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Abstract. Despite the widespread adoption of machine learning and deep learning in 
financial market forecasting, achieving satisfactory results remains a persistent challenge 
due to the inherent complexities, nonlinearity, and uncertainties in financial data. This study 
addresses this challenge by introducing two innovative methods in supervised machine 
learning for feature and label construction. Features are derived from the graphical 
representation of price data to capture inherent patterns, and the target variable definition 
is grounded in data momentum, enabling predictions beyond the confines of the training data. 
These methodological advancements not only enhance regression accuracy, but also expedite 
model training by facilitating predictions of unobserved values during training. Empirical 
analysis, employing various financial market datasets and neural network models, 
demonstrates a substantial improvement in prediction accuracy and efficiency.  
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1. Introduction 

Accurately predicting financial market dynamics remains a formidable 
challenge due to the inherent uncertainties, nonstationarity, and nonlinearity of 
financial data, compounded by substantial market noise. Despite these challenges, 
machine learning and deep learning techniques have demonstrated promise in 
financial data prediction, encompassing methods such as linear regression, decision 
trees, support vector machines, ensemble methods like random forest and gradient 
boosting, as well as two-stage methods involving various combinations (Atsalakis 
and Valavanis, 2009; Sezer et al., 2020; Moon and Kim, 2019, 2023). Notably, the 
long short-term memory (LSTM) method has gained wide acceptance for predicting 
financial time-series data (Fischer and Krauss, 2018; Chen and Ge, 2019; Nabipour 
et al., 2020; Su et al., 2021; Jung and Choi, 2021).  

Despite the effectiveness of these approaches, the presence of noise in financial 
data remains a limiting factor, diminishing the precision and efficacy of prediction 
methods (Hassani et al., 2010). Traditionally, to address this challenge, widely 
adopted smoothing methods such as the simple moving average (SMA) or 
exponentially weighted moving average (EWMA) are employed to mitigate noise in 
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financial data (Ellis and Parbery, 2005; Babu and Reddy, 2014). Although these 
moving average techniques are straightforward and commonly used, a noteworthy 
issue arises from the time lag associated with the reflection of historical data (Raudys 
et al., 2013). To overcome this limitation, alternative denoising methods have been 
proposed. Notable among them are the wavelet transform (Sun and Meinl, 2012; He 
and He, 2019; Wu et al., 2021), and the Fourier transform (Song et al., 2021), which 
aim to enhance the robustness of financial data by reducing noise and preserving 
essential information for improved predictive accuracy. 

We present an innovative data representation methodology that aims at 
eliminating noise and improving the efficacy of supervised learning algorithms when 
applied to financial data. This introduced approach comprises two distinct 
components: the first method focuses on noise reduction in features, while the second 
method is dedicated to constructing a target variable. Our methodology demonstrates 
superior predictive outcomes, as elucidated in Chapter 4, showcasing the 
effectiveness of these techniques in refining the precision and reliability of financial 
data analysis through supervised learning algorithms. 

To address noise  
in financial data, we propose a graph-based smoothing method known for its 

intuitiveness, simplicity, and speed. Graphing stock prices can reveal severe 
vibrations, and our smoothing method effectively suppresses these vibrations when 
applied with a thick pen, as illustrated. Additionally, we advocate for using the 
momentum of values as the target variable for swift and accurate regression. 
Learning momentum, as opposed to the value itself, enables predictions of rising or 
falling markets not evident in the training data. 

Combining these two methods with recurrent neural network (RNN) or long 
short-term memory (LSTM) models facilitates rapid and accurate predictions of 
future values for noisy financial variables, ultimately contributing to increased 
profitability in portfolio management. The experimental validation in Section 4 
confirms the improved accuracy and efficiency compared to alternative feature 
construction and targeting methods.  

The subsequent sections of this paper are structured as follows. Section 2 
introduces a novel algorithm that incorporates graph-based smoothing and defines 
the momentum-based difference as a target variable. In Section 3, we detail the 
dataset and the deep learning models employed. Section 4 offers a comprehensive 
summary of empirical results obtained through the application of the proposed 
algorithm to diverse financial datasets. Concluding the paper, Section 5 provides 
insights and conclusions drawn from the study's findings. 

 
2. Methods 

 
2.1 Graph-based feature construction 

We first explain the transformation from an oscillatory time-series data to a 
graph-based smooth data in a few steps. Let 𝑆𝑆𝑖𝑖 ≔ 𝑆𝑆(𝑡𝑡𝑖𝑖) be the actual value of the 
time series at time 𝑡𝑡𝑖𝑖 , 𝑖𝑖 = 1,2, …, and let 𝑋𝑋 = {𝑆𝑆1,𝑆𝑆2, … } be the whole set of 𝑆𝑆𝑖𝑖’s. 
Here, the value 𝑆𝑆𝑖𝑖 represents the price of an asset, such as a stock, an index, or an 
exchange rate, in the financial market. As shown in Figure 1, we construct subsets 
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of the values starting from 𝑆𝑆𝑖𝑖  to the past 𝑛𝑛  values, 𝑺𝑺𝒊𝒊 = [𝑆𝑆𝑖𝑖−𝑛𝑛+1, … , 𝑆𝑆𝑖𝑖−1,𝑆𝑆𝑖𝑖], 
 𝑖𝑖 = 1,2, …. 

The objective of this study is to predict value 𝑆𝑆𝚤𝚤� ∶= 𝑆𝑆𝑖𝑖+𝑝𝑝 after 𝑝𝑝 units in time 
from 𝑡𝑡𝑖𝑖 by learning these subsets. In ordinary supervised machine learning methods, 
𝑺𝑺𝒊𝒊 and 𝑆𝑆𝚤𝚤�  are referred to as feature and target, respectively, and dataset ��𝑺𝑺𝒊𝒊,𝑆𝑆𝚤𝚤��� is 
used for learning. However, such construction of the dataset may not be appropriate 
in finance because of the complexity, nonlinearity, and uncertainty of the financial 
data. Thus, in this study, we propose new methods to construct the feature and the 
target so that supervised learning becomes accurate. 

 
Figure 1. Feature and target of the financial data 

Source: Illustration by authors. 

Given the history values, 𝑺𝑺𝒊𝒊 , at 𝑡𝑡 = 𝑡𝑡𝑖𝑖 , 𝑺𝑺𝒊𝒊  can be provided to a network for 
training by using it as it is without any smoothing. This is called Raw data in this 
study. Because financial assets with various market uncertainties are volatile, the 
raw values of features 𝑺𝑺𝟏𝟏,𝑺𝑺𝟐𝟐,… in many real-world applications are oscillatory and 
various averaging techniques, such as the SMA or EWMA, are applied to derive 
smooth features. The SMA with a window length of w is defined as 

𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆 = 1
𝜔𝜔

 (𝑆𝑆𝑖𝑖−𝜔𝜔+1 + 𝑆𝑆𝑖𝑖−𝜔𝜔+2 + ⋯+ 𝑆𝑆𝑖𝑖)                                                           (1) 

and the EWMA with parameter 𝛼𝛼 is defined as 
 

𝑆𝑆𝑖𝑖𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆 = 𝑆𝑆𝑖𝑖+(1−𝛼𝛼)𝑆𝑆𝑖𝑖−1+(1−𝛼𝛼)2𝑆𝑆𝑖𝑖−2+ ⋯+(1−𝛼𝛼)𝑖𝑖𝑆𝑆0
1+(1−𝛼𝛼)+(1−𝛼𝛼)2+⋯+(1−𝛼𝛼)𝑖𝑖

                                                      (2) 

 

Thus, the SMA redefines 𝑺𝑺𝒊𝒊 with 

𝑺𝑺𝒊𝒊 = �𝑆𝑆𝑖𝑖−𝑛𝑛+1𝑆𝑆𝑆𝑆𝑆𝑆 ,⋯ , 𝑆𝑆𝑖𝑖−1𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆�, 

And the EWMA redefines 𝑺𝑺𝒊𝒊 with 

𝑺𝑺𝒊𝒊 = �𝑆𝑆𝑖𝑖−𝑛𝑛+1𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆,⋯ , 𝑆𝑆𝑖𝑖−1𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆,𝑆𝑆𝑖𝑖𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆�. 
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In this study, 𝜔𝜔 = 5 for the SMA and 𝛼𝛼 =  0.2421 for the EWMA are used.  
As an alternative method to effectively reduce oscillations, we propose a graph-

based smoothing method for each of 𝑺𝑺𝒊𝒊’s as follows. The first step is to draw the 
graph of each 𝑺𝑺𝒊𝒊 , as depicted in Figure 2a. Next, 2𝑘𝑘 + 1 vertical grid lines are 
introduced at 𝑡𝑡 =  𝑡𝑡𝑖𝑖,𝑗𝑗 : 

𝑡𝑡𝑖𝑖,𝑗𝑗 = 𝑡𝑡𝑖𝑖−𝑛𝑛+1 + 𝑗𝑗 ∆𝑡𝑡, 𝑗𝑗 = 0,1,2, … ,2𝑘𝑘 

with 𝛥𝛥𝑡𝑡 =  (𝑡𝑡𝑖𝑖  − 𝑡𝑡𝑖𝑖−𝑛𝑛+1)/2𝑘𝑘, and 2𝑘𝑘 + 1 horizontal grid lines are introduced at 
𝑦𝑦 =  𝑦𝑦𝑖𝑖,𝑗𝑗 : 

𝑦𝑦𝑖𝑖,𝑗𝑗 = 𝑺𝑺𝒊𝒊� + 𝑗𝑗∆𝑦𝑦, 𝑗𝑗 = −𝑘𝑘,−𝑘𝑘 + 1, … ,𝑘𝑘 

as displayed in Figure 2b. Here, 𝑺𝑺𝒊𝒊�  is the empirical mean of 𝑺𝑺𝒊𝒊: 

𝑺𝑺𝒊𝒊� =
1
𝑛𝑛

 �𝑆𝑆𝑖𝑖−𝑗𝑗

𝑛𝑛−1

𝑗𝑗=0

                                                                                                                   (3) 

and 

∆𝑦𝑦 =
2𝑧𝑧𝛽𝛽𝜎𝜎/√𝑛𝑛

2𝑘𝑘
 

where 𝜎𝜎 approximates the population standard deviation of universal set 𝑋𝑋 and 𝑧𝑧𝛽𝛽 is 
the value for the 100(1 −  𝛽𝛽)% confidence level; for instance, for 95% confidence 
level, 𝑧𝑧𝛽𝛽  =  1.96. Those 2𝑘𝑘 +  1 horizontal and vertical lines partition area 

[𝑡𝑡𝑖𝑖−𝑛𝑛+1, 𝑡𝑡𝑖𝑖] × �𝑺𝑺𝒊𝒊� − 𝑧𝑧𝛽𝛽
𝜎𝜎
√𝑛𝑛

,𝑺𝑺𝒊𝒊� + 𝑧𝑧𝛽𝛽
𝜎𝜎
√𝑛𝑛

� 

 
of the graph into (2𝑘𝑘)  ×  (2𝑘𝑘) uniform cells. Here, 𝑘𝑘 =  10 is used. In the third 
step, the region, 𝑅𝑅𝑗𝑗 , 𝑗𝑗 =  1, 2, . . . , 2𝑘𝑘, is identified such that the graph of 𝑺𝑺𝒊𝒊 passes 
through (dark gray in Figure 2c). For example, in Figure 2c, 𝑅𝑅1 consists of 3 cells, 
𝑅𝑅2 consists of 4 cells, etc. Then, for each 𝑗𝑗 =  1, 2, . . . , 2𝑘𝑘, let 𝑠𝑠𝑖𝑖,𝑗𝑗 be the center of 
the selected cells for [𝑡𝑡𝑖𝑖,𝑗𝑗−1, 𝑡𝑡𝑖𝑖,𝑗𝑗 ]: 

𝑠𝑠𝑖𝑖,𝑗𝑗 =
1
2
�min
𝑘𝑘∈𝑅𝑅𝑗𝑗

𝑦𝑦𝑖𝑖,𝑘𝑘 + max
𝑘𝑘∈𝑅𝑅𝑗𝑗

𝑦𝑦𝑖𝑖,𝑘𝑘�                                                                                         (4) 

The red dots in Figure 2d show these centers, {𝑠𝑠𝑖𝑖,1, 𝑠𝑠𝑖𝑖,2, . . . , 𝑠𝑠𝑖𝑖,2𝑘𝑘}, which define 
the graph-based smooth data for 𝑺𝑺𝒊𝒊. 

This new graph-based smoothing can be applied to express financial data with 
severe oscillations, as in Figure 2a, as smooth data, as in Figure 2d, while retaining 
the original fluctuation pattern. This method is intuitive, simple, and fast. In addition, 
the number of the values in the feature at 𝑡𝑡𝑖𝑖  is reduced from |𝑺𝑺𝒊𝒊|  =  𝑛𝑛  to 2𝑘𝑘 . 
Therefore, the computation cost for model training is reduced and the speed of 
machine learning is increased. 
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(a)                                          (b) 

 

   
(c)                                           (d) 

Figure 2. Graph-based transformation from an oscillatory time series to smooth data: 
(a) graph of an oscillatory raw time series, (b) graph with grids,  

(c) graph and the cells through which the graph passes,  
(d) graph-based smooth data approximating the raw data 

Source: Illustration by authors. 
 

Table 1 summarises the values used as the feature depending on the smoothing 
scheme. 

 
Table 1. Values used as the feature depending on the smoothing scheme 
Smoothing scheme Values used as the feature 

Raw {𝑆𝑆𝑖𝑖−𝑛𝑛+1, … , 𝑆𝑆𝑖𝑖−1, 𝑆𝑆𝑖𝑖} 
SMA {𝑆𝑆𝑖𝑖−𝑛𝑛+1𝑆𝑆𝑆𝑆𝑆𝑆 ,⋯ , 𝑆𝑆𝑖𝑖−1𝑆𝑆𝑆𝑆𝑆𝑆, 𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆𝑆𝑆} from (1) 
EWMA {𝑆𝑆𝑖𝑖−𝑛𝑛+1𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆,⋯ , 𝑆𝑆𝑖𝑖−1𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆, 𝑆𝑆𝑖𝑖𝐸𝐸𝐸𝐸𝑆𝑆𝑆𝑆} from (2) 
Graph-based {𝑠𝑠𝑖𝑖,1, 𝑠𝑠𝑖𝑖,2, . . . , 𝑠𝑠𝑖𝑖,2𝑘𝑘} from (4) 

Source: Values used by authors. 
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2.2 Momentum-based target construction 
 

When the feature construction procedure is completed, an appropriate target 
variable is introduced. For the target variable, the actual value in 𝑝𝑝 days, 𝑆𝑆𝚤𝚤�  =  𝑆𝑆𝑖𝑖+𝑝𝑝, 
is used as the target at 𝑡𝑡 =  𝑡𝑡𝑖𝑖 in many studies if the value in 𝑝𝑝 days is predicted. 

As indicated by extensive empirical experiments, the prediction values of the 
test data are closely related with the range of the target variable values of the training 
data and the predicted values may be inaccurate if the values of the target variable 
of the test data are beyond the range from the training data. Thus, the usage of   
𝑆𝑆𝚤𝚤�  =  𝑆𝑆𝑖𝑖+𝑝𝑝 as the target may not be appropriate unless the range from the training 
data includes the range from the test data. 

Let us define 𝛿𝛿𝑆𝑆𝑖𝑖 by the following equation: 

𝛿𝛿𝑆𝑆𝑖𝑖  ≡  𝑆𝑆𝑖𝑖+𝑝𝑝  −  𝑺𝑺𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎                                                                                                          (5) 

where 𝑺𝑺𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎 is the arithmetic average of the values in 𝑺𝑺𝒊𝒊, as indicated in Table 1. In 

finance, momentum is the tendency for rising asset prices to rise further and falling 
prices to keep falling, and thus difference 𝑆𝑆𝑖𝑖+𝑝𝑝 − 𝑺𝑺𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎  can be considered as a 
numerical metric for estimating the momentum. 𝛿𝛿𝑆𝑆𝑖𝑖  represents the amount of 
deviation between the average value of the feature and the value to be predicted. We 
propose the use of 𝛿𝛿𝑆𝑆𝑖𝑖  as a new target variable alternative to 𝑠𝑠𝚤𝚤� . Because of the 
subtraction of 𝑺𝑺𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎 in (5), the ranges from training, validation, and test data are 
centralised and 𝛿𝛿𝑆𝑆𝑖𝑖 is expected to improve the prediction accuracy and be a better 
target variable. 

We compare the prediction results of S&P 500 from January 1, 2009 to October 
29, 2021, using LSTM. The description of the empirical tests is explained in detail 
in Section 3 and Section 4. Figure 3a shows the actual target values, 𝑆𝑆𝚤𝚤�  (red), and 
their predictions, 𝑆𝑆𝚤𝚤�  (blue), for the training data when the raw values of the Close 
prices of S&P 500 are used as the feature to predict the future value in 10 days. The 
range of the actual target value, 𝑆𝑆𝚤𝚤� , during the training period is [−1.5, 2.0], and the 
prediction, 𝑆𝑆𝚤𝚤� , is close to 𝑆𝑆𝚤𝚤� . 

Figure 3c shows 𝑆𝑆𝚤𝚤�  and 𝑆𝑆𝚤𝚤�  values for the validation data. The range of the values 
of 𝑆𝑆𝚤𝚤�  in this case is [1.5, 4.0], which is slightly deviated from the range of the training 
data, and the corresponding prediction, 𝑆𝑆𝚤𝚤� , exhibits some errors. The predictions 
corresponding to 𝑆𝑆𝚤𝚤�  outside [−1.5, 2.0] of the training data deviate considerably 
from the actual values. When the test data are considered in Figure 3e, the range of 
𝑆𝑆𝚤𝚤�  values is [1, 6] and the predictions corresponding to 𝑆𝑆𝚤𝚤�outside [−1.5, 2.0] deviate 
substantially from the actual values. As the range of the test data deviates 
considerably from that of the training data, the errors become worse. 

Figure 3b, Figure 3d, and Figure 3f present the results when 𝛿𝛿𝑆𝑆𝑖𝑖 in (5) is used 
as a target variable. Because 𝑺𝑺𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎is subtracted when the target variable is defined in 
(5), the ranges of 𝑆𝑆𝚤𝚤�  from the validation in Figure 3d and the test data in Figure 3f 
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are mostly included in the range from the training data and the prediction accuracy 
is improved, that is, the predictions for the validation and test data are close to the 
actual values. This new target variable, 𝛿𝛿𝑆𝑆𝑖𝑖, in (5) is effective particularly when the 
range of the predicted variable from the training data differs from the range from the 
test data, and the effects of 𝛿𝛿𝑆𝑆𝑖𝑖are numerically validated in a more comprehensive 
manner in Section 4. 

 

 
(a)                                                          (b) 

   
(c)                                                          (d)  

   
(e)                                                            (f) 

Figure 3. Comparison of target variables 𝑺𝑺𝒊𝒊�  ((a), (c), and (e)) and 𝜹𝜹𝑺𝑺𝒊𝒊 ((b), (d),  
and (f)) using the S&P 500 values from January 1, 2009 to October 29, 2021:  
(a) and (b) training data, (c) and (d) validation data, and (e) and (f) test data 

Source: Calculation made by authors. 
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Table 2 summarises the target variable considered in this study. 
 

Table 2. Target variables used in this study 
Target variable Definition 
𝑆𝑆𝚤𝚤�  𝑆𝑆𝑖𝑖+𝑝𝑝 
𝛿𝛿𝑆𝑆𝑖𝑖 𝑆𝑆𝑖𝑖+𝑝𝑝  −  𝑺𝑺𝑖𝑖

𝑎𝑎𝑎𝑎𝑎𝑎 
Source: Notations used by authors. 

 
The proposed algorithm and its effectiveness can be summarised as follows. 

• We propose two methods for machine learning: one for the construction of the 
feature and the other for the construction of a target variable. We combine these 
two methods with neural network algorithms. 

• The feature construction algorithm smoothens oscillatory data and reduces the 
amount of data in the feature, so that the learning speed of the proposed algorithm 
increases. The new definition of the target variable improves the accuracy of the 
prediction. 

• The proposed methods can be easily combined with various machine learning or 
deep learning methods. 

• Regression results can be applied to the valuation and applications of financial 
variables, such as portfolio management or pricing of financial derivatives. 

3. Data and learning models 
 

3.1 Dataset 

The data are constructed with four datasets from the global market, namely, 
S&P 500, Dow Jones, Gold, and Russel 2000, and two datasets from the Korean 
market, namely, KOSDAQ and USD/KRW currency. Each dataset contains opening, 
high, low, and closing prices and the total traded quantity, and the daily closing 
prices from January 1, 2009 to October 29, 2021, are used. Table 3 shows the 
statistics of the datasets. 
 
Table 3. Statistics of four datasets from the global market (S&P 500, Dow Jones, Gold, 

and Russel 2000) and two datasets from the Korean market (KOSDAQ and 
USD/KRW currency) 

 S&P500 Dow 
Jones GOLD Russel 

2000 KOSDAQ USD/KRW 

Count 3230 3230 3203 3230 3163 3230 
Mean 2124.85 18687.01 1380.07 1187.99 632.36 1137.65 
Std 883.26 7041.83 253.71 443.91 149.99 66.83 
Min 676.53 6547.05 806.70 343.26 339.76 999.83 
25% 1345.07 12720.73 1215.05 813.04 514.71 1098.79 
50% 2041.95 17515.58 1308.20 1164.27 607.37 1128.54 
75% 2729.69 24753.82 1586.40 1503.22 700.48 1167.90 
Max 4596.42 35756.88 2051.50 2360.17 1060.00 1571.40 

Source: Calculation made by authors. 
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Among the data, 2100 values from each set are used for training, 600 values for 
validation, and 300 values for the test. Because the datasets considered exhibit 
distinct price ranges and deep learning is typically efficient when the data are in a 
common range, the following standardisation procedure of the data is performed: 

𝑆𝑆𝑖𝑖
𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚 =

𝑆𝑆𝑖𝑖 − 𝜇𝜇𝑡𝑡𝑡𝑡
𝜎𝜎𝑡𝑡𝑡𝑡

                                                                                                   (6) 

where 𝜇𝜇𝑡𝑡𝑡𝑡 and 𝜎𝜎𝑡𝑡𝑡𝑡 are the average and standard deviation, respectively, of 𝑆𝑆𝑖𝑖’s in the 
training data. This standardised data, 𝑆𝑆𝑖𝑖

𝑚𝑚𝑚𝑚𝑚𝑚𝑖𝑖𝑚𝑚𝑖𝑖𝑚𝑚𝑚𝑚, is used instead of 𝑆𝑆𝑖𝑖 and denoted as 
𝑆𝑆𝑖𝑖 for notational simplicity. 𝑺𝑺𝒊𝒊 is then constructed with a window size of 40. 
 
3.2 Deep learning models 

The RNN is an artificial neural network in which hidden nodes are connected 
by directed edges to form a directed cycle, as depicted in Figure 4a. The RNN is a 
model suitable for processing data that appears sequentially, such as voice and text. 
However, when the distance between the relevant information and the point where 
the information is used is large, the RNN gradually decreases the gradient during 
backpropagation, which considerably reduces the learning ability. To overcome this 
problem, LSTM is designed, as shown in Figure 4b. In this structure, the cell-state 
is added to the hidden state of the RNN (Géron, 2019; Sherstinsky, 2020). 
 

   
Figure 4. Comparison of the stricture of (a) RNN and (b) LSTM 

Source: Illustration by authors. 
 

Two types of neural networks are constructed for training. One network consists 
of two layers of a fully connected RNN, each of which is followed by dropout. A 
densely connected neural network layer exists at the end. The dimensionality of the 
output space for the RNN is 20, and the fraction of the input units to drop for dropout 
is 0.2. The other network consists of two layers of LSTM instead of RNN layers, and 
the dimensionality of the output space for LSTM is set to 20 as well. The RNN and 
LSTM are implemented with Keras in Tensorflow 2.4 on Intel i7-11700 3.60 GHz 
with NVIDIA GeForce RTX 3090. The RNN and LSTM networks are trained for 60 
epochs (see more details in Goodfellow (2016) and Géron, (2019)). Algorithm 1 
summarises the prediction algorithm of the proposed method. 
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4. Empirical Tests 
 

We analyse the effects of various techniques for the feature construction and 
define the target variable. We compare each method in terms of two metrics. In the 
first evaluation, the accuracy of the prediction is measured, and the mean squared 
error (MSE) and mean absolute error (MAE) are used to evaluate prediction 
accuracy. The MSE measures the average of squares of errors between the actual 
value and the predicted value: 

𝑀𝑀𝑆𝑆𝑀𝑀 =
1
𝑁𝑁

 ��𝑆𝑆𝚤𝚤� − 𝑆𝑆𝚤𝚤��
2

𝑁𝑁

𝑖𝑖=1

       (7) 

and the MAE measures the average of the absolute errors between the actual value 
and the predicted value as follows: 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁

 ��𝑆𝑆𝚤𝚤� − 𝑆𝑆𝚤𝚤��
𝑁𝑁

𝑖𝑖=1

         (8) 

where 𝑆𝑆𝚤𝚤� = 𝑆𝑆𝑖𝑖+𝑝𝑝  is the actual value to be predicted at time 𝑡𝑡 =  𝑡𝑡𝑖𝑖  and 𝑆𝑆𝚤𝚤�  is the 
prediction at 𝑡𝑡 =  𝑡𝑡𝑖𝑖. 𝑁𝑁 is the number of predictions. In the second evaluation, the 
model training speed is measured by checking the CPU time. The CPU time is 
measured in seconds. Here, 𝑝𝑝 =  10 is used in this study. That is, the value on the 
(𝑡𝑡 + 10)𝑡𝑡ℎday is predicted at day 𝑡𝑡. Table 4 summarises the parameters used for the 
deep learning in this study. 
 

Table 4. Parameters for deep learning 
the number of train data 2100 
the number of validation data 600 
the number of test data 300 
the window size of Si 40 
the units in time (p) to be predicted 10 
the dimensionality of the output space for RNN and LSTM 20 
the fraction of the input units to drop 0.2 
epochs for RNN and LSTM 60 

Source: Parameters used by authors. 
 

We first evaluate the prediction accuracy. The proposed method is compared 
with six combinations in terms of constructing feature 𝑺𝑺𝒊𝒊 (Raw, SMA or EWMA) 
and defining the target variable ( 𝑆𝑆𝚤𝚤�  or 𝛿𝛿𝑆𝑆𝑖𝑖). 

Figure 5 shows the MSE from the RNN. Raw implies that the raw data is used 
without any smoothing technique. SMA and EWMA present the results from the 
SMA and the EWMA, respectively. Proposed shows the results from the graph-
based feature with 𝛿𝛿𝑆𝑆𝑖𝑖  as the target variable. The MSE value from the proposed 
graph-based feature and momentum-based target is compared with the MSE values 
from the raw-, SMA-, and EWMA-based features with 𝑆𝑆𝚤𝚤�  as a target variable (Figure 
5a) and with those from the raw-, SMA-, and EWMA-based features with 𝛿𝛿𝑆𝑆𝑖𝑖 as a 
target variable (Figure 5b). The proposed method results in the smallest error 
regardless of the dataset.  
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(a)                                                             (b) 

Figure 5. MSE from the RNN (a) 𝑺𝑺𝒊𝒊�  -based prediction vs proposed method  
and (b) 𝜹𝜹𝑺𝑺𝒊𝒊 -based prediction vs. proposed method 

Source: Calculation made by authors.  

 
Figure 6. MSEs of raw data in 𝑺𝑺𝒊𝒊�  -based prediction vs. 𝜹𝜹𝑺𝑺𝒊𝒊 -based prediction  

vs. the proposed method from the RNN 
Source: Calculation made by authors. 

 
Figure 6 presents a comparison of the result of the proposed method with those 

of raw-based features. The MSE of the proposed method is smaller than those of 𝑆𝑆𝚤𝚤�  -
Raw or 𝛿𝛿𝑆𝑆𝑖𝑖-Raw case in all datasets. Similar patterns are observed in SMA-based 
and EWMA-based features as well, and the plots are omitted. 

Table 5 presents the prediction accuracy measured in terms of the MSE (7) for 
all situations and datasets. When S&P 500 dataset is trained over the RNN network, 
the errors are between 1.30 and 1.56 if  𝑆𝑆𝚤𝚤�  is used as a target variable and between 
0.41 and 0.57 if 𝛿𝛿𝑆𝑆𝑖𝑖  is used as a target variable. The application of 𝛿𝛿𝑆𝑆𝑖𝑖 reduces 
prediction error, and similar results are observed in the other datasets. SMA and 
EWMA are ineffective except for the marginal gain in S&P 500 and KOSDAQ over 
the RNN. When the target variable, 𝛿𝛿𝑆𝑆𝑖𝑖 , is combined with the graph-based 
smoothing from the proposed method, considerable improvement is observed and 
the error of S&P 500 decreases to 0.19, which is only 15% compared with 𝑆𝑆𝚤𝚤�  -based 
estimation and 46% compared with 𝛿𝛿𝑆𝑆𝑖𝑖-based estimation. In case of Dow Jones, the 
MSE from 𝑆𝑆𝚤𝚤�  over the RNN is between 1.00 and 1.29, which decreases to between 
0.73 and 0.94 with 𝛿𝛿𝑆𝑆𝑖𝑖 and decreases further to 0.30 with the proposed method. 
Similar results are observed in Russel 2000 and KOSDAQ. 
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In case of Gold, the proposed method results in an MSE of only 0.08, which is 
smaller than the errors from 𝑆𝑆𝚤𝚤�  or 𝛿𝛿𝑆𝑆𝑖𝑖 , but the errors from both 𝑆𝑆𝚤𝚤�  and 𝛿𝛿𝑆𝑆𝑖𝑖 are 
sufficiently small as well. This phenomenon results from the ranges of the target 
variables. The range of 𝑆𝑆𝚤𝚤�  of the test data is mostly included in the range of the 
training data in case of Gold or USD/KRW datasets; this leads to excellent accuracy 
even with 𝑆𝑆𝚤𝚤�  and 𝛿𝛿𝑆𝑆𝑖𝑖. However, the error from the proposed method is still smaller 
than either of them. 

The results from the LSTM network are similar to those from the RNN. The 
prediction error from 𝛿𝛿𝑆𝑆𝑖𝑖  is smaller than that from 𝑆𝑆𝚤𝚤� , and the error from the 
proposed method is substantially smaller than those from 𝑆𝑆𝚤𝚤�  or 𝛿𝛿𝑆𝑆𝑖𝑖. 

 
Table 5. Prediction MSE from (top) the RNN and (bottom) the LSTM network 

RNN(MSE) S&P500 Dow 
Jones Gold Russel 

2000 KOSDAQ USD/KRW 

𝑆𝑆𝚤𝚤�  Raw 1.56 1.17 0.18 0.59 2.19 0.06 
SMA 1.42 1.00 0.19 0.55 1.87 0.06 

EWMA 1.30 1.29 0.19 0.57 1.88 0.06 
𝛿𝛿𝑆𝑆𝑖𝑖 Raw 0.41 0.73 0.12 0.44 0.79 0.15 

SMA 0.56 0.94 0.14 0.41 0.98 0.18 
EWMA 0.57 0.93 0.14 0.42 1.20 0.17 

Proposed 0.19 0.30 0.08 0.35 0.41 0.06 
 

LSTM(MSE) S&P500 Dow 
Jones Gold Russel 

2000 KOSDAQ USD/KRW 

𝑆𝑆𝚤𝚤�  Raw 2.18 2.19 0.39 0.68 1.48 0.09 
SMA 2.26 2.29 0.41 0.72 1.37 0.10 

EWMA 2.17 2.32 0.43 0.66 1.41 0.10 
𝛿𝛿𝑆𝑆𝑖𝑖 Raw 0.30 4.30 0.21 1.55 0.96 0.14 

SMA 0.30 4.24 0.27 1.36 1.63 0.13 
EWMA 0.29 4.30 0.23 1.42 1.57 0.13 

Proposed 0.16 0.28 0.11 0.30 0.39 0.06 
Source: Calculation made by authors. 

 
Table 6 presents the MAE from the RNN and the LSTM networks. Similarly to 

the MSE, the proposed method with the graph- and momentum-based data 
construction improves the prediction accuracy in both the RNN and the LSTM 
networks. 

Table 6. Prediction MAE from (top) the RNN and (bottom) the LSTM network 

RNN(MAE) S&P500 Dow 
Jones Gold Russel 

2000 KOSDAQ USD/KRW 

𝑆𝑆𝚤𝚤�  Raw 1.15 0.99 0.37 0.57 1.26 0.17 
SMA 1.10 0.91 0.38 0.56 1.17 0.19 

EWMA 1.04 1.04 0.39 0.56 1.17 0.18 
𝛿𝛿𝑆𝑆𝑖𝑖 Raw 0.44 0.64 0.27 0.40 0.72 0.33 

SMA 0.56 0.76 0.29 0.40 0.80 0.37 
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RNN(MAE) S&P500 Dow 
Jones Gold Russel 

2000 KOSDAQ USD/KRW 

EWMA 0.57 0.75 0.28 0.41 0.89 0.36 
Proposed 0.29 0.32 0.22 0.40 0.52 0.18 

 
LSTM(MAE) S&P500 Dow 

Jones Gold Russel 
2000 KOSDAQ USD/KRW 

𝑆𝑆𝚤𝚤�  Raw 1.35 1.37 0.53 0.60 1.02 0.23 
SMA 1.38 1.41 0.54 0.62 1.01 0.25 

EWMA 1.35 1.41 0.54 0.60 1.03 0.24 
𝛿𝛿𝑆𝑆𝑖𝑖 Raw 0.30 1.90 0.38 0.94 0.80 0.31 

SMA 0.31 1.91 0.43 0.87 1.10 0.29 
EWMA 0.32 1.92 0.40 0.89 1.08 0.28 

Proposed 0.27 0.31 0.25 0.37 0.50 0.19 
Source: Calculation made by authors. 

 

Table 7. Computation time (in seconds) from (top)  
the RNN and (bottom) the LSTM network 

RNN (second) S&P500 Dow 
Jones Gold Russel 

2000 KOSDAQ USD/KRW 

𝑆𝑆𝚤𝚤�  Raw 151.61 150.17 152.85 152.73 152.73 150.73 
SMA 153.90 143.34 154.63 157.07 153.78 152.24 

EWMA 150.29 147.47 153.21 149.86 149.53 156.57 
𝛿𝛿𝑆𝑆𝑖𝑖 Raw 152.56 143.48 154.15 154.34 157.58 157.44 

SMA 149.18 149.06 152.94 19.77 156.82 153.78 
EWMA 145.58 150.60 155.77 152.32 149.41 152.44 

Proposed 74.84 73.45 74.33 72.93 73.43 74.96 
 

LSTM (second) S&P500 Dow 
Jones Gold Russel 

2000 KOSDAQ USD/KRW 

𝑆𝑆𝚤𝚤�  Raw 30.52 28.55 27.66 29.54 28.49 29.03 
SMA 28.12 30.37 27.40 29.60 28.14 28.76 

EWMA 28.59 30.56 27.43 27.75 27.92 28.55 
𝛿𝛿𝑆𝑆𝑖𝑖 Raw 28.53 28.76 27.63 27.64 28.61 28.79 

SMA 28.49 27.59 27.62 28.44 29.06 28.32 
EWMA 28.49 27.31 28.74 29.26 28.80 28.71 

Proposed 20.97 19.92 21.58 20.98 21.22 20.91 
Source: Calculation made by authors. 

 

Table 7 presents the corresponding CPU time (in seconds) for the computation. 
The proposed method requires only 75 s with the RNN, while the other methods 
require approximately 150 s. When machine learning is employed to train the LSTM 
network, only 20 s are required with the proposed method and approximately 30 s 
with the other methods. Because the proposed method reduces the size of the feature 
through the graph-based construction, the computational cost is reduced to 
approximately a half for the RNN and two thirds for the LSTM network. As indicated 
by the accuracies in Table 5 and Table 6 and the computational costs in Table 7, 
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LSTM requires less computational time for similar accuracies. Thus, learning over 
the LSTM network is more efficient than learning over the RNN. 

Figure 7 presents a comparison of the computation cost versus the prediction 
accuracy when the RNN and the LSTM network are used for machine learning. The 
prediction accuracy is measured in terms of the MSE in Figure 7a and the MAE in 
Figure 7b. Even when the difference in the network structure is considered, Figure 7 
reveals that the LSTM network is more effective when considering the prediction 
accuracy and computational cost. Because the computation for the RNN is expensive 
and the difference in the prediction accuracy is not large enough, training over the 
LSTM network is preferred. These experimental results show that the proposed 
graph- and momentum-based data construction method improves the prediction 
accuracy and computational efficiency.  

 
(a)                                               (b) 

Figure 7. Computational cost vs. the prediction error when RNN and LSTM network 
are used. (a) CPU time vs. MSE (b) CPU time vs. MAE 

Source: Calculation made by authors. 

5. Conclusions 

In conclusion, we presented two effective algorithms: a graph-based feature 
construction method tailored for handling noisy financial data and a novel 
momentum-based technique to define a target variable, enhancing the prediction 
accuracy of machine learning methods. The observed improvements in both 
accuracy and efficiency were substantiated through applications in asset price 
prediction, employing diverse datasets and neural networks. In particular, the 
versatility of the proposed method extends its applicability to various financial 
domains beyond asset price prediction. This includes areas such as derivative 
pricing, bitcoin trading, and robo-advisors, all of which represent pivotal topics of 
ongoing research in the financial realm. This research contributes significant insights 
and practical applications, paving the way for further advancements in the utilisation 
of these algorithms across diverse financial contexts. 
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