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Abstract. This paper investigates the level of risk and the risk-adjusted returns of five 
industrial metals. In the research process, we use several sophisticated approaches – 
EGARCH-NIG model, parametric and semiparametric CVaR risk measures, and four return-
to-risk ratios. Aluminium has the lowest parametric CVaR at all probabilities, whereas lead 
has the upper hand in semiparametric CVaR. This happens because lead has the highest 
positive skewness and the lowest kurtosis. However, the riskiest metal is tin because of the 
highest negative skewness and highest kurtosis. As for the calculated ratios, copper is the 
best metal in the three out of four cases (Sharpe, Sortino, and modified STARR), primarily 
because copper recorded the highest price rise in the observed period. Aluminium has the 
best Treynor ratio because of the relatively low beta and the relatively high mean, whereas 
lead can serve as a good auxiliary instrument in combination with the S&P500 index due to 
the lowest beta. 

Keywords: parametric and semiparametric downside risk, GARCH-NIG, risk-adjusted 
ratios. 
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1. Introduction 

Industrial metals are crucial raw materials in numerous manufacturing 
industries, such as machinery manufacturing, building construction, aviation, 
automotive, and mining. Shen et al. (2021) stated that aluminium and copper are 
among the most traded commodities, in general. Zhu et al. (2021) asserted that the 
purchase cost of non-ferrous metals accounts for almost 60% of the total cost in the 
aforementioned production and processing sectors, which means that price stability 
of non-ferrous metals is essential for successful development and growth of global 
economies. However, prices of industrial metals are heavily influenced by a wide 
range of factors, inter alia, imbalances in global production and consumption, rapid 
urbanisation and industrialisation of emerging markets, fluctuations in exchange 
rates, import and export policies, as well as short- and long-term trading strategies 
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of funds (Gil-Alana and Tripathy, 2014; Zhong et al., 2019). In addition, the world 
has been in a turbulent mode in the last three years due to the pandemic and the 
Ukrainian war, which exerted a high price rise of industrial metals (see Figure 1). 
This means that heavy price fluctuations are an intrinsic part of non-ferrous metals 
(Irfanullah and Iqbal, 2023), where several reasons entail an accurate risk modelling 
and assessment of risk in these commodities. Most obviously, the presence of high 
price risk in industrial metal markets causes great uncertainty for producers, 
consumers, importing and exporting countries, but also produce huge costs to market 
participants who are involved in portfolio selection, derivative pricing, and risk 
management, as Wang et al. (2021) contended.  
 

 
Figure 1. Empirical dynamics of industrial metal prices 
Note: Price of copper is expressed in US cents per pound,  

while all other commodities are expressed in USD per metric ton. 
Source: Authors’ calculation. 

 
However, despite the significance of risk assessment in industrial metals 

markets from both empirical and theoretical perspectives, very few research papers 
have been done in this area, according to Wang et al. (2021). This leaves enough 
room for our contribution to the literature.  

According to the above, this paper measures risk level as well as risk adjusted 
returns of the five industrial metals, aluminium, copper, lead, tin, and zinc. We take 
this dual approach because risk is only one side of the coin, while market agents are 
even more eager to know how much they can earn. Our motivation to do this research 
stems from the fact that very few papers investigated level of risk and risk-adjusted 
returns of industrial metals, while none of the papers used sophisticated 
methodological approaches in this process. Generally speaking, most papers 
measure risk via variance, which is not an efficient way of risk evaluation, because 
common variance considers equally positive and negative returns. This approach can 
yield biased conclusions, whereas the only risk that matters to the market participant 
is the risk of losses or the downside risk. The starting point in downside risk 
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calculation is parametric Value-at-risk (VaR), but this approach is not an ideal risk 
measure because it is permeated with numerous drawbacks. A serious flaw of 
parametric VaR comes to the fore when the expected loss is greater than VaR at 
certain confidence levels, according to Aloui and Ben Hamida (2015). In this regard, 
instead of VAR, we consider the more conservative measure of losses – Conditional 
Value-at-Risk (CVaR) of Rockafellar and Uryasev (2002). In other words, VaR only 
observes a snapshot on the left tail of distribution at a particular probability, while 
CVaR indicates an average expected loss at the same level of probability. In this 
way, CVaR as a stricter measure of risk, gives higher estimates of losses compared 
to VaR. 

Another shortcoming of a common VaR appears when the distribution does not 
follow a Gaussian function. This can result in a significant underestimation of losses 
that particular asset might endure, and this issue applies for both VAR and CVaR. 
Therefore, we follow the paper of Živkov et al. (2021), who researched agricultural 
commodities and utilised an improvement of common VaR, i.e., modified VaR 
(mVaR) of Favre and Galeano (2002). This particular method takes into account all 
the four moments of distribution, unlike parametric VaR, which considers only the 
first two moments. mVaR is based on the Cornish-Fisher (1938) expansion, and 
mVaR is better known as the semiparametric risk measure. Since CVaR is a more 
prudent risk measure than VaR, we calculate mCVaR instead of mVaR.  

It is important to say that a reliable calculation of downside risk cannot be done 
if time-series are not independently and identically distributed (see e.g., Patra, 2021). 
In order to resolve this issue, we first create white noise error residuals with 
EGARCH model, which can efficiently deal with possible existence of 
autocorrelation and heteroscedasticity in empirical time-series. Besides, EGARCH 
is an asymmetric model that can recognise asymmetric response of volatility to 
positive and negative shocks. In addition, many authors, such as Kyrtsou et al. 
(2004), Iregui and Otero (2013), Dinică and Armeanu (2014), reported that non-
ferrous metals are characterised by heavy tails and asymmetry. These findings give 
us enough reason to combine the EGARCH model with unconventional normal 
inverse Gaussian distribution (NIG) of Barndorff-Nielsen (1997). This elaborate 
function is appropriate because it has two parameters that can recognise the 
asymmetric and fat-tailed properties of empirical time series very well. 

Having an information about the risk-level of an assets can indicate whether 
investment needs to be hedged, but this is only a half of a story, because every 
investor wants to know how much its investment is lucrative. Only from this aspect, 
an investor can grasp a whole picture and make proper decision whether to diversify 
investment, abandon it, or continue to invest. Therefore, besides downside risk 
calculation, we also calculate four different risk-adjusted ratios – Sharpe, Treynor, 
Sortino, and modified STARR (Stable Tail Adjusted Return Ratio). The first one is 
a standard return-to-risk indicator that observes the relation between risk-adjusted 
returns and a common standard deviation. However, the Sharpe ratio is biased 
because it takes into account both positive and negative returns, which can produce 
misleading estimates. To improve the ordinary Sharpe ratio, we calculate two 
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additional indicators – Sortino and modified STARR. The former one uses standard 
deviation of only negative returns, which is known as downside deviation, i.e. it 
calculates the level of earnings per unit of average downside deviation. On the other 
hand, mSTARR is even stricter risk measure because it observes only specified set 
of negative returns under certain level of probability, which are placed at the left tail 
of the distribution. In other words, referring to Martin et al. (2003), we calculate a 
modified STARR by putting mCVaR in denominator instead of CVaR. At the end, 
the Treynor ratio combines empirical returns and a measure of systemic risk as 
denominator, which is beta (β). This ratio observes the level of earnings per unit of 
systemic risk. 

Besides the introduction, the rest of the paper has the following structure. The 
second section presents a brief literature review. The third section explains used 
methodologies – GARCH-NIG model, risk measures and return-to-risk ratios. The 
fourth section contains the dataset and preliminary findings. The fifth section reveals 
results of calculated downside risk and four risk-adjusted ratios. The last section 
concludes.   
 
2. Literature review 

 
Risk evaluation of industrial metals was rarely a research subject in the existing 

literature. Papers are mostly focused on risk forecasting and risk spillover effect 
between non-ferrous markets and other commodity or financial markets, than on 
actual measurement of risk. For instance, Wang et al. (2021) used the dynamic model 
average (DMA) approach to forecast future realised volatility of four non-ferrous 
metals – aluminium, copper, lead, and zinc. They decomposed the realised volatility 
into continuous components and jump components and measured the leverage effect 
through either semi-variances or signed jumps. They concluded that volatility 
components of 1-day lag and short-term volatility transfer components are the most 
important predictors for future realise volatility of between metals. Mensi et al. 
(2021) investigated the dependence structure, risk spillovers and conditional 
diversification benefits between oil and six non-ferrous metals futures markets 
(aluminium, copper, lead, nickel, tin, and zinc), using a variety of copula functions 
and CVaR measure. They found significant lower tail dependence and upper tail 
independence between oil and non-ferrous metals markets. They asserted that lower 
temporal dependence is positive and heterogeneous between oil and non-ferrous 
markets, whereas for copper, lead, and tin markets, it intensified during the onset of 
the global financial crisis. The paper of Todorova et al. (2014) applied the HAR 
model to consider the volatility spillovers between the five of the most liquid non-
ferrous metals contracts (aluminium, copper, lead, nickel, and zinc). They found that 
volatility series of other industrial metals appear to contain useful incremental 
information for future price volatility. However, they asserted that their own 
dynamics are often sufficient for describing most future daily and weekly volatility, 
with the most pronounced volatility spillovers identified in the longer term. 

https://www.investopedia.com/terms/d/downside-deviation.asp
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As for papers that studied risk measurement of non-ferrous metals, Brunetti and 
Gilbert (1995) analysed aluminium, copper, nickel, lead, tin and zinc in the period 
of 24 years, considering monthly data. They contended that volatility has shown no 
tendency to increase over this period, while only in the case of tin volatility levels 
were beneath their historic average levels over 1993-95, which is a period of 
increased speculative interest in the metal markets. They concluded that volatility of 
non-ferrous metals in this period was very volatile. The paper of McMillan and 
Speight (2001) researched six non-ferrous metals price volatility (aluminium, 
copper, nickel, lead, tin, and zinc) through GARCH component analysis. They 
decomposed volatility into long-run and short-run components, and concluded that 
non-ferrous metals prices are not only exposed to volatility persistence but also have 
some degree of long memory, which are ultimately stationary and mean-reverting. 
Gil-Alana and Tripathy (2014) investigated volatility persistence and the leverage 
effect across six non-ferrous metals, considering both spot and futures markets in 
India. They detected volatility persistence via the ARCH/GARCH class models. The 
leverage effect was tested using TGARCH and EGARCH models, and they found 
an asymmetric effect in seven out of twelve series using TGARCH model, while 
EGARCH captures the leverage effect in ten time-series. They also tested long 
memory features of the data and found that non-ferrous metal time-series are I(1), 
but the squared returns display long memory features. 
 
3. Used methodologies 

 
3.1 EGARCH model 

In order to avoid biased estimates of downside risk, first task is to create white 
noise residuals that have no problem with autocorrelation and time-varying variance. 
Referring to Gil-Alana and Tripathy (2014), who found a leverage effect in industrial 
metals, we employ an asymmetric EGARCH model. However, unlike these authors, 
we also assume presence of fat tails and asymmetry in distribution of the selected 
time-series. Aiming to recognise these stylised facts, we combine unconventional 
NIG distribution with EGARCH model, since NIG has two parameters – skew (𝜏𝜏) 
and shape (𝜈𝜈), 𝜀𝜀~𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝑡𝑡2, 𝜏𝜏, 𝜈𝜈), which can successfully capture third and fourth 
moments of empirical distributions. In this way, the EGARCH-NIG model produces 
more accurate and reliable residuals, compared to the common GARCH model with 
traditional distributions. We overcome possible autocorrelation in the EGARCH 
model by using the first autoregressive term AR(1) in the mean equation, while the 
variance equation by default deals with heteroscedasticity. Following Moravcova 
(2018), specifications of the variance equations in EGARCH-NIG model are: 
𝑙𝑙𝑙𝑙(ℎ𝑡𝑡,𝑖𝑖) = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 𝑙𝑙𝑙𝑙( ℎ𝑡𝑡−1,𝑖𝑖) + 𝛾𝛾𝑖𝑖 �

𝜀𝜀𝑡𝑡−1,𝑖𝑖

�ℎ𝑡𝑡−1,𝑖𝑖
� + 𝛿𝛿𝑖𝑖

𝜀𝜀𝑡𝑡−1,𝑖𝑖

�ℎ𝑡𝑡−1,𝑖𝑖
;    𝜀𝜀~𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎𝑡𝑡2, 𝜏𝜏, 𝜈𝜈) (1) 
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3.2 Downside risk measurement 

In the process of risk measurement, we apply two downside risk methods – 
parametric and semiparametric CVaR. Both CVaR measures calculate an average 
loss of tail distribution assuming a certain probability. Following Yu et al. (2018), 
parametric CVaR is an integral of VaR, and can be calculated as in equation (2): 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼 = − 1
𝛼𝛼 ∫ 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)𝑑𝑑𝑥𝑥𝛼𝛼

0 ,  (2) 

where 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥) is Value-at-Risk of a particular industrial metal, while α denotes the 
left quantile of the standard normal distribution.  

Although CVaR gives better risk assessment than VaR, both measures suffer 
from a common problem, i.e. they consider only the first two moments of 
distribution, while higher moments remain neglected. This issue can be especially 
pronounced in commodity time-series, which are characterised by negative skewness 
and heavy tails. In order to circumvent this problem, we additionally calculate 
semiparametric or modified CVaR, which takes into account all the four moments 
of distribution. More specifically, mCVaR penalises negative features of 
distribution, such as negative skewness and high kurtosis, which have an adverse 
effect on investors. On the other hand, mCVaR rewords favourable distributional 
characteristics, which are positive skewness and low kurtosis (see, e.g., Boo et al., 
2017). This means that mCVaR risk might be lower than CVaR if positive 
characteristics of distribution prevail, but also these measures can be significantly 
higher than parametric risk measures if negative traits of distribution dominate. 
Equation (3) shows how mCVaR is calculated, and this measure is based on the 
Cornish–Fisher expansion presented in Equation (4): 

𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝛼𝛼 = − 1
𝛼𝛼 ∫ 𝑚𝑚𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥)𝑑𝑑𝑥𝑥𝛼𝛼

0 ,  (3) 

where 𝑍𝑍𝐶𝐶𝐶𝐶,𝛼𝛼˛is the non-normal-distribution percentile adjusted for skewness and 
kurtosis according to the Cornish–Fisher equation.   

𝑍𝑍𝐶𝐶𝐶𝐶,𝛼𝛼 = 𝑍𝑍𝛼𝛼 + 1
6

(𝑍𝑍𝛼𝛼2 − 1)𝑆𝑆 + 1
24

(𝑍𝑍𝛼𝛼3 − 3𝑍𝑍𝛼𝛼)𝐾𝐾 − 1
36

(2𝑍𝑍𝛼𝛼3 − 5𝑍𝑍𝛼𝛼)𝑆𝑆2, (4) 

where 𝑆𝑆 and K denote skewness and kurtosis of the particular non-ferrous metal. 
 
3.3 Risk-adjusted return measures 

Knowing how big the risk of losses might be is important, but investors are also 
very interested to know how much they can earn. To this end, this subsection 
presents the way in which four different return-to-risk ratios are calculated, where 
all the ratios take into account different risk-measures as denominator.  

The first risk-adjusted measure is the well-known Sharpe ratio, which observes 
risk-adjusted returns vis-à-vis a common standard deviation (𝜎𝜎): 
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𝑆𝑆ℎ𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎 𝑎𝑎𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅−𝑅𝑅𝑓𝑓
𝜎𝜎

 (5) 

where 𝐶𝐶 is an average log-return of a particular industrial metal, 𝐶𝐶𝑓𝑓 is risk-free rate, 
and 𝜎𝜎 is standard deviation of a particular asset. Yields of 3M treasury bills denote 
a risk-free rate. 

The Treynor ratio places risk-adjusted returns in relation to systemic risk, 
represented by beta (β).  

𝑇𝑇𝑎𝑎𝑎𝑎𝑇𝑇𝑙𝑙𝑟𝑟𝑎𝑎 𝑎𝑎𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅−𝑅𝑅𝑓𝑓 
𝛽𝛽

;    𝛽𝛽 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑅𝑅,𝑅𝑅𝑀𝑀)
𝜎𝜎𝑀𝑀
2  (6) 

where 𝐶𝐶𝑂𝑂𝐶𝐶 is covariance, while 𝐶𝐶𝑀𝑀 represent the whole market, and the proxy for 
this variable is S&P500 index.  

The Sortino ratio and mSTARR overcome the problem of using biased standard 
deviation in the denominator. Sortino ratio observes standard deviation calculated 
upon only negative portfolio returns (𝜎𝜎𝐷𝐷), which gives more realistic risk-adjusted 
returns.   

𝑆𝑆𝑟𝑟𝑎𝑎𝑟𝑟𝑟𝑟𝑙𝑙𝑟𝑟 𝑎𝑎𝐶𝐶𝑟𝑟𝑟𝑟𝑟𝑟 = 𝑅𝑅−𝑅𝑅𝑓𝑓
𝜎𝜎𝐷𝐷

  (7) 

On the other hand, mSTARR is an even stricter indicator than Sortino ratio, in 
a sense that it uses the measure of downside risk calculated by the mCVaR metric as 
denominator.  

𝑚𝑚𝑆𝑆𝑇𝑇𝑆𝑆𝐶𝐶𝐶𝐶 = 𝑅𝑅𝑝𝑝−𝑅𝑅𝑓𝑓
|𝑚𝑚𝐶𝐶𝐶𝐶𝑚𝑚𝑅𝑅|  (8) 

 
4. Dataset and preliminary findings 

 
This study uses daily data of short-maturity futures prices of the five industrial 

metals that are traded on the Chicago Mercantile Exchange – aluminium, copper, 
lead, tin, and zinc. We consider futures prices rather than spot prices, since futures 
prices process all available information faster than spot prices, making them more 
reliable. Our data-span covers the period between January 2015 and March 2023, 
and all the data is collected from investing.com website. All daily prices (𝑃𝑃𝑖𝑖,𝑡𝑡) are 
transformed into log-returns (𝑎𝑎𝑖𝑖,𝑡𝑡) according to the expression 𝑎𝑎𝑖𝑖,𝑡𝑡 = 100 × 𝑙𝑙𝑟𝑟𝑙𝑙(𝑃𝑃𝑖𝑖,𝑡𝑡/
𝑃𝑃𝑖𝑖,𝑡𝑡−1). Table 1 contains descriptive statistics of the selected assets, as well as Ljung-
Box test results for level and squared returns. According to Table 1, only tin reports 
autocorrelation, while all the assets have problem with time-varying variance. 
ARMA-GARCH models can resolve these empirical issues, but time-series that 
enters GARCH must be stationary. In this regard, we present results of Dickey-Fuller 
generalised least square (DF-GLS) test, which refutes any doubt that selected time-
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series have a unit root. Regarding the first four moments, zinc has the highest 
standard deviation, while tin follows. This could indicate that these two metals have 
the highest CVaR risk, because the second moment is the key factor determining 
CVaR. High skewness is recorded only for tin, while all metals have relatively high 
kurtosis, which justifies the usage of NIG distribution that can recognise these 
stylised facts. Due to the high third and fourth moments, this might suggest that tin 
has the highest mCVaR. Also, high third and fourth moments indicate that none of 
the time-series follows a Gaussian function, which is confirmed by the Jarque-Bera 
test.   

 
Table 1. Descriptive statistics of the selected industrial metals 

 Mean St. dev. Skew. Kurt. JB LB(Q) LB(Q2) DF-GLS 
Aluminium 0.006 0.555 0.026 5.503 544.9 0.580 0.000 -9.459 
Copper 0.008 0.595 -0.081 4.629 238.638 0.325 0.000 -5.164 
Lead 0.003 0.625 0.135 4.592 226.512 0.503 0.000 -6.403 
Tin 0.006 0.654 -0.752 9.138 3469.255 0.000 0.000 -7.238 
Zinc 0.006 0.685 0.039 4.685 247.285 0.980 0.000 -9.719 

Notes: LB(Q) and LB(Q2) tests indicate to p-values of Ljung-Box Q-statistics of level  
and squared residuals of 10 lags. 1% and 5% critical values for DF-GLS test with 5 lags, 

assuming only constant, are -2.566 and -1.941, respectively. JB refers to value  
of Jarque-Bera coefficients of normality. 

Source: Authors’ calculation. 
 

In order to create white noise residuals that are required for downside risk 
calculation, we use the asymmetric ARMA(1,0)-EGARCH(1,1)-NIG model, and 
these results are presented in Table 2. According to Table 2, the ARCH effect is 
present in the two out of five cases, while a high persistence of conditional variance 
is recorded in all the five industrial metals. Asymmetric parameter (γ) is positive and 
significant for all the metals, which means that positive shocks have stronger effect 
on conditional variance than negative shocks. The estimated conditional variance 
parameters coincide with the findings of Gil-Alana and Tripathy (2014). 
 

Table 2. Estimated EGARCH parameters 
 Aluminium Copper Lead Tin Zinc 
Panel A: EGARCH parameters 
α -0.152*** -0.021** -0.004 -0.020 -0.007 
β 0.998*** 0.985*** 0.991*** 0.951*** 0.987*** 
γ 0.271*** 0.064*** 0.053*** 0.284*** 0.073*** 
Panel B: NIG distribution parameters 
τ 0.037 -0.030 0.052** -0.161*** -0.052 
ν 0.048*** 1.279*** 3.559*** 0.769*** 5.485*** 
Panel C: Diagnostic tests 
LB(Q) 0.263 0.338 0.759 0.114 0.133 
LB(Q2) 0.954 0.218 0.441 0.174 0.767 

Notes: LB-Q and LB-Q2 test denote p-values of Ljung-Box Q-statistics for level  
and squared residuals of 10 lags. *, **, *** represent statistical significance  

at the 1%, 5% and 10% level, respectively. 
Source: Authors’ calculation. 
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τ parameter measures asymmetry in the NIG distribution, and it is only 

significant for lead and tin, i.e. the two metals that have the highest skewness. Shape 
parameter (ν) is significant for all the metals, because in all the cases relatively high 
kurtosis is recorded. Diagnostic tests indicate that the EGARCH model resolves 
autocorrelation and heteroscedasticity problems in the empirical time-series. This 
means that estimated residuals are white noise error terms (see Figure 2), which can 
be used in the downside risk calculation.     
 

 
Figure 2. Estimated residuals of the five industrial metal 

Source: Authors’ calculation. 
 
5. Empirical results 
 
5.1 Parametric and semiparametric risk measures 

This subsection presents the results of parametric and semiparametric downside 
risk measures, where Table 3 contains numerical estimates, while Figure 3 
graphically illustrates these findings. Both CVaR and mCVaR are calculated at five 
different risk-levels, 96%, 97%, 98% 99%, and 99.5%, which portrays different 
aversion towards risk. We do not calculate downside risks under 96% because 
semiparametric risk estimates are accurate only above the level of 95.84%, according 
to Cavenaile and Lejeune (2012). This rule does not apply to parametric risk, but to 
make results comparable, we also calculate CVaR only above the 96% confidence 
level. Both CVaR and mCVaR are interpreted as an average loss at a certain level of 
probability. For instance, at 99.5% probability, CVaR of aluminium is -1.598, which 
means that potential loss of an investor might be 1.598% in a single day or worse. 

According to Table 3, it is clear that mCVaR downside risk is higher than the 
CVaR counterpart at all the probability levels. This happens because CVaR uses only 
the first two moments in calculating the downside risk, while mCVaR considers all 
the four moments. Since none of the industrial metals follows a Gaussian 
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distribution, it can be expected that mCVaR measures are higher than those of the 
CVaR peers. 

 
Table 3. Results of parametric and semiparametric CVaR 

 Probability Aluminium Copper Lead Tin Zinc 

CVaR 

96% -1.189 -1.275 -1.344 -1.403 -1.470 
97% -1.252 -1.343 -1.415 -1.478 -1.548 
98% -1.337 -1.434 -1.511 -1.578 -1.653 
99% -1.472 -1.579 -1.663 -1.738 -1.820 

99.5% -1.598 -1.714 -1.805 -1.886 -1.976 

mCVaR 

96% -1.438 -1.485 -1.473 -2.345 -1.668 
97% -1.576 -1.609 -1.591 -2.651 -1.807 
98% -1.777 -1.788 -1.760 -3.107 -2.007 
99% -2.140 -2.103 -2.058 -3.949 -2.360 

99.5% -2.526 -2.432 -2.368 -4.865 -2.729 
Note: Greyed values denote the lowest downside risk. 

Source: Authors’ calculation. 
 

Looking at Figure 3, it is interesting to note that all the CVaR risk measures are 
neatly aligned one below the other without intersecting. This can be explained by the 
fact that the level of variance increases gradually with the rise of probability, and 
this transfers perfectly to the rise of CVaR because the second moment is the key in 
calculating CVaR. On the other hand, this kind of consistency does not exist in the 
mCVaR plot because some lines are overlapped. This happens because mCVaR risk 
is affected additionally by skewness and kurtosis, and these moments do not rise 
gradually as probability increases. This explains why tin has significantly higher 
mCVaR compared to the all other industrial metals, while on the CVaR results, tin 
is the second worst commodity. In other words, tin has the highest kurtosis (9.138) 
and the highest negative skewness (-0.752), which pushes tin to the last place in the 
mCVaR results. On the other hand, tin does not have the highest second moment 
(0.654), but zinc (0.685), which gives tin the second highest CVaR. 
 

 
Figure 3. Graphical presentation of the calculated CVaR and mCVaR risks 

Source: Authors’ calculation. 
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As for the other industrial metals, aluminium has the lowest CVaR because it 
has the lowest second moment (0.555), while copper, lead, tin, and zinc follow, 
respectively. On the other hand, regarding the mCVaR metric, aluminium, copper, 
and lead have almost identical downside risk because the third and fourth moments 
come to the fore in this calculation. In other words, although aluminium has the 
lowest variance, it has the fourth largest kurtosis, which offsets its lowest second 
moment. On the other hand, lead has a relatively high second moment (0.625), but it 
has the lowest kurtosis (4.592), which decreases mCVaR of lead. Zinc has the second 
worst mCVaR at all probabilities, although it has positive skewness, but zinc has the 
highest second moment, which puts zinc behind aluminium, copper and lead. Overall 
results clearly indicate that CVaR risk is biased, and could lead to wrong 
conclusions.  
 
5.2 Results of risk-adjusted returns 

Knowing the level of potential losses is always relevant for investors, but 
market participants are even more eager to know the potential benefits of their 
investments. In this regard, this subsection presents the results of the four return-to-
risk ratios that measure risk-adjusted returns of industrial metals, where all four 
ratios observe the level of risk from a different perspective. We calculate Sharpe 
ratio, Treynor ratio, Sortino ratio, and mSTARR, where the denominator is standard 
deviation, beta, downside deviation, and mCVaR, respectively. Table 4 contains 
these results, whereas Figure 4 graphically illustrates the findings, providing a visual 
comparative picture which metal has the best (worst) return-to-risk relation.      
 

Table 4. Results of four return-to-risk ratios 
 Sharpe ratio Sortino ratio Treynor ratio mSTARR 
Aluminium 0.0107 0.0165 0.0381 0.0024 
Copper 0.0127 0.0188 0.0238 0.0031 
Lead 0.0043 0.0069 0.0203 0.0011 
Tin 0.0085 0.0101 0.0312 0.0011 
Zink 0.0085 0.0130 0.0242 0.0021 

Note: Greyed values denote the highest risk-adjusted ratio. 
Source: Authors’ calculation. 

 
According to the results, copper has the best result in three out of four ratios, 

while aluminium follows. In the case of the Treynor ratio, copper and aluminium 
change their places, and now aluminium is the best, while copper follows. Regarding 
the Sharpe ratio, copper has an advantage, although it does not have the lowest 
second moment (0.595), but aluminium (0.555). However, copper has the highest 
mean (0.008), which gives upper hand to copper vis-à-vis all the other metals. 
Looking at Figure 1, all the metals recorded a steep rise during the pandemic, but 
copper had the smallest decline in 2022, which means that the price of copper rose 
the most on average. This gives a very good result of copper taking into account all 
the four ratios, regardless of the relative risk level of copper. On the other hand, lead 
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has by far the worst result primarily because lead has the lowest mean (0.003), that 
is, the price of lead rose the least in the observed period. 
 

Table 5. Beta value and downside standard deviation of the industrial metals 
 Aluminium Copper Lead Tin Zinc 
σD 0.360 0.402 0.389 0.549 0.446 
Beta 0.156 0.317 0.132 0.177 0.240 

Source: Authors’ calculation. 
 

As for the Sortino ratio, copper also has the best result, but not as good as the 
previous indicator. This happens because the downside standard deviation of copper 
is the third one (0.402), but the best Sortino result comes from the highest mean 
value (see Table 1). Aluminium has the lowest downside deviation, which puts it in 
a very good second place. Zinc has better results than tin, compared to the Sharpe 
ratio, because zinc has significantly lower downside deviation (0.446) than tin 
(0.549). Lead has the second lowest σD (0.389), but lea has the lowest mean, putting 
it in the last place. 

The Treynor ratio gauges the relation between risk-adjusted returns and the 
level of systemic risk, which is beta. Beta measures the synchronisation of industrial 
metals with the benchmark, which is a whole market; in our case, it is S&P500 index. 
According to this indicator, aluminium has by far the best result, because the beta of 
aluminium is the second lowest, amounting 0.156, but aluminium has relatively high 
mean, which gives it the highest Treynor ratio. Lead has the lowest beta (0.132), 
which means that lead has the least synchronous movements with the whole market, 
which is good for diversification in combination with the S&P500 index. Tin has the 
second best Treynor ratio because tin has a relatively low beta (0.177), and a 
relatively high mean (0.006). Once again, due to the low mean, the Treynor ratio of 
lead is the worst one, while copper has higher Treyor ratio than lead, although copper 
has 2.4 times higher beta than lead, but copper has the highest mean. 

mSTARR can be regarded as the strictest ratio, but also the most realistic one 
because it puts the most accurate measure of downside risk in the denominator, 
which is mCVaR. In this case, mCVaR is observed at 99.5% of probability. Positions 
of mSTARR values slightly alters in respect to Sortino ratio, according to Figure 4, 
because levels of mCVaR changes. In particular, lead is no longer the single worst 
metal, but it shares the last position with tin. Tin drops because it has by far the 
highest mCVaR (-4.865). On the other hand, lead has the lowest mCVaR (-2.368), 
but it also has the lowest mean, which equals mSTARR of lead and tin. Zinc 
increases the advantage with respect to tin, although these two metals have equable 
average returns because tin has a far worse level of downside risk (-4.865) in the 
form of mCVaR than zinc (-2.729).        
 

https://cleartax.in/s/benchmark-mutual-funds
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Figure 4. Graphical presentation of four return-to-risk ratios 

Source: Authors’ calculation. 
 
6. Conclusions 
 

This paper analyses five industrial metals from the aspects of risk and risk-
adjusted returns. For the calculation purposes, we use several non-conventional and 
elaborate methodological approaches, in order to calculate accurate and reliable 
estimates. In particular, all the risk measurements are done using white noise 
residuals obtained from the EGARCH-NIG model. Instead of common variance, we 
use parametric and semiparametric CVaR measures. At the end, the risk-adjusted 
returns are gauged via four different ratios, which take into account four different 
risk measures in the denominator, providing a comprehensive picture about the 
selected metals.   

Based on the results, several noteworthy findings can be reported. First, 
estimates of semiparametric downside risk are more accurate than parametric 
counterparts, because all the industrial metals have non-Gaussian properties. Due to 
these reasons, an order of calculated risk levels is different between parametric and 
semiparametric estimates, which justifies the usage of mCVaR. Second, aluminium 
has the lowest CVaR at all probabilities, while lead takes the upper hand in mCVaR 
when higher probabilities are observed. This happens because lead has favourable 
properties of the third and fourth moments, i.e. the highest positive skewness and the 
lowest kurtosis. On the other hand, the riskiest metal is tin because it has the highest 
negative skewness and the highest kurtosis. 
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As for the calculated ratios, copper is the best metal in the three out of four cases 
(Sharpe, Sortino, and mSTARR), primarily because copper has the highest mean. 
Aluminium has the best Treynor ratio because of its relatively low beta and relatively 
high mean. 

Based on the results, it can be concluded that economic agents who work with 
tin need to hedge their positions because tin is prone to significant losses. On the 
other hand, the least risky metals are lead and aluminium. Copper is the best metal 
in terms of risk-adjusted results, while lead can be used as a good secondary 
instrument in combination with S&P500 index in a portfolio because it has the lowest 
beta. 
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