressing sustainability concerns. 

4. We have incorporated memory-effect factors, which are rarely considered in inventory 

models, despite their potential to enhance understanding of how past actions influence 

current inventory systems. 
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2.2 Research contribution 

 

• We utilised fractional calculus to introduce memory effects into the inventory model 

within a fuzzy environment, capturing the impact of past actions on the inventory 

system. 

• We extended the inventory model by including carbon emission costs, transforming it 

into a green inventory model that reflects growing environmental sustainability 

concerns. 

• We developed a machine learning-based fuzzy inventory model using a decision tree 

classifier to accurately forecast seasonal demand for deteriorating products. 

• We demonstrated through numerical experiments that using seasonally forecasted 

demand significantly reduces overall costs compared to relying on fixed demand 

assumptions. 

• We innovatively combined memory effects and carbon emission costs within a fuzzy 

and fuzzy learning environment, providing a multidimensional approach to inventory 

management. 

• We showcased the potential for businesses to reduce their ecological footprint by 

optimising ordering quantities and replenishment periods to minimise total average 

costs, including carbon emission costs. 

In summary, our study focuses on enhancing inventory management by 

introducing memory effects, accounting for carbon emissions, and exploring their 

interactions in a fuzzy environment. This multidimensional approach offers a 

comprehensive understanding of inventory systems and paves the way for more 

sustainable and efficient inventory management practices. 

 

3. Model Formulation 

 

3.1 Notations  

 

In the subsection 3.1 the notations are outlined in Table 1 and rest of the notation 

as usual meaning. In the subsection 3.2, the assumptions of the model are discussed. 

 
Table 1. Notations 

Notations 

𝑑𝑓 Forecasted Demand, 

𝐸𝑐 Carbon emission cost associated with item ordering, 

𝑂𝑐 Ordering cost/Setup cost, 

𝑂𝑓𝑐  Ordering cost/Setup cost in fuzzy environment, 

𝛼𝑚, 𝛽𝑚 Memory effects parameters related to total average cost, 

𝑇𝐶𝑓 Minimised total average cost with fuzzy parameters, 

𝑇𝐶𝑓𝑙  Minimised total average cost with fuzzy learning parameters, 

𝐻𝐶𝑓(𝛼𝑚,𝛽𝑚) Total carrying cost in fractional-order model with fuzzy parameters, 

𝐻𝐶𝑓𝑙(𝛼𝑚,𝛽𝑚) Total carrying cost in fractional-order model with fuzzy learning 

parameters, 
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Notations 

𝑆𝐶𝑓(𝛼𝑚,𝛽𝑚) Total shortage cost for fractional order model with fuzzy parameters, 

𝑆𝐶𝑓𝑙(𝛼𝑚,𝛽𝑚) Total shortage cost for fractional order model with fuzzy learning 

parameters, 

𝐿𝐶𝑓(𝛼𝑚,𝛽𝑚) Total Lost sales cost for fractional order model with fuzzy parameters, 

𝐿𝐶𝑓𝑙(𝛼𝑚,𝛽𝑚) Total Lost sales cost for fractional order model with fuzzy learning 

parameters, 

𝑃𝐶𝑓(𝛼𝑚) Total purchasing cost for fractional order model with fuzzy parameters, 

𝑃𝐶𝑓𝑙(𝛼𝑚) Total purchasing cost for fractional order model with fuzzy learning 

parameters, 

𝑝𝑐 Purchasing cost for fractional order model, 

𝑝𝑓𝑐 Purchasing cost for fractional order model with fuzzy parameters, 

𝑝𝑓𝑙𝑐  Purchasing cost for fractional order model with fuzzy learning parameters, 

𝑠𝑐  Shortage cost for fractional order model, 

𝑠𝑓𝑐 Shortage cost for fractional order model with fuzzy parameters, 

𝑠𝑓𝑙𝑐  Shortage cost for fractional order model with fuzzy learning parameters, 

𝐿𝑐 Lost sale cost for fractional order model, 

𝐿𝑓𝑐 Lost sale cost for fractional order model with fuzzy parameters, 

𝐿𝑓𝑙𝑐  Lost sale cost for fractional order model with fuzzy learning parameters, 

ℎ𝑐 Holding cost for fractional order model, 

ℎ𝑓𝑐 Holding cost for fractional order model with fuzzy parameters, 

ℎ𝑓𝑙𝑐  Holding cost for fractional order model with fuzzy learning parameters, 

ℎ𝑙 Holding cost with fuzzy learning rate, 

𝑠𝑙 Shortage cost with fuzzy learning rate, 

𝑝𝑙  Purchasing cost with fuzzy learning rate, 

𝐿𝑙 Lost sale cost with fuzzy learning rate, 

𝑂𝑙  Ordering cost with fuzzy learning rate. 

Source: Author’s own creation. 

 

3.2 Presumptions 

 

• Lead time is negligible. 

• An infinite time horizon is considered. 

• The demand pattern of green products is based on forecasted demand. 

• Shortages are allowed which are partially backlogged, and lost sales are also considered. 

• The holding cost, ordering cost, shortage cost, and purchasing cost are represented as 

triangular fuzzy numbers. 

• Carbon emission costs are factored in for acquisition, transportation, ordering, inventory 

holding, and shortages. 

• The model focuses on a single type of deteriorating product with an infinite replenishment 

rate. 
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• Defective products arise from imperfect manufacturing and handling issues, with 𝑘 

represented as an interval trapezoidal fuzzy number and k is considered an interval 

trapezoidal fuzzy number. 

• Retailers conduct a 100% screening process to identify defective products, which are 

removed after screening. 

• Screening and demand rates occur simultaneously, with the screening rate exceeding the 

demand rate.  

 
4. Model Formulation  

 

To account for the impact of memory effects, we can express the following 

differential equations: 
 

𝑑𝐼1(𝑡)

𝑑𝑡
= −𝑑𝑓 ,                           0 ≤ 𝑡 ≤ 𝑡1                                                                    (1) 

 
𝑑𝐼2(𝑡)

𝑑𝑡
= −𝛿𝑓𝑑𝑓  ,                          𝑡1 ≤ 𝑡 ≤ 𝑇𝑓                                                                (2) 

 

By incorporating kernel functions, the differential equations can be expressed as: 
 

    
𝑑𝐼1(𝑡)

𝑑𝑡
= ∫ 𝑘(𝑡 − 𝑡′)

𝑡

0

𝑑𝑓𝑑𝑡′ ,                           0 ≤ 𝑡 ≤ 𝑡1                                

 

𝑑𝐼2(𝑡)

𝑑𝑡
= 𝛿𝑓 ∫ 𝑘(𝑡 − 𝑡′)

𝑡

0

𝑑𝑓𝑑𝑡′ ,                       𝑡1 ≤ 𝑡 ≤ 𝑇𝑓                            

 

Incorporating the kernel function, denoted as k(t−t′), is crucial. This specific 

type of kernel, k(t−t′), often exhibits inherent scaling characteristics, making it a 

prevalent choice in modelling various natural phenomena. To create a fractional-

order model, we define the kernel function as: 

𝑘(t − t′) =
1

𝛤(𝛼 − 1)
(𝑡 − 𝑡′)𝛼−2 

 

where 0 < α ≤ 1 and Γ(α) represents the gamma function. By applying the definition 

of the Caputo fractional-order derivative (Ghosh et al.,2015; Pakhira et al., 2024), 

we can express equations (1)-(2) as fractional differential equations with fractional 

integration in the following form: 
 

𝑑𝐼1(𝑡)

𝑑𝑡
= −𝑀𝑡

1−𝛼𝑑𝑓 ,                           0 ≤ 𝑡 ≤ 𝑡1                                                           (3) 

 
𝑑𝐼2(𝑡)

𝑑𝑡
= −𝑀𝑡

1−𝛼𝛿𝑓𝑑𝑓 ,                          𝑡1 ≤ 𝑡 ≤ 𝑇𝑓                                                      (4) 
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Next, we apply the Caputo fractional derivative of order (α − 1) to both sides of 

equations (3) and (4). Utilising the inverse relationship between derivatives and 

integrals, we can retrieve the original fractional differential equations (3) and (4) for 

the model: 

 
Figure 1. Graphical representation of the proposed inventory model 

Source: Author’s own creation. 

 
𝑑𝛼𝐼1(𝑡)

𝑑𝑡
= −𝑑𝑓 ,                           0 ≤ 𝑡 ≤ 𝑡1                                                                    (5) 

 
𝑑𝛼𝐼2(𝑡)

𝑑𝑡
= −𝛿𝑓𝑑𝑓 ,                          𝑡1 ≤ 𝑡 ≤ 𝑇𝑓                                                               (6) 

 

subject to boundary conditions: 𝐼1(𝑡1) = 0 and 𝐼2(𝑡1) = 0. 

 
4.1 Analysis of the economic order quantity (EOQ) model with memory effects 

 

The fractional-order inventory model described by equations (5)-(6) is operated 

upon by the fractional integral operator on both sides, with the initial conditions 

𝐼1(𝑡1) = 0 and 𝐼2(𝑡1) = 0, as follows: 

 

𝐼1(𝑡) =
𝑑𝑓(𝑡1

𝛼 − 𝑡𝛼)

𝛤(𝛼 − 1)
                                                                                                          (7) 
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𝐼2(𝑡) =
𝛿𝑓𝑑𝑓(𝑡1

𝛼 − 𝑡𝛼)

𝛤(𝛼 − 1)
                                                                                                   (8) 

 

In this context, 𝐼1(𝑡) represents the memory-dependent positive inventory level 

at time t, and 𝐼2(𝑡) signifies the memory-dependent negative inventory level at time 

t. Within this framework, α denotes the order of the fractional derivative, which 

signifies the rate of change in the inventory level, commonly referred to as the 

differential memory index. 

Given that the inventory level diminishes over time (t), we define the maximum 

positive inventory level 𝐼𝑚𝑎𝑥  at t = 0 in the following manner: 

 

𝐼𝑚𝑎𝑥 = 𝐼1(0) =
𝑑𝑓(𝑡1

𝛼)

𝛤(𝛼 − 1)
                                                                                              (9) 

 

Here, the maximum backorder units during shortage time becomes, 
 

𝑆𝑚𝑎𝑥 = −𝐼1(𝑇𝑓) =
𝛿𝑓𝑑𝑓(𝑇𝑓

𝛼 − 𝑡1
𝛼)

𝛤(𝛼 − 1)
                                                                              (10) 

 

Hence, the order size denoted as 𝑄 during the entire ordering interval [0, 𝑇𝑓] is 

the combination of the maximum positive inventory level and the maximum 

backorder units, given by 

 

      𝑄 = 𝐼𝑚𝑎𝑥 + 𝑆𝑚𝑎𝑥                                                                                                        (11) 

 

Our main objective is to minimise the costs associated with the inventory 

system, which include holding costs and shortage costs. The total average cost is 

calculated as the average of holding costs, shortage costs, purchasing costs, and 

ordering costs over the ordering interval. The individual costs for this system 

affected by memory effects are evaluated as follows: 

 

4.2 Some Associated Inventory Costs 

 

Holding costs vary over time and are not constant throughout the entire cycle 

of the system. Therefore, we assume the inventory holding cost per unit as a time-

dependent function in the form of  ℎ𝑓𝑐𝑡𝛼 This leads to the calculation of the 𝛽𝑚
𝑡ℎ 

order inventory holding cost, denoted as   

 

𝐻𝐶𝑓(𝛼𝑚,𝛽𝑚)(𝑇𝑓) =  ℎ𝑓𝑐𝑀−𝛽𝑚(𝑡𝛼𝑚𝐼1(𝑡))                                                                     (12) 
 

 

In this context, the symbol 𝑀−𝛽𝑚  for 0 ≤ t ≤ 𝑡1  signifies the fractional 

integration of order 𝛽𝑚  which is employed in the Riemann-Liouville sense. 
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The parameter 𝛽𝑚 indicates the integral memory index. The computation of the 

𝛽𝑚
𝑡ℎorder shortage cost with fractional effects, denoted as:  

 

𝑆𝐶𝑓(𝛼𝑚,𝛽𝑚) =  𝑠𝑓𝑐𝑀−𝛽𝑚𝐼2(𝑡)                                                                                         (13) 

 

Here, for the time interval 𝑡1 ≤ 𝑡 ≤ 𝑇𝑓 ,  𝑀−𝛽𝑚 represents fractional 

integration of order 𝛽𝑚 used in the Riemann-Liouville sense. Additionally, 𝑠𝑓𝑐 

denotes the shortage cost per unit item. 

The purchasing cost for the fractional-order model, indicated as: 

 

                         𝑃𝐶𝑓(𝛼𝑚) =  𝑝𝑐 ∗  𝑄                                                                                  (14) 
 

The Lost sale cost for the fractional-order model, indicated as: 

 

𝐿𝐶𝑓(𝛼𝑚,𝛽𝑚) = 𝐿𝑓𝑐𝑀−𝛽𝑚(1-𝛿𝑓) 𝑑𝑓                                                                                  (15) 
 

where, 𝑝𝑓𝑐 is considered as per unit cost, 𝑄 is the total order quantity. Hence, the 

total average cost for the fractional-order inventory model in a fuzzy environment 

can be expressed as: 

 

𝑇𝐶𝑓 =
𝐻𝐶𝑓(𝛼𝑚,𝛽𝑚) + 𝑆𝐶𝑓(𝛼𝑚,𝛽𝑚) +  𝑃𝐶𝑓(𝛼𝑚) + 𝐿𝐶𝑓(𝛼𝑚,𝛽𝑚) + 𝐸𝑐 + 𝑂𝑓𝑐

𝑇𝑓
 

 

Similarly, the total average cost for the fractional-order inventory model in 

fuzzy learning environment can be expressed as: 

 

𝑇𝐶𝑓𝑙 =
𝐻𝐶𝑓𝑙(𝛼𝑚,𝛽𝑚) + 𝑆𝐶𝑓𝑙(𝛼𝑚,𝛽𝑚) +  𝑃𝐶𝑓𝑙(𝛼𝑚) + 𝐿𝐶𝑓𝑙(𝛼𝑚,𝛽𝑚) + 𝐸𝑐 + 𝑂𝑓𝑐

𝑇𝑓
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Figure 2. Algorithmic approach of Decision tree classifier method 

Source: Author’s own creation. 

 

where, the learning rate of holding cost is as below similarly for other shortage, lost 

sale, setup, and purchasing cost also. 

ℎ𝑓𝑙𝑐 = ℎ𝑐 +
ℎ𝑙

𝑙𝜆
 , 0 < 𝜆 < 1  
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4.3 Proposed Methodology for data forecasting of seasonal demand 

 

Decision trees are highly effective methods widely used in fields such as 

machine learning, image processing, and pattern recognition (Charbuty & 

Abdulazeez, 2021). These models work by successively combining a series of basic 

tests in an efficient and cohesive manner, where the numeric features are compared. 

The construction of conceptual rules in decision trees is significantly simpler than 

developing the numerical weights used in neural networks (Priyanka & Kumar, 

2020). Primarily utilised for classification, decision trees consist of nodes and 

branches; each node represents features within a category to be classified, and each 

subset defines a potential value for the node (Mahesh, 2020). Due to their simplicity 

and accuracy across various data types, decision trees have been widely implemented 

in numerous applications. 

 

4.4 Resulting optimisation problem 

 

For Optimisation applying four methods three with triangular fuzzy parameters 

i.e., Graded mean integration method (GMIM), Centroid methods (CM) and Signed 

Distance method (SDM) and other is applying fuzzy learning method. In the 

numerical section, a example is provided to validate the model’s application. The 

author estimates the seasonal demand for a deteriorating product based on the 

observed data trends. Seasonal demand data is presented in Tables 2 and 3 and the 

dataset is then divided into training and testing sets. Three forecasting methods are 

employed: a Decision Tree-based classifier (Algorithm 1). Eighty percent of the data 

is used for training, and the remaining twenty percent is reserved for testing. The 

month-wise forecasted demand is then obtained by inputting the month value as a 

parameter. 

The complete initial data for the numerical example is as follows: 

 
Table 2. Empirical Parameters for solving numerical 

Parameters Units Data 

𝛼𝑚, 𝛽𝑚 unit 0.3, 1.0 

g $/unit/year 0.05 

(ℎ𝑐
1, ℎ𝑐

2, ℎ𝑐
3) $/unit/year (2.5,2.6,2.7) 

(𝑠𝑐
1, 𝑠𝑐

2, 𝑠𝑐
3) $/unit/year (1.2,1.3,1.4) 

(𝑂𝑐
1, 𝑂𝑐

2, 𝑂𝑐
3) $/unit/year (25,26,27) 

(𝑝𝑐
1, 𝑝𝑐

2, 𝑝𝑐
3) $/unit/year (20,22,27) 

(𝐿𝑐
1 , 𝐿𝑐

2 , 𝐿𝑐
3) $/unit/year (2.2,2.3,2.4) 

Source: Author’s own creation. 

 

  



Designing a Fuzzy Logic-based Carbon Emission Cost-incorporated Inventory Model …  

Vol. 58, Issue 4/2024   335 

Table 3. Season-wise product demand 

Season name Month Product demand 

Winter 12,1 1.0-1.2 

Spring 2,3 1.2-1.3 

Summer 4,5,6 1.3-1.4 

Monsoon 7,8,9 1.4-1.6 

Autumn 10,11 1.6-1.8 

Source: Author’s own creation. 

 

After getting month-wise demand, the outcome of the optimal total cost for an 

individual month per unit time for Example 1 with both approaches i.e., Fuzzy and 

Fuzzy learning are depicted in Table 4a and 4b. Due to the highly non-linear cost 

function, we have used MAPLE and PYTHON software to determine optimal values. 

 
Table 4a. Tabular Representation of Decision Tree-based Classifier Optimal Results 

by using Graded mean integration method (GMIM) and Centroid Method (CM) 

 
Forecasted 

Demand (DTC) 
Graded mean integration method 

(GMIM) 
Centroid Method 

(CM) 

Values 𝑡1
𝐺 𝑇𝑓

𝐺 𝑇𝐶𝛼𝑚,𝛽𝑚

𝐺  𝑄𝐺 𝑡1
𝐶  𝑇𝑓

𝐶  𝑇𝐶𝛼𝑚,𝛽𝑚

𝐶  𝑄𝐶  

1.15 0.46 7.03 31.48 1.21 0.31 5.18 42.26 1.08 

1.45 0.57 7.93 50.90 1.61 0.37 5.95 66.86 1.44 

1.47 0.58 8.02 52.70 1.64 0.38 6.03 69.11 1.46 

1.32 0.50 7.44 40.97 1.42 0.33 5.53 54.35 1.27 

1.35 0.52 7.54 43.02 1.46 0.34 5.61 56.95 1.31 

1.37 0.53 7.61 44.46 1.49 0.35 5.67 58.77 1.33 

1.42 0.55 7.80 48.36 1.56 0.36 5.84 63.67 1.39 

1.49 0.59 8.10 54.57 1.67 0.39 6.11 71.46 1.49 

1.60 0.66 8.64 66.55 1.85 0.51 7.42 77.06 1.73 

1.62 0.68 8.75 69.06 1.88 0.44 6.69 89.45 1.68 

1.10 0.45 6.96 29.25 1.15 0.30 5.12 39.39 1.03 

Source: Author’s own creation. 

 
Table 4b. Tabular Representation of Decision Tree-based Classifier Optimal Results 

by using Signed Distance Method (SDM), and Fuzzy Learning (FL) 
 

Forecasted Demand 
(DTC) 

Signed Distance Method (SDM) Fuzzy Learning (FL) 

Values 𝑡1
𝑆 𝑇𝑓

𝑆 𝑇𝐶𝛼𝑚,𝛽𝑚

𝑆  𝑄𝑆 𝑡1
𝑓𝑙

 𝑇𝑓
𝑓𝑙

 𝑇𝐶𝛼𝑚,𝛽𝑚

𝑓𝑙
 𝑄𝑓𝑙 

1.15 0.36 5.91 37.16 1.13 3.06 12.78 22.30 1.94 

1.45 0.44 6.74 59.36 1.50 3.54 12.62 33.69 2.52 

1.47 0.45 6.82 61.40 1.53 3.59 12.61 34.75 2.57 

1.32 0.40 6.29 48.04 1.33 3.25 12.69 27.88 2.25 

1.35 0.41 6.38 50.38 1.37 3.31 12.67 29.08 2.31 

1.37 0.41 6.45 52,03 1.39 3.35 12.66 29.92 2.35 

1.42 0.46 6.63 56.46 1.46 3.47 12.64 32.20 2.46 

1.49 0.43 6.91 63.53 1.56 3.65 12.60 35.85 2.61 

1.60 0.53 6.59 86.34 1.65 3.99 12.57 42.97 2.86 
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1.62 0.51 7.53 79.89 1.76 4.06 12.56 44.49 2.91 

1.10 0.36 5.85 34.58 1.08 3.06 12.79 20.96 1.85 

Source: Author’s own creation. 

 

 
Figure 3. Comparative performance of Graded mean integration method (GMIM), 

Centroid Method (CM), Signed Distance Method (SDM), and Fuzzy Learning (FL) 

with respect to 𝒕𝟏 , 𝑻𝒇 , 𝑻𝑪𝒇, and 𝑄 

Source: Author’s own creation. 

 
4.5 Results and Discussions 

 

Table 4 and Figure 3 presents the optimal results of a Decision Tree-based 

classifier using three fuzzy methods: Graded Mean Integration Method (GMIM), 

Centroid Methods (CM), and Signed Distance Method (SDM), along with Fuzzy 

Learning (FL). The parameters considered include the forecasted demand (DTC), 

replenishment cycle start time 𝑡1 replenishment cycle finish time 𝑇𝑓  total cost  

𝑇𝐶𝛼𝑚,𝛽𝑚

𝑓𝑙  , and order quantity (𝑄). 
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Analysis of Methods 

Graded Mean Integration Method (GMIM): GMIM generally shows moderate 

values for 𝑡1 , 𝑇𝑓 and 𝑄 across different forecasted demands. The total cost 𝑇𝐶𝛼𝑚,𝛽𝑚

𝐺   in 

GMIM ranges from 29.25 to 69.06, indicating relatively lower total costs compared 

to other methods, which suggests its efficiency in cost management. The order 

quantity (𝑄) is also stable, ranging from 1.15 to 1.88. 

•  CM has the lowest start times 𝑡1 and finish times 𝑇𝑓  indicating a quicker cycle, but this 

comes with higher total costs. The total cost 𝑇𝐶𝛼𝑚,𝛽𝑚

𝐶    ranges from 39.39 to 89.45, which 

is the highest among the methods, indicating that while CM may be faster, it is not cost-

effective. The order quantities (𝑄) are slightly lower than GMIM, ranging from 1.03 to 

1.73. 

• SDM shows intermediate values for 𝑡1 , 𝑇𝑓 and 𝑄. The total cost 𝑇𝐶𝛼𝑚,𝛽𝑚

𝐺    ranges from 

34.58 to 79.89, higher than GMIM but lower than CM. The order quantity (𝑄) is relatively 

consistent with a range of 1.08 to 1.76. 

• FL method results show a significant deviation in replenishment cycle start time 𝑡1and 

finish time 𝑇𝑓  with notably higher values compared to other methods. The total cost 

𝑇𝐶𝛼𝑚,𝛽𝑚

𝑓𝑙
in FL ranges from 20.96 to 44.49, demonstrating that FL is effective in cost 

management, potentially the most efficient in terms of total cost. The order quantities (𝑄) 

for FL are higher, ranging from 1.85 to 2.91, indicating that FL suggests higher inventory 

levels. 

 

Discussion 

• GMIM and FL show better performance in terms of minimising total cost compared to 

CM and SDM. This is significant for businesses looking to optimise their inventory 

systems while keeping costs low. FL particularly stands out with the lowest total cost 

values, suggesting it may be the most effective method for cost-sensitive environments. 

• CM provides the quickest replenishment cycles with the lowest 𝑡1  and 𝑇𝑓    making it 

suitable for environments where quick turnaround is crucial despite higher costs. GMIM 

and SDM offer a balanced approach with moderate cycle times and costs. 

• The higher order quantities in FL suggest a more conservative approach, ensuring ample 

inventory. In contrast, CM recommends lower order quantities, potentially reducing 

holding costs but risking stockouts. GMIM and SDM provide middle ground solutions, 

balancing between inventory levels and holding costs. 

• As the forecasted demand (DTC) increases, the total costs and order quantities (𝑄) also 

increase across all methods. This trend aligns with the expectation that a higher demand 

requires more frequent and larger replenishments. 

• Businesses can choose the appropriate method based on their priorities. For cost 

efficiency, GMIM and FL are preferable, while for quicker replenishment cycles, CM is 

better suited. The choice of method should align with the company's inventory strategy, 

considering factors like cost sensitivity, demand variability, and service level 

requirements. 
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5. Conclusions 

 

This study has comprehensively addressed the complexities of modern 

inventory management, integrating green practices, memory effects, and uncertain 

parameters modelled as fuzzy variables. By incorporating carbon emission costs and 

addressing backlogging scenarios during shortage periods, we have highlighted the 

nuanced trade-offs and strategies essential for optimising profitability and 

sustainability in inventory systems. Our findings underscore that the accounting for 

memory effects in inventory dynamics significantly impacts profitability. 

Specifically, scenarios with long or strong memory effects tend to yield higher 

profits, emphasising the need for adaptive inventory policies tailored to different 

environmental and operational conditions. Sensitivity analysis identified shortage 

costs and demand rates as critical factors influencing profitability, guiding effective 

decision-making in inventory management.  

Furthermore, leveraging machine learning techniques, such as the Decision 

Tree-based Classifier, has enhanced the realism and efficiency of inventory models 

for imperfect deteriorating products. By treating deterioration rates and defective 

quantities as fuzzy variables and directly forecasting seasonal demand, our approach 

demonstrated substantial cost savings over traditional fixed-demand strategies. 

These results show that the Fuzzy Learning method provides the best performance 

in terms of minimising total costs, making it highly effective for cost-sensitive 

environments. The Graded Mean Integration Method also shows strong performance 

with low costs and stable order quantities, making it a reliable choice.  

We expand the current model by integrating alternative demand forecasting 

approaches such as the Autoregressive Integrated Moving Average (ARIMA) and 

AdaBoost classifier methods. Additionally, conducting comparative studies among 

various forecasting techniques could enhance model robustness. Future extensions 

may incorporate type-2 fuzzy variables to handle uncertain parameters more 

effectively. 
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