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A Multi-Objective Water Cycle Algorithm  
for the BI-Objective Multi-Mode Project  
Resource Renting Problem 

Abstract. A resource renting problem is a project scheduling problem in which the required 
resources should be rented, and the goal is to find a schedule and resource renting plan such 
that the total cost of the resources minimises. Traditionally, the model of a resource renting 
problem contains single-mode activities and a single objective function. This research aims 
to present a new mathematical model for a bi-objective multi-mode resource renting 
problem. The objectives are to minimise the project makespan and also the total cost of 
resources, including the time-independent resource procurement costs and time-dependent 
resource renting costs, simultaneously. A novel evolutionary algorithm, namely the Multi-
Objective Water Cycle Algorithm (MOWCA), is employed to solve this NP-hard problem. In 
order to evaluate the proposed algorithm, the Non-Dominated Sorting Genetic Algorithm 
(NSGA-II) is applied, too. A set of instances is selected from the digital library of project 
scheduling problems to analyse the performances of evolutionary algorithms. The results of 
the experimentation are quite satisfactory. 

Keywords: resource renting, resource constraint, project scheduling, rental policy, 
metaheuristic algorithms. 

JEL Classification: C44, E40. 

1. Introduction 

One of the challenges of project management is the reasonable allocation of the 
project resources as it can optimise the project performance and the project 
makespan. However, this allocation might be strewn with difficulties due to the 
limitation of the resources, known as resource constraints. The impact of resource 
limitations on prolongation of the project makespan has led to develop the resource-
constrained project scheduling models aiming at minimising the project makespan 
(Khalili et al., 2013). As an extension of resource-constrained project scheduling 
problem, the Resource Investment Problem (RIP) is developed to optimise the 
resource project costs (Najafi and Azimi, 2009). In RIP, the resources can be 
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purchased at the beginning of a project and are available until the end without 
considering when they are required and whether they are used only once or 
throughout the project makespan. Resource costs are also considered as time-
independent costs in RIPs. It means that the required resources are purchased at the 
beginning of the project and, as a result, the costs of resource providing are 
independent of the duration of the project. However, it is not always economical to 
purchase resources in the real world, and the necessary resources might only be 
rented. For instance, human resources and heavy machinery cannot be purchased at 
the beginning of a project by spending a fixed time-independent costs. In such cases, 
it is better to rent the necessary resources for a limited period. 

Hence, it appears essential to consider the Resource Renting Problem (RRP) to 
make scheduling problems more realistic. Nubel (2001) introduced the RRP, in 
which the time-dependent renting cost is also considered when new resources are 
added to the available project resources in addition to the procurement cost. Solving 
RRPs specifies the optimal rental policy of a project which in turn determines the 
rental period of resources. Nubel (2001) employed the branch-and-bound method to 
solve the RRP by assuming the possibility of delay as well as the minimisation and 
maximisation of intervals for the prerequisite relationships of activities. After 
defining a new variable for the RRP, Ballestin (2007) employed a Genetic Algorithm 
(GA) to solve the model. The GA outperformed the branch-and-bound method in 
projects with 20 activities. Vandenheede et al. (2016) introduced the extended 
version of the project RRP by adding the activation cost to the objective function 
and developed a scatter search to solve the problem. Kerkhove et al. (2017) proposed 
a new modelling framework for the RRP by considering overtime; therefore, the total 
cost was considered equal to the costs of procuring and renting resources for use 
during the normal and overtime. Afshar-Nadjafi et al. (2017) analysed the RRP with 
tardiness and used the GA and Ant Colony Optimization (ACO) algorithm to solve 
the problem. Schanbel et al. (2018) presented a problem where only variable costs 
are considered, and the trade-off between the cost for additional resources and the 
minimum makespan is reviewed.  Siamakmanesh et al. (2022) considered a resource 
availability cost problem and developed a self-adaptive genetic algorithm to tackle 
the problem. 

Studies such as Arjomand et al. (2020), Nabipoor Afruzi et al. (2020), Rezaei 
et al. (2020), Servranckx et al. (2022), and Hartmanna and Briskorn (2022) are also 
among the related research work that attempted to address resource-constrained 
project scheduling problem. 

According to the literature on RRP, the proposed methods were single-objective 
models aiming to minimise the total costs of resources without considering multiple 
objectives simultaneously. Moreover, there was only one activity mode; however, 
an activity may have different modes. This study proposes the multi-mode RRP to 
minimise the total cost of resources and the project makespan. Metaheuristic 
algorithms must be employed to solve this NP-hard problem to obtain the optimal 
resource rental policy. Accordingly, the Non-Dominated Sorting Genetic Algorithm 
(NSGA-II) and Multi-Objective Water Cycle Algorithm (MOWCA) were used in 
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this study. Considering the two objectives of the problem, non-dominated solutions 
were obtained by solving the problem. The Pareto solutions of the algorithms can be 
analysed by evaluating the performance evaluation criteria of these metaheuristic 
algorithms. 

The problem statement and its model are presented in the next section. The two 
metaheuristic algorithms (NSGA-II and MOWCA) are then introduced along with 
their steps and common grounds. After that, optimal parameters of these two 
algorithms are determined. Then problems of different dimensions and cost ratios 
are solved by using these algorithms. In addition, evaluation criteria are employed 
to compare the two algorithms in terms of performance and efficiency. Finally, 
concluding remarks are presented. 
 
2. Problem Statement 

 
This study introduces the multi-mode activity project RRP. The problem 

assumptions are discussed in the following subsection. The mathematical model is 
then proposed to minimise the total cost of resources and the project makespan 
simultaneously. 

 
2.1 Problem Assumptions 

The project includes n activities, numbered from 1 to n. The two dummy 
activities 0 and n+1 are then added and regarded as the starting and ending activities 
of the project. The predecessor set of project activities is denoted by E. Each activity 
can be performed in different modes. The set for possible modes of each activity is 
shown by Mi. Each mode includes the activity duration and required resources, 
respectively shown by 𝑝𝑝𝑖𝑖𝑖𝑖 and 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖. The duration of activities (1 to n) is positive in 
all modes, and those of the dummy activities (0 and n+1) are zero. The activities 
require K types of resources, and none are available at the starting point of the 
project. Therefore, a resource rental plan is needed to determine when and how many 
resources will be rented at any time during the project. The resource costs include 
the time-independent procurement cost and time-dependent renting cost indicated by 
𝐶𝐶𝑖𝑖
𝑝𝑝 and 𝐶𝐶𝑖𝑖𝑟𝑟, respectively.  

To formulate the problem, let us define the decision variables as follows: 
𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 : A binary variable where it is one if activity i starts in mode m at time t and 
zero otherwise 
𝛼𝛼𝑖𝑖𝑖𝑖 : The number of units of resource k which are added at time t 
𝜔𝜔𝑖𝑖𝑖𝑖: The number of units of resource k which are withdrawn at time t  
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2.2 Mathematical Model 

This model includes a multi-mode RRP aiming to minimise the total resource 
cost and the project makespan.  

Min ∑ 𝐶𝐶𝑖𝑖
𝑝𝑝

𝑖𝑖∈R ∑ 𝛼𝛼𝑖𝑖𝑖𝑖 𝑈𝑈𝑈𝑈
𝑖𝑖=0  + ∑ 𝐶𝐶𝑖𝑖𝑟𝑟𝑖𝑖∈R ∑ ∑ (𝛼𝛼𝑖𝑖𝑘𝑘 − 𝜔𝜔𝑖𝑖𝑘𝑘) 𝑖𝑖

𝑘𝑘=0
 𝑈𝑈𝑈𝑈
𝑖𝑖=0              (1) 

Min ∑ 𝑡𝑡𝑥𝑥𝑛𝑛+1,1,𝑖𝑖
𝑈𝑈𝑈𝑈
𝑖𝑖=0                   (2) 

∑ ∑ (𝑡𝑡 + 𝑝𝑝𝑖𝑖𝑖𝑖)𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖 ≤ ∑ ∑ 𝑡𝑡𝑥𝑥𝑘𝑘𝑖𝑖𝑖𝑖
𝑈𝑈𝑈𝑈
𝑖𝑖=0

𝑀𝑀𝑗𝑗
𝑖𝑖=1

𝑈𝑈𝑈𝑈
𝑖𝑖=0

𝑀𝑀𝑖𝑖
𝑖𝑖=1          ; ∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐸𝐸            (3) 

∑ ∑ ∑ 𝑟𝑟𝑖𝑖𝑖𝑖𝑖𝑖 ∗ 𝑥𝑥𝑖𝑖𝑖𝑖𝑘𝑘
 𝑖𝑖
𝑘𝑘=𝑖𝑖−𝑝𝑝𝑖𝑖𝑖𝑖+1

𝑀𝑀𝑗𝑗
𝑖𝑖=1

𝑛𝑛
𝑖𝑖=1  ≤  ∑ (𝛼𝛼𝑖𝑖𝑘𝑘 − 𝜔𝜔𝑖𝑖𝑘𝑘)𝑖𝑖

𝑘𝑘=0    ;  ∀𝑘𝑘 , ∀t            (4) 

∑ 𝛼𝛼𝑖𝑖𝑖𝑖 𝑈𝑈𝑈𝑈
𝑖𝑖=0   −  ∑ 𝜔𝜔𝑖𝑖𝑖𝑖  𝑈𝑈𝑈𝑈

𝑖𝑖=0 = 0                            ; ∀𝑘𝑘             (5) 

∑ ∑ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖
𝑀𝑀𝑖𝑖
𝑖𝑖=1

 𝑈𝑈𝑈𝑈
𝑖𝑖=0 = 1                                            ; ∀𝑖𝑖            (6) 

𝛼𝛼𝑖𝑖𝑖𝑖  ,   𝜔𝜔𝑖𝑖𝑖𝑖  ∈ Z+                                                                                                 ; ∀𝑘𝑘  ,  ∀t           (7) 

𝑥𝑥𝑖𝑖𝑖𝑖𝑖𝑖∈ {0,1}                                                ; ∀t , ∀m, ∀𝑖𝑖           (8) 

According to Eqs. 1 and 2, the objective functions aim to minimise the total 
resource cost and the project makespan, respectively. The resource cost is obtained 
by adding the resource procurement costs, when new resources are added to the set 
of available resources, to the renting costs for available resources throughout the 
project. The project makespan equals the commencing time of the dummy activity 
n+1. In these equations, UB shows the upper bound allocated for project completion. 
Eq. 3 shows the constraint of precedence relationships and guarantees the feasibility 
of scheduling. In other words, each activity can start only after the completion of its 
previous activities. Eq. 4 ensures the availability of sufficient capacity for each 
resource throughout the project. According to Eq. 5, the resources added to the set 
of available resources are equal to those withdrawn from the set of available 
resources during the project. That is to show that every resource added to the set of 
available resources, must be deleted until the end of the project so that the set of 
available resources will be empty when the project is completed. Eq. 6 states that 
every activity must be started only once in one mode. The sets of constraints 7 and 
8 denote the domain of the variables. 

 
3. The Solution Algorithms 

 
Two metaheuristic algorithms were employed to solve the problem under study. 

Therefore, the common grounds for these two algorithms are addressed in this 
section. Each algorithm is then explained in detail. 
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3.1 Common Grounds of Metaheuristic Algorithms 

• Solution Structure 
A 2×n+2 matrix is employed here to show the solution structure. Each column 

of this matrix indicates the activity of the same number shown above the matrix. The 
first row indicates the modes assigned to each activity. The second row includes 
integers showing the starting times of the activities. Figure 1 shows how to code a 
project with four activities, each of which can be performed in three modes. In this 
case, Activities 0 and 5 are dummies. In this solution, the second activity is 
performed in mode 3 at time 2. 

 
5 4 3 2 1 0 
1 2 3 3 1 1 
8 4 3 2 0 0 

 

Figure 1. The solution structure 
 
• Initial Population Generation 
When the possible number of activity modes is known, one mode is first 

allocated randomly to each activity. Once a specific mode is allocated to activities, 
the problem changes from a multi-mode case to a single-mode case. A starting time 
is then allocated to each activity in an interval ranging from the earliest starting time 
to the latest starting time in order of activity numbers by complying with precedence 
constraints. 

• Fitness Function 
In this problem, the objective functions include the project makespan and total 

resource cost. The project makespan equals the time spent for completing the (n+1)th 
activity, i.e. the final activity of the project, obtained directly from the solution 
structure. To determine the total resource cost, the profiles of resources are first 
obtained to show the required extent of each resource in each project interval. The 
profiles of resources and costs of procuring and renting resources are taken into 
account to determine the optimal rental policy for scheduling. According to the 
optimal rental policy, a resource is not removed from the set of available resources 
in each interval when the cost of renting idle resources is lower than that of 
repurchasing those resources. The resource rental policy is employed to determine 
the times of procuring resources and adding them to the set of available resources 
and the times of withdrawing resources from the set of available resources. The 
resulting information allows the determination of the total resource cost of the 
project. 

• Solution Structure Correction 
The newly obtained solutions are analysed for correction if they are not feasible. 

First, the activity modes are checked in terms of feasibility. If the mode allocated to 
an activity is not available, that mode is corrected, and one of the possible modes of 
that activity is randomly assigned to it. In the next step, the starting times are checked 
in order of activities that concern primacy and latency. If an activity is scheduled 
earlier than its own earliest starting time, its starting time changes to the earliest 
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starting time. On the contrary, if an activity is scheduled later than its starting time, 
the time is corrected and changed to the latest starting time. The precedent activities 
are also checked. If an activity is scheduled before its precedent activities, its starting 
time is changed to a time following the completion of those precedent activities. 

• Termination Condition 
The algorithm is terminated after the predetermined maximum iterations are 

performed. The Pareto solutions obtained in the last iteration are then selected as the 
final solution. 

 
3.2 Multi-Objective Water Cycle Algorithm  

Sadollah et al. (2015) developed Multi-Objective Water Cycle Algorithm 
(MOWCA) for solving multi-objective optimisation problems. This algorithm is an 
extension of the single-objective water cycle algorithm which is inspired by the 
natural water cycle and flows of rivers and streams into the sea to solve multi-
objective optimisation problems (Eskandar et al., 2012). The MOWCA is the 
generalised version of the single-objective water cycle algorithm. The initial 
population of MOWCA is generated after rain to form the population consisting of 
the sea, rivers, and streams. Then the evaporation process prevents the early 
convergence of the local optimal solution by vaporising the water in rivers and 
streams that flow into the sea. The ranking and crowding distance criteria are 
employed to determine the sea, rivers, and streams. The crowding distance is then 
used to allocate a stream to the sea or a river. In each cycle, a new stream or river is 
generated by considering each stream and the sea with the river allocated to it or 
each river with the sea. If the new stream or river dominates the previous solution, 
the new stream or river replaces that solution. 

• Determining the Sea, Rivers, and Streams 
In the single-objective water cycle algorithm, after obtaining the cost of each 

solution, the population members are sorted by the costs, and the best solution is 
named the sea. Then, the rivers are chosen from the following best solutions.  The 
number of seas and rivers are collectively shown with 𝑁𝑁𝑠𝑠𝑟𝑟. The remaining members 
of the population are also called streams, and their number is calculated by Eq. 9. 

𝑁𝑁𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖 = 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 −  𝑁𝑁𝑠𝑠𝑟𝑟                                                                                (9) 

In the MOWCA, the cost of each solution cannot be used to order the set. 
Therefore, the amount of swarm distance is computed, and, hence, the non-
dominated solutions are ranked by this distance. Then, based on the ranked 
population, the seas, rivers, and streams are determined and other non-dominated 
solutions can be classified as rivers or streams around the sea. As a result, the sea is 
in the centre and the rivers, flowing into the sea, are around it. The streams can either 
be flowing into the sea or they can be moving toward the rivers. 

In the single-objective algorithm, for locating the streams, the cost of specified 
solutions is used as the seas and rivers. First, 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝 streams are created, then 𝑁𝑁𝑠𝑠𝑟𝑟 of 
them with minimum cost values are selected as a sea and rivers, with the best 
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individual as the sea. The rest of the population are considered streams that flow to 
the sea or specific rivers. Eq. 10 helps determine the number of streams, flown into 
the sea and the rivers. By the number obtained for the sea, the best cost-wise streams 
are chosen to be flown into the sea. Then the better streams are assigned to the first 
river. Subsequently, the streams, assigned to the second river, are specified as well, 
and so the process continues to allocate all of the streams. 

𝑁𝑁𝑁𝑁𝑛𝑛 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟{� 𝐶𝐶𝑝𝑝𝑠𝑠𝑖𝑖𝑛𝑛
∑ 𝐶𝐶𝑝𝑝𝑠𝑠𝑖𝑖𝑖𝑖
𝑁𝑁𝑠𝑠𝑠𝑠
𝑖𝑖=1

�× 𝑁𝑁𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖}    ,     n = 1, 2, … , 𝑁𝑁𝑠𝑠𝑟𝑟                                    (10) 

In the MOWCA, to determine the number of streams assigned to the sea and 
rivers in Eq.10, the swarm distance replaces the costs. Furthermore, as with the 
single-objective algorithm, the location of the stream flows is determined such that 
the largest number of streams are flown into the sea and rivers and the number of the 
streams flowing into the first river is higher than the number of the streams flowing 
into the second river. Similarly, fewer streams should be flowing into the subsequent 
rivers. 

• Generating new Rivers and Streams 

In each iteration of the algorithm, each stream is firstly compared to the sea or 
river flown into it and is generated by Eqs. 11 & 12 in the form of a new stream. In 
this algorithm, like the NSGA-II algorithm, after the generation of a stream, a 
correction is performed to justify the obtained result. In these equations, C can have 
a value between one and two, where two is the best possible value that leads to the 
creation of newer solutions. 

�⃗�𝑋𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1 = 𝑋𝑋���⃗ 𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + rand × C × (�⃗�𝑋𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆𝑟𝑟𝑖𝑖 − �⃗�𝑋𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )                                                                        (11) 

�⃗�𝑋𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖+1 = �⃗�𝑋𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 + rand × C × (�⃗�𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − �⃗�𝑋𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖𝑖𝑖 )                                                                           (12) 

Then each river is compared with the sea, and, according to Eq. 13, a solution 
is produced in the form of a new river. After the generation of the river, a correction 
is also done. 

�⃗�𝑋𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆𝑟𝑟𝑖𝑖+1 = �⃗�𝑋𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆𝑟𝑟𝑖𝑖 + rand × C × (�⃗�𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 − �⃗�𝑋𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆𝑟𝑟𝑖𝑖 )                                                                                   (13) 
If the new stream succeeds in defeating its connecting river and is a better 

solution, it will replace the river, and their positions are exchanged. If the new river 
is better than the sea, it can similarly replace the sea. Then, the river becomes a sea 
and the sea becomes a river. 

• The Evaporation 
In each population, the rivers and streams must have an acceptable distance to 

the sea, so the Euclidean distance of each river or stream, flowing into the sea, with 
the sea, is calculated and compared with the evaporation control parameter (Eq. 14). 
If the distance is less than the evaporation control parameter, new streams flow into 
the sea, and the reviewed river or stream evaporates. 

��⃗�𝑋𝑆𝑆𝑆𝑆𝑆𝑆𝑖𝑖 −  �⃗�𝑋𝑅𝑅𝑖𝑖𝑅𝑅𝑆𝑆𝑟𝑟/𝑆𝑆𝑖𝑖𝑟𝑟𝑆𝑆𝑆𝑆𝑖𝑖
𝑖𝑖 � < 𝑟𝑟𝑖𝑖𝑆𝑆𝑚𝑚                                                                                                         (14) 
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Figure 2 summarises the coding sequence of this algorithm. 
 

1) Specification of the parameters 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝، 𝑁𝑁𝑠𝑠𝑟𝑟، 𝑟𝑟𝑖𝑖𝑆𝑆𝑚𝑚 and the maximum number of the 
iterations. 
2) Specification of the number of streams. 
3) Production of the initial population 
4) Determination of number of the streams, flowing into each of the rivers and the sea. 
5) If the stop condition is not met 
  5-1) New streams are created based on the rivers and the sea they flow into, and the target 
functions of the new streams are recalculated. 
   5-1-1) If the new stream dominates the river, it will replace it. 
   5-2-2) If the new stream dominates the sea, it will replace it. 
  5-2) New rivers are created based on the sea and the target functions of the new rivers 
are recalculated. 
   5-2-1) If the river dominates the sea, it will replace it. 
  5-3) For the rivers set, new rivers are produced if the distance between the sea and the 
rivers is less than the evaporation control parameter  
6) Obtaining Pareto answers 

Figure 2. MOWCA Pseudo-Code 
 
3.3 Non-Dominated Sorting Genetic Algorithm (NSGA-II) 

The Genetic Algorithm (GA) is the method of finding approximate solutions 
and optimising problems (Deb et al., 2002). The solution structure in this algorithm 
is shown as a chromosome. The NSGA-II is an extended version of the GA, obtained 
by adding ranking and crowding distance criteria to the GA. In NSGA-II, the concept 
of dominance is employed to divide the resulting solutions into different fronts. 
Then, on each front, the crowding distance of each solution is obtained. The rankings 
and crowding distances of solutions are employed in each iteration to select better 
solutions. These solutions are then moved on to the next iteration in which crossover 
and mutation operations are applied. This cycle continues until the termination 
condition is met. The non-domination solutions obtained from the last iteration are, 
in fact, the Pareto solutions to the problem. 

• Crossover 
For each crossover operation, two members of the population are randomly 

selected as parents. The one-point crossover operator and the two-point crossover 
operator are then applied to them. As a result, two new children are obtained. Once 
the resulting population is obtained from the crossover operation, the chromosome 
correction process is performed to ensure the scheduling feasibility of each solution. 

• Mutation 
In the mutation operation, the chromosomes can be changed by three methods 

with the same probability. In the first method, change is only applied to the first row 
of the chromosomes. In other words, the selected activity modes change to one of 
the possible activity modes. In the second method, only the second row of the 
chromosomes is changed. This means that the starting time of the selected activities 
ranges from the earliest starting time to the latest starting time. Both rows are 
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changed in the third method. Said otherwise, the starting times of the selected 
activities change after changing their activity modes. After the resulting population 
is obtained from mutation, the chromosome correction process is performed to verify 
the feasibility of scheduling and ensure compliance with precedence constraints. 

 
4. Computational Results 

 
In this section, a few criteria are applied to evaluate the metaheuristic 

algorithms. These criteria are employed in the following sections. Moreover, the best 
control parameters of each algorithm must be determined to analyse the results of 
metaheuristic algorithms. These parameters are obtained from the Taguchi test. Then 
60 different problems are solved by both algorithms. In the final section, the resulting 
criteria are employed to compare the algorithms in terms of efficiency. 

 
4.1 Evaluation Criteria 

Quantitative and qualitative criteria are utilised to evaluate the performance of 
multi-objective metaheuristic algorithms. Some of these criteria are introduced 
below: 
A) Diversity Measure (DM): This index measures the spread of the Pareto solution 

set generated by a procedure. The DM can be calculated by Eq. 15 and a larger 
dispersion is more favourable. 

𝐷𝐷𝐷𝐷 = �(max𝑓𝑓1.𝑖𝑖 − min𝑓𝑓1.𝑖𝑖)2 + (max𝑓𝑓2.𝑖𝑖 −min𝑓𝑓2.𝑖𝑖)2          (15) 

B) Spacing: This criterion determines the expansion and distance of the resulting 
solutions through Eq. 16. A smaller spacing shows a shorter distance and a 
normal dispersion of solutions, and thus is more favourable. 

𝑁𝑁 =  � 1
|𝑄𝑄|  ∑ �𝑟𝑟𝑖𝑖 −  �̅�𝑟�2|𝑄𝑄|

𝑖𝑖=1                            (16) 

𝑟𝑟𝑖𝑖 =  min
𝑖𝑖𝑘𝑘𝑄𝑄 .  𝑖𝑖≠𝑖𝑖

∑ �𝑓𝑓𝑖𝑖𝑖𝑖 − 𝑓𝑓𝑖𝑖𝑖𝑖�𝑖𝑖
𝑖𝑖=1       �̅�𝑟  =  

∑ 𝑑𝑑𝑖𝑖
|𝑄𝑄|
𝑖𝑖=1
|𝑄𝑄|                        (17) 

In Eq. 17, Q shows the Pareto solutions obtained from the algorithm, and, in 
Eqs 16 and 17, |Q| indicates the number of Pareto solutions. The resulting distance 
of this equation differs from the Euclidean distance. The standard deviations of 
different values are also measured. 
C) Mean Ideal Distance (MID): This criterion determines the mean distance of the 

Pareto solutions from the ideal solution or the origin through Eq. 18. In this case, 
the distance was measured from the origin. Smaller values of MID show that the 
solutions are closer to the origin and that the algorithm is more efficient. In this 
equation, 𝑓𝑓𝑖𝑖.𝑖𝑖 shows the value of the kth objective function in the ith Pareto 
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solution where n and 𝐶𝐶𝑖𝑖 respectively indicate the number of Pareto solutions and 
Euclidean distance between each Pareto solution and the origin. 

𝐷𝐷𝑀𝑀𝐷𝐷 =  ∑ 𝐶𝐶𝑖𝑖𝑛𝑛
𝑖𝑖=1
𝑛𝑛

            𝐶𝐶𝑖𝑖 = �𝑓𝑓1.𝑖𝑖
2 +  𝑓𝑓2.𝑖𝑖

2                                      (18) 

D) Rate of Achievement to Objectives Simultaneously (RAS): This criterion 
determines the rate of achievement to the ideal values of objective functions 
simultaneously through Eq. 19. The smaller values of this criterion indicate the 
higher efficiency of the algorithm: 

𝑅𝑅𝑅𝑅𝑁𝑁 =  
∑ ( �𝑓𝑓1.𝑖𝑖−𝑓𝑓1.𝑏𝑏𝑒𝑒𝑠𝑠𝑠𝑠�

𝑓𝑓1.𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡
𝑖𝑖𝑡𝑡𝑚𝑚 −𝑓𝑓1.𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡

𝑖𝑖𝑖𝑖𝑛𝑛 + �𝑓𝑓2.𝑖𝑖−𝑓𝑓2.𝑏𝑏𝑒𝑒𝑠𝑠𝑠𝑠�

𝑓𝑓2.𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡
𝑖𝑖𝑡𝑡𝑚𝑚 −𝑓𝑓2.𝑠𝑠𝑡𝑡𝑠𝑠𝑡𝑡𝑡𝑡

𝑖𝑖𝑖𝑖𝑛𝑛 )𝑛𝑛
𝑖𝑖=1

𝑛𝑛
                        (19) 

E) The Number of Pareto Solutions: This criterion displayed by NFS shows the 
number of Pareto solutions, i.e. the non-dominated solutions obtained from the 
studied algorithms. The higher the values of this criterion, the higher the 
efficiency of the algorithm. 

F) Algorithm Runtime: This criterion indicates the algorithm runtime required to 
achieve the final Pareto solution. A shorter runtime shows the higher efficiency 
of the algorithm. 

 

4.2 Setting of the Algorithm Parameters 

Determination of appropriate parameters can affect the quality of algorithms 
(Shahsavar et al., 2011), and, therefore, the Taguchi method is used in this study to 
set the parameters. In each algorithm, two series of parameters were obtained for the 
problems with 10 activities, regarded as small problems, and the problems with 20 
activities, regarded as big problems. Each test included five problems, each of which 
was tested five times. The best solution was then used in the following steps. 
Diversity, spacing, the number of Pareto solutions, and algorithm runtime are utilised 
to set the parameters. 

• Determining MOWCA Parameters 
Four control parameters must be configured in the MOWCA, including the 

number of iterations, the population size, the total number of seas and rivers, and the 
evaporation control parameter. Table 1 shows the four levels defined for each control 
factor. 

 
Table 1. MOWCA control factors 

Factor Symbol Level 1 Level 2 Level 3 Level 4 
MaxIt A 300 350 400 450 
nPop B 50 70 100 125 
Nsr C 2 4 6 8 

dmax D 0.5 1 1.5 2 
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Based on the Taguchi method L16b orthogonal array, the experiment was 
performed for small and large projects separately. First, for each experiment, five 
problems were randomly chosen. For each one of them, the experiment was 
performed five times to get better solutions, then the best solution was used for 
further steps. In the next step, the relative deviation index of the diversity measure, 
the spacing, the number of Pareto solutions, and the algorithm runtime were all 
measured by Eq. 20.  

𝑅𝑅𝐷𝐷𝑀𝑀𝑖𝑖 =  � 𝑆𝑆𝑝𝑝𝑙𝑙𝑢𝑢𝑖𝑖𝑖𝑖𝑝𝑝𝑛𝑛𝑖𝑖−𝑈𝑈𝑆𝑆𝑠𝑠𝑖𝑖 𝑆𝑆𝑝𝑝𝑙𝑙𝑢𝑢𝑖𝑖𝑖𝑖𝑝𝑝𝑛𝑛
𝑀𝑀𝑆𝑆𝑚𝑚 𝑆𝑆𝑝𝑝𝑙𝑙𝑢𝑢𝑖𝑖𝑖𝑖𝑝𝑝𝑛𝑛−𝑀𝑀𝑖𝑖𝑛𝑛 𝑆𝑆𝑝𝑝𝑙𝑙𝑢𝑢𝑖𝑖𝑖𝑖𝑝𝑝𝑛𝑛

�                                                                   (20) 

Then, the average relative deviation index, with a weight of 2 for the number of 
Pareto solutions, and 1 for the rest of the parameters, was obtained. 

The outputs are converted into S/N ratios in Minitab, which are shown in Fig. 3, 
to obtain the best level of each factor in Table 2. 

 

 

 

 

(a) Small size problems  (b) large size problems 
Figure 3. S/N ratios in MOWCA 

 
Table 2. Optimal levels of MOWCA factors 

(b) Large size problems  (a) Small size problems 
dmax Nsr nPop MaxIt Factor  dmax Nsr nPop MaxIt Factor 

D C B A Symbol  D C B A Symbol 

4 3 4 3 Best 
Level 

 4 3 2 1 Best 
Level 

2 6 125 400 Best 
Value 

 2 4 75 300 Best 
Value 

 
• Determining NSGA-II Parameters 
Five control parameters must be set in the NSGA-II, including the number of 

iterations, the population size, population crossover rate, mutation rate, and mutation 
effect rate. Four levels were then defined for each control factor. Table 3 shows the 
parameters set in this algorithm.  
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Similar to determining MOWCA parameters, the Taguchi method L16b 
orthogonal array was performed and, then, average relative deviation indexes were 
obtained for each parameter. 

 
Table 3. Control factors of NSGA-II 

Factor Symbol Level 1 Level 2 Level 3 Level 4 
MaxIt A 300 350 400 450 
nPop B 50 75 100 125 

pc C 0.4 0.5 0.6 0.7 
pm D 0.1 0.2 0.3 0.4 

pmu E 0.1 0.15 0.2 0.3 
 
The outputs are converted into S/N ratios in Minitab, which are shown in Fig. 4, 

to obtain the best level of each factor in Table 4. 
 

 

 

 

(a) Small size problems  (b) large size problems 
 

Figure 4. S/N ratios in NSGA-II 
 

Table 4. Optimal levels of NSGA-II factors 
(b) Large size problems  (a) Small size problems 

pmu pm pc nPop MaxIt Factor  pmu pm pc nPop MaxIt Factor 

E D C B A Symbol 
 

E D C B A Symbol 

4 1 1 3 4 Best 
Level 

 
1 1 2 1 4 Best 

Level 

0.3 0.1 0.4 100 450 Best 
Value 

 0.1 0.1 0.5 50 450 Best 
Value 
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4.3 Analysis of Metaheuristic Algorithms Results 

To compare MOWCA with NSGA-II, 30 problems of 10 activities and 30 
problems of 20 activities are tested. The information on these problems is gathered 
from the PSPLIB website (htttp://www.om-db.wi.tum.de/psplib). In each problem, 
activities have three different modes and four required resources. A fixed cost of 200 
is considered in all problems for procuring resources, whereas the resource rental 
costs are determined to be 10, 20, and 50% of fixed costs. Diversity, distance from 
the origin, spacing, RAS, and algorithm runtime are obtained in each test. Table 5 
shows the mean and standard deviation of each criterion. 

 
Table 5. Overview of computational outputs 

SD Mean  
5521.973 7287.007 NSGA-II DM 7917.909 7867.67 MOWCA 
1317.434 1212.026 NSGA-II S 1441.074 948.936 MOWCA 

0.1054 0.8773 NSGA-II RAS 0.12886 0.93229 MOWCA 
31.8473 70.074 NSGA-II Time 78.8 132.7056 MOWCA 

 
According to the mean values in Table 5, MOWCA outperformed NSGA-II in 

terms of diversity and showed a higher mean. MOWCA also performs better in terms 
of spacing. NSGA-II showed a lower RAS and outperformed MOWCA in terms of 
efficiency. In addition, NSGA-II had a shorter runtime than MOWCA and obtained 
the Pareto solutions in a shorter time. 

In addition, Fig. 5 displays the boxplots of the criteria examined in the tests. 
These diagrams give a better understanding of the mean, dispersion, and differences 
of the values obtained from both algorithms in terms of each criterion. 

According to the resulting solutions and distances from the ideal point in each 
test, NSGA-II produced better and closer results to the origin. However, there were 
relatively fewer solutions, and one or two different scheduling plans were proposed 
for each cost point. Nonetheless, MOWCA produced more solutions, although 
Pareto solutions are costlier. In other words, MOWCA solutions showed different 
starting times and various modes of activities at similar costs. 
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Figure 5. Boxplots of computational outputs 

 
Considering non-normal results, the Mann-Whitney nonparametric test was 

employed to evaluate the differences in algorithms. The test is conducted on 
independent samples, and the outputs are combined and sorted in ascending order. 
The total ranks of each sample are determined and compared separately. If samples 
have no effects on data, the total ranks of both samples must be the same. Table 6 
shows the results obtained from the tests in addition to the superior algorithm for 
each criterion, indicated in the last columns. The p-value of each test was compared 
to 0.05. If the P-value<0.5, the null hypothesis concerning the equality of the two 
samples is rejected; otherwise, the null hypothesis cannot be rejected. Consequently, 
the samples were not superior to each other, and both algorithms showed a similar 
efficiency. 

 
Table 6. The results of the Mann-Whitney test 

Evaluation 
Criteria 

p-
value 

Null Hypothesis: Equality of Two 
Samples 

Superior 
Algorithm 

DM 0.8174 Not refused NSGA-II, 
MOWCA 

S 0.0756 Not refused NSGA-II, 
MOWCA 

RAS 0.0004 refused NSGA-II 
Time 0.0000 refused NSGA-II 
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5. Conclusions 
 

In this study, we introduced a new bi-objective multi-mode resource renting. 
This two-objective problem aim at minimising the total cost of available resources 
and the project makespan, simultaneously. The required resources are characterised 
by time-independent and time-dependent costs. The time-independent cost refers to 
the cost of procurement of new resources and adding them to the set of available 
resources in the project. Different modes are also assumed for activities. The optimal 
rental policy is obtained after solving the problem. This policy determines when 
resources are procured and added to the set of available resources. After the 
mathematical model is developed for this problem, two metaheuristic algorithms, 
namely MOWCA and NSGA-II, are proposed to solve the model. The resulting 
output indicates that NSGA-II outperformed MOWCA in terms of efficiency; 
however, MOWCA produced more scheduling plans for a pair of costs. 
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