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Beyond Mean-Variance Markowitz Portfolio Selection:  
A Comparison of Mean-Variance-Skewness-Kurtosis Model 
and Robust Mean-Variance Model 

Abstract. In this paper, two developments of the classical Markowitz Mean-Variance (MV) 
portfolio model are presented, namely, the Mean-Variance-Skewness-Kurtosis (MVSK) 
portfolio model and the robust Mean-Variance (MV) portfolio. The robust MV portfolio 
model uses two robust estimations: the robust Fast Minimum Covariance Determinant 
(FMCD) and the robust Constrained M (CM). The robust MV portfolios that use FMCD 
estimation yield the MVFMCD portfolio model, while the robust MV portfolios that use CM 
estimation yield the MVCM portfolio model. The MVSK model is intended to overcome the 
fact that most stock returns in the capital market do not follow the normal distribution, and 
there are skewness and excessive kurtosis, while the robust MV portfolio model is intended 
to overcome the presence of outliers in the data. An empirical study revealed that robust 
MV portfolios outperforms MVSK and classical MV Markowitz models. Besides, we also 
found that for 𝛾𝛾 = 0.5  to 𝛾𝛾 = 20, the portfolio using the robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  model 
outperforms the portfolio using the robust 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶  model. However, for 𝛾𝛾 > 20, the robust 
𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 model   outperforms the portfolio using the robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  model.  

Keywords: robust estimation, robust portfolio, MVSK portfolio, Sharpe ratio, portfolio 
performance. 
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1. Introduction  

Since its initial introduction by Markowitz in 1952, the Mean-Variance (MV) 
model has become a widely recognised and useful tool for portfolio optimisation in 
modern portfolio theory. Many studies on portfolio selection have been conducted 
based on only the first two moments of return distributions, demonstrating how the 
MV model has completely changed the way people think about asset portfolios 
since Markowitz's seminal work was published. The MV model operates under the 
presumption that stock returns follow a normal distribution (Naqvi et al., 2017). As 
noted by several earlier researchers: Lai et al. (2006), Gotoh et al. (2018), Naqvi et 
al. (2017), Metaxiotis (2019), and Lu et al. (2019), they discovered that stock 
returns are not normally distributed and can be skewed either positively or 
negatively with excess kurtosis. According to Khan et al. (2020), stocks that 
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exhibit negative skewness indicate a higher likelihood of a negative return than a 
positive return. Many researchers, including Chen et al. (2020), Marques and 
Benasciutti (2020), and Khan et al. (2020), have taken into account the third- and 
fourth-order moments, skewness, and kurtosis when choosing the best portfolio. 
Naqvi et al. (2017) and Díaz et al. (2022) explained that skewness and kurtosis play 
a critical role in portfolio formation. The model of portfolio that considers aspects 
of skewness and kurtosis is called the Mean-Variance-Skewness-Kurtosis (MVSK) 
model. The objectives of this model are to minimise risk and excess kurtosis while 
maximising profit and skewness. 

Another problem with the MV portfolio model is that the mean vector and 
variance-covariance matrix must be estimated from very fluctuating data, and it is 
not uncommon for outlier data to appear. There are many different estimation 
techniques available for parameter estimation, and any method used will inevitably 
result in estimation errors. Estimation errors play a crucial role in the creation of 
MV portfolio models and have a substantial impact on the outcomes of optimum 
portfolio formation. Best and Grauer (1991), Chopra and Ziemba (1993), 
Bengtsson (2004), and Ceria and Stubbs (2006) have all conducted studies 
pertaining to estimation errors and their relationship with optimal portfolio 
formation. These studies lead to the conclusion that while the MV model has strong 
theoretical backing and makes computation easier, it has certain drawbacks, such 
as the poorly diversified optimal portfolio it generates. A limited number of assets 
typically make up the majority of the resulting portfolio. Furthermore, the 
variance-covariance matrix and the mean vector, which are the input parameters of 
the MV model, are extremely sensitive to changes in these parameters. In order to 
decrease the error of the estimated vector mean and the variance-covariance matrix 
in the MV portfolio model, some researchers have constructed a robust portfolio. 
Robust estimation is one of the common methods used to create an optimal robust 
portfolio. Several studies have been conducted by DeMiguel and Nogales (2008), 
Kusch (2012), Hu (2012), Supandi (2017), Ghahtarani and Najafi (2018), Gubu et 
al. (2020), and Gubu et al. (2021) regarding the creation of optimal portfolios 
through robust estimation. The type of robust estimation employed in these studies 
differs from one another. All of the study's results stated that the portfolio's 
performance with robust estimation is better than the classical portfolio. 
Nevertheless, comparing the optimal portfolio performance constructed using the 
classic MV, MVSK, and robust MV models has not yet been covered in the 
literature mentioned above.  

In this paper, as our new contribution, we compare the portfolio’s 
performance constructed by MV classic, MVSK, and robust MV models. In robust 
MV models, we employ the Fast Minimum Covariance Determinant (FMCD) and 
Constrained M (CM) robust estimation techniques to determine the mean and 
covariance of the data. 
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2. Material and Method  
 

This section will provide the material and methods used in this research, 
including Mean-Variance portfolio, Mean-Variance-Skewness-Kurtosis portfolio, 
outlier detection, robust estimation, and Sharpe ratio.  
 
2.1 Mean-Variance portfolio  

The relationship between risk and return in investment management is sturdy 
and linear. The return will also be high if the risk is high, and vice versa if the 
return is low. In the 1950s, Harry M. Markowitz pioneered the Modern Portfolio 
Theory. This theory posits that investments have two components: risk and return. 
It suggests that diversification and assembling a portfolio of different investment 
instruments can reduce risk. The Journal of Finance published a widely read 
version of the theory in 1952. 

The foundation of Markowitz's portfolio theory is the mean-variance 
approach, in which risk is measured by variance, and expected return is measured 
by the mean (Markowitz, 1952). Consequently, the mean-variance model (MV) is 
another name for Markowitz's portfolio theory. To select and construct an optimal 
portfolio, this model strongly emphasises attempting to maximise expected return 
and minimise risk. Supandi (2017) states that the following optimisation problem 
can be solved to formulate the mean-variance portfolio: 

max
𝒘𝒘

𝒘𝒘′𝝁𝝁 − 𝛾𝛾
2
𝒘𝒘′𝚺𝚺𝒘𝒘  (1) 

𝒘𝒘′𝒆𝒆 = 1  (2) 

where 𝚺𝚺 is the covariance matrix, e is the column matrix with all elements equal to 
1, 𝝁𝝁 is the mean vector, 𝛾𝛾 ≥ 0 is the relative risk avoidance measure, and w 
represents the portfolio's weight. 

To achieve a specific level of return, every investor seeks a particular degree 
of risk. Investors should select the appropriate 𝛾𝛾 to balance the trade-off between 
risks and returns, since returns offset risks. Investors seek to lower risk (loss) and 
increase the rate of return (profit) in two extreme scenarios. Equation (1) gives the 
maximum rate of return when 𝛾𝛾 = 0, regardless of the risk that must be assumed. 
In the meantime, investors will select the lowest risk option regardless of return 
level if 𝛾𝛾 = ∞. 

The optimisation problems in equations (1) and (2) have been solved by 
(Gubu et al., 2020) using the Lagrange method and the solution is:  

𝒘𝒘 = 1
𝛾𝛾

(Σ−1 − Σ−1𝒆𝒆(𝒆𝒆′Σ−1𝒆𝒆)−1𝒆𝒆′Σ−1)𝝁𝝁 + Σ−1𝒆𝒆(𝒆𝒆′Σ−1𝒆𝒆)−1 (3) 

Equation (3) reveals that input 𝝁𝝁 dan 𝚺𝚺 determines the optimal portfolio (w). 
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2.2 Mean-Variance-Skewness-Kurtosis Portfolio  

Investors take into account the mean, variance, skewness, and kurtosis when 
building a portfolio using the MVSK model. It is commonly known that covariance 
between asset returns and asset variance also contributes to the variance of the 
portfolio. The returns of the portfolio's assets cannot be taken to be independent 
since they typically move in tandem. Co-skewness and co-kurtosis return assets are 
also included in skewness and kurtosis portfolios, albeit in slightly different ways. 
The following is the formula of the co-skewness and co-kurtosis:  

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸�(𝑟𝑟𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑟𝑟𝑗𝑗 − 𝜇𝜇𝑗𝑗�(𝑟𝑟𝑘𝑘 − 𝜇𝜇𝑘𝑘)�  

         = 𝐸𝐸��𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗𝑟𝑟𝑘𝑘�� − 𝜇𝜇𝑖𝑖𝜎𝜎𝑗𝑗𝑗𝑗 − 𝜇𝜇𝑗𝑗𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑘𝑘𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗𝜇𝜇𝑘𝑘  

and  

𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝐸𝐸�(𝑟𝑟𝑖𝑖 − 𝜇𝜇𝑖𝑖)�𝑟𝑟𝑗𝑗 − 𝜇𝜇𝑗𝑗�(𝑟𝑟𝑘𝑘 − 𝜇𝜇𝑘𝑘)(𝑟𝑟𝑙𝑙 − 𝜇𝜇𝑙𝑙)�  

        = 𝐸𝐸��𝑟𝑟𝑖𝑖𝑟𝑟𝑗𝑗𝑟𝑟𝑘𝑘𝑟𝑟𝑙𝑙�� − 𝜇𝜇𝑖𝑖𝜎𝜎𝑗𝑗𝑗𝑗𝑗𝑗 − 𝜇𝜇𝑗𝑗𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑘𝑘𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑙𝑙𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖 

           −𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗𝜎𝜎𝑘𝑘𝑘𝑘 − 𝜇𝜇𝑖𝑖𝜇𝜇𝑘𝑘𝜎𝜎𝑗𝑗𝑗𝑗 − 𝜇𝜇𝑖𝑖𝜇𝜇𝑙𝑙𝜎𝜎𝑗𝑗𝑗𝑗 − 𝜇𝜇𝑗𝑗𝜇𝜇𝑘𝑘𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑗𝑗𝜇𝜇𝑙𝑙𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑘𝑘𝜇𝜇𝑙𝑙𝜎𝜎𝑖𝑖𝑖𝑖 − 𝜇𝜇𝑖𝑖𝜇𝜇𝑗𝑗𝜇𝜇𝑘𝑘𝜇𝜇𝑙𝑙 

where 𝑟𝑟𝑖𝑖 is return of stock i and 𝜇𝜇𝑖𝑖 is mean return of stock i.   
Let us assume that the portfolio contains p assets. The co-skewness matrix 

(𝑴𝑴3) is a 𝑝𝑝 × 𝑝𝑝2 matrix with the entry 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖. While the co-kurtosis matrix (𝑴𝑴4) is 
𝑝𝑝 × 𝑝𝑝3 matrix with the entry 𝜎𝜎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖. More clearly can be written as follows  

𝑴𝑴3 = �
𝜎𝜎111 … 𝜎𝜎1𝑝𝑝1
⋮   ⋱   ⋮
𝜎𝜎𝑝𝑝11 … 𝜎𝜎𝑝𝑝𝑝𝑝1

⋮
⋮
⋮
  
…
…
…

  
⋮
⋮
⋮
   
𝜎𝜎11𝑝𝑝 … 𝜎𝜎1𝑝𝑝𝑝𝑝
⋮   ⋱   ⋮
𝜎𝜎𝑝𝑝1𝑝𝑝 … 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝

�  

and  

𝑴𝑴4 = �
𝜎𝜎1111 … 𝜎𝜎1𝑝𝑝11
⋮   ⋱   ⋮

𝜎𝜎𝑝𝑝111 … 𝜎𝜎𝑝𝑝𝑝𝑝11

⋮
⋮
⋮
  
…
…
…

  
⋮
⋮
⋮
   
𝜎𝜎11𝑝𝑝1 … 𝜎𝜎1𝑝𝑝𝑝𝑝1
⋮   ⋱   ⋮

𝜎𝜎𝑝𝑝1𝑝𝑝1 … 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝1
   
⋮
⋮
⋮
  
…
…
…

  
…
…
…

      

…
…
…

 
…
…
…

  
⋮
⋮
⋮
   
𝜎𝜎111𝑝𝑝 … 𝜎𝜎1𝑝𝑝1𝑝𝑝
⋮   ⋱   ⋮

𝜎𝜎𝑝𝑝11𝑝𝑝 … 𝜎𝜎𝑝𝑝𝑝𝑝1𝑝𝑝
   
⋮
⋮
⋮
  
…
…
…

   
⋮
⋮
⋮
   
𝜎𝜎11𝑝𝑝𝑝𝑝 … 𝜎𝜎1𝑝𝑝𝑝𝑝𝑝𝑝
⋮   ⋱   ⋮

𝜎𝜎𝑝𝑝1𝑝𝑝𝑝𝑝 … 𝜎𝜎𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
�  

Furthermore, the skewness portfolio (𝒔𝒔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) and kurtosis portfolio (𝒌𝒌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝) are 
defined as the third and fourth moments around the mean respectively.  

𝒔𝒔𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐸𝐸�𝑅𝑅𝑝𝑝 − 𝐸𝐸(𝑅𝑅𝑝𝑝)�
3

= 𝒘𝒘𝑇𝑇𝑴𝑴3(𝒘𝒘⨂𝒘𝒘)  (4) 

and  

𝒌𝒌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝐸𝐸�𝑅𝑅𝑝𝑝 − 𝐸𝐸(𝑅𝑅𝑝𝑝)�
4

= 𝒘𝒘𝑇𝑇𝑴𝑴3(𝒘𝒘⨂𝒘𝒘)  (5) 
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In this case, ⨂ is Kronecker product and 𝒘𝒘𝑇𝑇 = �𝑤𝑤1 …𝑤𝑤𝑝𝑝 �, 𝑤𝑤𝑖𝑖 is the weight for the 
stock i that will be determined. 

The primary challenge when optimising a portfolio with the MVSK model is 
to figure out how much money should go into each stock in order to produce a 
portfolio with a high mean, positive skewness, lower variance, and the least 
amount of excess kurtosis possible when all the money is invested. According to 
Lai et al. (2006), mathematically, it can be expressed as:  

maximise 𝑅𝑅𝑝𝑝 = 𝒓𝒓𝑇𝑇𝒘𝒘 (6) 

minimise 𝜌𝜌𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝2 = 𝒘𝒘𝑇𝑇𝑴𝑴𝟐𝟐𝒘𝒘  (7) 

maximise 𝑠𝑠𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒘𝒘𝑇𝑇𝑴𝑴3(𝒘𝒘⨂𝒘𝒘)  (8) 

minimise 𝑘𝑘𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝒘𝒘𝑇𝑇𝑴𝑴4(𝒘𝒘⨂𝒘𝒘⨂𝒘𝒘) (9) 

with constraint 𝒘𝒘𝑇𝑇𝟏𝟏𝑝𝑝 = 1  (10) 

The linear combination can be formed by providing the four weighted 
coefficients, 𝑎𝑎1,𝑎𝑎2,𝑎𝑎3, and 𝑎𝑎4, based on the objective function (6)-(9). It can be 
expressed as follows:  

minimise −𝑎𝑎1𝒓𝒓𝑇𝑇𝒘𝒘 + 𝑎𝑎2𝒘𝒘𝑇𝑇𝑴𝑴𝟐𝟐𝒘𝒘− 𝑎𝑎3𝒘𝒘𝑇𝑇𝑴𝑴3(𝒘𝒘⨂𝒘𝒘) 

                   +𝑎𝑎4𝒘𝒘𝑇𝑇𝑴𝑴4(𝒘𝒘⨂𝒘𝒘⨂𝒘𝒘)  (11a) 

with constraint  𝒘𝒘𝑇𝑇𝟏𝟏𝑝𝑝 = 1  (11b)  

To minimise the objective function and the given constraint, apply the 
Lagrange function as follows:  

𝐿𝐿 = −𝑎𝑎1𝒓𝒓𝑇𝑇𝒘𝒘+ 𝑎𝑎2𝒘𝒘𝑇𝑇𝑴𝑴𝟐𝟐𝒘𝒘− 𝑎𝑎3𝒘𝒘𝑇𝑇𝑴𝑴3(𝒘𝒘⨂𝒘𝒘) + 𝑎𝑎4𝒘𝒘𝑇𝑇𝑴𝑴4(𝒘𝒘⨂𝒘𝒘⨂𝒘𝒘) 

                       + 𝛼𝛼�𝒘𝒘𝑇𝑇𝟏𝟏𝑝𝑝 − 1�  (12) 

Let 𝑎𝑎1 = 𝑠𝑠, 𝑎𝑎2 = 𝜆𝜆 , 𝑎𝑎3 = 𝑢𝑢 and 𝑎𝑎4 = 𝑣𝑣 , where 𝑠𝑠,𝑢𝑢, 𝑣𝑣 ≥ 0  and 𝜆𝜆 > 0.  
To optimise (12), the step is derived 𝐿𝐿 to 𝒘𝒘 and equates to zero, and obtained:  

𝒘𝒘 = 1
2𝜆𝜆𝑴𝑴2

−1�𝑠𝑠𝒓𝒓 + 𝟑𝟑𝑢𝑢𝑴𝑴3(𝒘𝒘⨂𝒘𝒘)− 4𝑣𝑣𝑴𝑴4(𝒘𝒘⨂𝒘𝒘⨂𝒘𝒘)− 𝛼𝛼𝟏𝟏𝑝𝑝�  (13) 

By substituting Equation (13) into Equation (11b), we obtain 

𝛼𝛼 = 𝑠𝑠
𝟏𝟏𝑝𝑝𝑇𝑇𝑴𝑴2

−1𝟏𝟏𝑝𝑝
𝟏𝟏𝑝𝑝𝑇𝑇𝑴𝑴2

−1𝒓𝒓 + 3𝑢𝑢
𝟏𝟏𝑝𝑝𝑇𝑇𝑴𝑴2

−1𝟏𝟏𝑝𝑝
𝟏𝟏𝑝𝑝𝑇𝑇𝑴𝑴2

−1𝑴𝑴3(𝒘𝒘⨂𝒘𝒘)−

         4𝑣𝑣
𝟏𝟏𝑝𝑝𝑇𝑇𝑴𝑴2

−1𝟏𝟏𝑝𝑝
𝟏𝟏𝑝𝑝𝑇𝑇𝑴𝑴2

−1𝑴𝑴4(𝒘𝒘⨂𝒘𝒘⨂𝒘𝒘)− 2𝜆𝜆
𝟏𝟏𝑝𝑝𝑇𝑇𝑴𝑴2

−1𝟏𝟏𝑝𝑝
    (14) 

The MVSK portfolio's weight has become: 

𝒘𝒘𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = − 1
2𝜆𝜆𝑴𝑴2

−1�𝑠𝑠𝒓𝒓+ 𝟑𝟑𝑢𝑢𝑴𝑴3(𝒘𝒘⨂𝒘𝒘) − 4𝑣𝑣𝑴𝑴4(𝒘𝒘⨂𝒘𝒘⨂𝒘𝒘) − 𝛼𝛼𝟏𝟏𝑝𝑝�  

where 𝛼𝛼 as given in Equation (14).   
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By choosing s=1, u=1, v=1, and λ as varied risk aversion coefficients, the 
MVSK portfolio weight can be determined for given risk aversion using the 
Newton-Rapson method, as has been done by Agustina et al. (2022).  
 
2.3 Outlier detection  

Observations that significantly deviate from the remaining data points in a 
population sample are known as outliers. The higher the analytical result of a 
sample, the greater the observation's distance from the centre of all observations. 
Outliers frequently have significant distances from the centre of all observations 
(Filzmoser et al., 2005). The distance of an observation from the data centroid and 
the form of the data must be considered in multivariate situations.   

Multivariate data's size and form are quantified by the covariance matrix. One 
widely used distance measure that takes the covariance matrix into account is the 
Mahalanobis distance. The Mahalanobis distance for a multivariate sample 
𝒙𝒙1, … ,𝒙𝒙𝑛𝑛,  in p-dimensions is defined as follows:   

𝑀𝑀𝑀𝑀𝑖𝑖 = ((𝒙𝒙𝑖𝑖 − 𝝁𝝁)𝑇𝑇𝚺𝚺−1(𝒙𝒙𝑖𝑖 − 𝝁𝝁))1/2   for 𝑖𝑖 = 1, … ,𝑛𝑛  (15) 

here, 𝝁𝝁 stands for the estimated multivariate location, and 𝚺𝚺 for the covariance 
matrix (Filzmoser et al., 2005). 𝝁𝝁 is commonly used to represent the multivariate 
arithmetic mean, while 𝚺𝚺 stands for the sample covariance matrix. 
In multivariate normally distributed data, the values of 𝑀𝑀𝑀𝑀𝑖𝑖2 are approximately chi-
square distributed with p degrees of freedom (𝜒𝜒𝑝𝑝2). Ellipsoids with the same 
distance from the centroid can be defined by using a quantile of 𝜒𝜒𝑝𝑝2 as a constant 
for the (squared) Mahalanobis distance (Gnanadesikan, 1977). 

Filzmoser et al. (2005) define large (squared) Mahalanobis distance 
observations as outliers in multivariate statistics. Furthermore, Filzmoser et al. 
emphasised that in the multivariate case, a quantile of the chi-squared distribution 
(like the 98% quantile, 𝜒𝜒𝑝𝑝;0.98

2 ), might be considered an outlier. 
 

2.4 Robust estimation  

Robust estimating for multivariate data comes in a wide variety. A member of 
the affine equivariant class, robust estimation is used in this work. 

Given a data set (𝑹𝑹 = 𝒓𝒓1, 𝒓𝒓2, … , 𝒓𝒓𝑛𝑛) with 𝒓𝒓𝑖𝑖 ∈ ℝ𝑝𝑝. The robust estimate for 
the mean vector is 𝝁𝝁�(𝑹𝑹) ∈ ℝ𝑝𝑝 while the covariance matrix estimation is 𝚺𝚺�(𝑹𝑹) ∈ P𝑝𝑝 
(the set of all symmetric matrices positive definite of size 𝑝𝑝 × 𝑝𝑝). An estimation 
satisfies the requirements of the following definition to be classified as belonging 
to the affine equivariant class (Maronna et al., 2006). 

Definition 2.1 (Maronna et al., 2006)  
Given Q is an invertable matrix of size 𝑝𝑝 × 𝑝𝑝, vector 𝒗𝒗 ∈ ℝ𝑝𝑝 and data sets 𝑹𝑹 ∈
ℝ𝑝𝑝𝑝𝑝𝑝𝑝.  

i. 𝝁𝝁� is affine equivariant if  𝝁𝝁�(𝑸𝑸𝑸𝑸 + 𝒗𝒗) = 𝑸𝑸𝝁𝝁�(𝑹𝑹) + 𝒗𝒗  
ii. 𝜮𝜮� is affine equivariant if  𝜮𝜮�(𝑸𝑸𝑸𝑸 + 𝒗𝒗) = 𝑸𝑸𝜮𝜮�(𝑅𝑅) + 𝒗𝒗  
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Constrained M (CM) and Fast Minimum Covariance Determinant (FMCD) 
are two examples of robust estimation that are part of the affine equivariant class 
used in this study. A brief discussion of the FMCD and CM estimation will be 
given below. Additionally, we described how to calculate 𝝁𝝁� and 𝚺𝚺� using the robust 
FMCD and robust CM estimation techniques. 

2.4.1 Robust FMCD estimation 

The goal of the minimum covariance determinant (MCD) estimation is to 
identify robust estimation where the covariance matrix has the smallest 
determinant, based on observations of total observations (n). The MCD estimation 
is a pair of 𝝁𝝁� ∈ ℝ𝑝𝑝 and 𝚺𝚺� (a symmetric positive definite matrix with a dimension of 
𝑝𝑝 × 𝑝𝑝 from a sample of h observation)  

where (𝑛𝑛+𝑝𝑝+1)
2

≤ ℎ ≤ 𝑛𝑛                                                                                      (16) 
with  

𝝁𝝁� = 1
ℎ
∑ 𝒓𝒓𝑖𝑖ℎ
𝑖𝑖=1   (17) 

Solving the following equation yields the estimation of the covariance matrix.  

𝚺𝚺� = 1
ℎ
∑ (𝒓𝒓𝑖𝑖 − 𝝁𝝁�)(𝒓𝒓𝑖𝑖 − 𝝁𝝁�)′ℎ
𝑖𝑖=1   (18) 

Because MCD must look at every possible subset of h from a number of n 
data, this method's calculations can become very complex as the data dimensions 
increase. Thus, Fast MCD (FMCD), a faster MCD calculation algorithm, was 
discovered by Rousseeuw and Driessen (1999). The C-Step theorem explained 
below forms the foundation of the FMCD method. 
Theorem 2. 1 (Rousseeuw and Driessen, 1999) 

If 𝐻𝐻1 is the set of size h taken from data of size n, the sample statistics are: 

𝝁𝝁�1 = 1
ℎ
∑ 𝒓𝒓𝒊𝒊𝑖𝑖∈𝐻𝐻1  (19) 

𝜮𝜮�1 = 1
ℎ
∑ (𝒓𝒓𝑖𝑖 − 𝝁𝝁�1)(𝒓𝒓𝑖𝑖 − 𝝁𝝁�1)𝑖𝑖∈𝐻𝐻1 ′ (20) 

If �𝜮𝜮�1� > 0 than distance 𝑑𝑑𝑖𝑖 = �𝒓𝒓𝑖𝑖;𝝁𝝁�1,𝜮𝜮�1�. Next, specify 𝐻𝐻2 is subset consist of the 
observation with the smallest distance 𝑑𝑑𝑖𝑖, namely {𝑑𝑑1(𝑖𝑖)|𝑖𝑖 ∈ 𝐻𝐻2} =
{(𝑑𝑑1)1, … , (𝑑𝑑1)ℎ} where (𝑑𝑑1)1 ≤ (𝑑𝑑1)2 ≤ ⋯ ≤ (𝑑𝑑1)𝑛𝑛 is a sequential distance. 
Based on 𝐻𝐻2, calculate 𝝁𝝁�2 and 𝜮𝜮�2 using equations (19) and (20), so that   

�𝜮𝜮�2� ≤ �𝜮𝜮�1�  (21) 

Equation (21) will be the same if 𝝁𝝁�1 = 𝝁𝝁�2 and 𝜮𝜮�1 = 𝜮𝜮�2.  

The C-Step theorem is applied repeatedly until either � 𝚺𝚺�𝑛𝑛𝑛𝑛𝑛𝑛� = 0 or 
� 𝚺𝚺�𝑛𝑛𝑛𝑛𝑛𝑛� = � 𝚺𝚺�𝑜𝑜𝑜𝑜𝑜𝑜�.  
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Nevertheless, there is no guarantee that the final result of the iteration process 
will yield a new Σ�𝑛𝑛𝑛𝑛𝑛𝑛 with a global minimum of the objective function, which is 
the MCD estimation. In order to obtain the smallest determinant, the MCD solution 
approach can be carried out by choosing a number of initial sets of 𝐻𝐻1, and then 
applying C-Step to each set. In order to solve this issue, Rousseeuw and Driessen 
(1999) developed the Fast Minimum Covariant Determinant (FMCD) algorithm. 
The following algorithm provides an explanation of how the FMCD estimation is 
calculated.  
1. Consider the subset of the matrix R represented by 𝐻𝐻1 and made up of the 

observations ℎ = (𝑛𝑛 + 𝑝𝑝 + 1)/2.  
2. Determine both the covariance matrix (𝚺𝚺�1) and the mean vector (𝜇̂𝜇1). 
3. Calculate mahalanobis distance 𝑑𝑑1(𝑖𝑖) = (𝒓𝒓𝑖𝑖 − 𝝁𝝁�1)′Σ1−1(𝒓𝒓𝑖𝑖 − 𝝁𝝁�1) 
4. Sort 𝑑𝑑1(𝑖𝑖) from the smallest to the largest value  
5. Define the new subset with 𝐻𝐻2, such that 
{𝑑𝑑1(𝑖𝑖); 𝑖𝑖 ∈ 𝐻𝐻2}{(𝑑𝑑1)1:𝑛𝑛, (𝑑𝑑1)2:𝑛𝑛, … , (𝑑𝑑1)ℎ:𝑛𝑛 }  
where (𝑑𝑑1)1:𝑛𝑛 ≤ (𝑑𝑑1)2:𝑛𝑛 ≤ ⋯ ≤ (𝑑𝑑1)ℎ:𝑛𝑛 
6. Compute the covariance matrix (𝚺𝚺�2), the mean vector (𝝁𝝁�2), and 𝑑𝑑2(𝑖𝑖). 
7. Steps 1 through 6 should be repeated until �𝚺𝚺�2� ≤ �𝚺𝚺�1�.  

 
2.4.2 Robust constrained M estimation  

Robust Constrained M (CM) estimation is an extension of M Estimation. 
According to Kent and Tyler (1996), the advantage of M estimation is that it has 
good robustness characteristics both locally and globally. M estimation has the 
advantage of local robustness properties, such as good efficiency and a bounded 
influence function, but the weakness of this estimation is that it has a small 
breakdown point. To overcome this problem, Kent and Tyler (1996) proposed 
another estimation, namely CM Estimation. CM estimation has all the advantages 
of robustness properties both locally and globally. 

Definition 2.2 (Kent dan Tyler,1996) 
Given {𝒓𝒓𝒊𝒊, 𝑖𝑖 = 1, … ,𝑛𝑛} is data set in ℝ𝑝𝑝 and 𝑃𝑃𝑝𝑝 is set of symmetric matrices 
positive definite with size 𝑝𝑝 × 𝑝𝑝. CM estimation for measure of location 𝝁𝝁� ∈ ℝ𝑝𝑝 
and dispersion 𝜮𝜮�(𝑅𝑅) ∈ 𝑃𝑃𝑝𝑝 is a pair of 𝝁𝝁� and 𝜮𝜮�(𝑅𝑅) that minimised the objective 
function   

𝐿𝐿(𝝁𝝁,𝚺𝚺;𝒓𝒓) = 1
𝑛𝑛
∑ 𝜌𝜌(𝒅𝒅𝑖𝑖)𝑛𝑛
𝑖𝑖=1 + 1

2
log|𝚺𝚺|  (22)  

with constraint  
1
𝑛𝑛
∑ 𝜌𝜌(𝒅𝒅𝑖𝑖)𝑛𝑛
𝑖𝑖=1 ≤ 𝜖𝜖𝜖𝜖(∞) (23) 

where 𝜖𝜖 is the breakdown point. The breakdown point is the tolerance for the 
proportion of incorrect/erroneous observations (extreme/outlier observations). An 
estimation is more robust if it has a higher breakdown point. 
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Furthermore, Kent and Tyler (1996) explain that if 𝜌𝜌 is differentiable, then 
estimates of location size and scale using the CM estimation method can be 
obtained by solving the following equations. 

𝝁𝝁 = ∑ 𝜓𝜓(𝒅𝒅𝑖𝑖)𝒓𝒓𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝜓𝜓(𝒅𝒅𝑖𝑖)𝒓𝒓𝑖𝑖𝑛𝑛
𝑖𝑖=1

   (24) 

𝜮𝜮 = 𝑝𝑝∑ 𝜓𝜓(𝒅𝒅𝑖𝑖)𝑛𝑛
𝑖𝑖=1 (𝒓𝒓𝑖𝑖−𝝁𝝁)(𝒓𝒓𝑖𝑖−𝝁𝝁)′

∑ 𝑊𝑊(𝒅𝒅𝑖𝑖)𝑛𝑛
𝑖𝑖=1

  (25) 

and  
1
𝑛𝑛
∑ 𝑊𝑊(𝒅𝒅𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 𝑝𝑝   (26) 

or   
1
𝑛𝑛
∑ 𝜌𝜌(𝒅𝒅𝑖𝑖)𝑛𝑛
𝑖𝑖=1 = 𝜖𝜖𝜖𝜖(∞)  (27) 

where 𝜓𝜓(𝒅𝒅) = 2𝜌𝜌′(𝒅𝒅) and 𝑊𝑊(𝒅𝒅) = 𝒅𝒅𝜓𝜓(𝒅𝒅) 
Equations (24), (25), and (26) apply if the constraints in equation (23) are in 

inequality form. Meanwhile, equations (24), (25), and (27) apply if the constraints 
in equation (23) become equations. Equations (24), (25), and (26) appear as critical 
points for equation (22).  
 
2.5 Sharpe ratio 

Several metrics, such as the Sharpe ratio or the Sharpe index, can be used to 
assess the performance of stocks or portfolios. The Sharpe ratio measures excess 
return (or risk premium) per unit of risk in an asset (Sharpe, 1994). Moreover, 
Sharpe (1994) claims that the Sharpe ratio illustrates how well asset returns cover 
investors' risk-taking expenses. By dividing the difference between stock returns 
(R) and the risk return-free rate (𝑅𝑅𝑓𝑓) by the standard deviation of stock returns (𝜎𝜎), 
the Sharpe ratio (SR) is computed. This can be expressed as follows: 

𝑆𝑆𝑆𝑆 = 𝑅𝑅−𝑅𝑅𝑓𝑓
𝜎𝜎

  (28) 

If the Sharpe ratio measures portfolio performance, the stock return and stock 
risk in Equation (28) are replaced with portfolio return and portfolio risk. The 
higher the Sharpe ratio of a stock/portfolio, the better the stock/portfolio. 

 
3. Empirical Study  
 
3.1 Data description  

The data used in this research is the daily data of stock prices listed on the 
Indonesia Stock Exchange, which are included in the LQ45 index for February-
July 2023. The daily stock prices for each stock are obtained online at 
https://finance. yahoo.com. Four of the 45 stocks with the best performance were 
selected to form an optimum portfolio. A more detailed description of the data used 
in this research is given in Tables 1-2 and Figure 1.  
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Table 1. Mean, standard deviation, skewness, kurtosis,  
and Sharpe ratio of stocks return   

Stock Mean Standard Dev. Skewness Kurtosis SR 
BBRI 0.0018 0.0123 0.0802 3.8104 0.1303 
ACES 0.0042 0.0331 1.1357 5.5378 0.1208 
BRIS 0.0022 0.0284 1.2967 10.2879 0.0733 
ASII 0.0013 0.0158 0.2860 7.2291 0.0731 

Source: Own calculations based on the daily stocks returns of the best four stocks of the 
LQ45 index February-July 2023 period using R 3.6.1. 

 
Table 2. Normality of stocks return data   

Stock p-value Conclusion 
BBRI 0.031745 Not normal distribution  
ACES 0.000083 Not normal distribution  
BRIS 0.000003 Not normal distribution  
ASII 0.000008 Not normal distribution  

Source: Own calculations based on the daily stocks returns of the best four stocks of the 
LQ45 index February-July 2023 period using R 3.6.1. 

 

 
Figure 1. Outliers of stocks return  

Source: Graphic illustration of outliers based on returns of the best four stocks of the LQ45 
index February-July 2023 period using R 3.6.1. 
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3.2 Portfolios Weighting  

The present study employed the MVSK and robust MV portfolio models to 
construct an optimal portfolio. In the robust MV model, we use two robust 
estimations, FMCD estimation, and CM estimation, to compute the optimal 
portfolio. The robust MV portfolio that uses FMCD estimation yield the MVFMCD 
portfolio model, while the robust MV portfolio that uses CM estimation yield the 
MVCM portfolio model. 

 
3.2.1 Weight of MV classic and MVSK portfolio 

For weighting the MVSK portfolio, we use rootSolve function in R packages 
for various risk aversion 𝛾𝛾. We also determine the portfolio constructed using the 
MV classic portfolio model (𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) as a comparison. The MV classic portfolio 
model is a special case of the MVSK portfolio model, namely by taking 𝑎𝑎3 = 0 
and 𝑎𝑎4 = 0 in Equation 11a, section 2.2. The stocks utilised are the best four stocks 
of LQ45 in the February-July 2023 period, as shown in Table 1. Tables 3-4 show 
the resulting portfolio weights.   

Table 3. Weight of MV classic portfolio 
𝜸𝜸 BBRI ACES BRIS ASII 

0.5 0.40102 4.78461 1.15354 -5.33917 
1 0.47230 2.42497 0.61125 -2.50852 
2 0.50794 1.24515 0.34010 -1.09319 
5 0.52933 0.53726 0.17741 -0.24400 

10 0.53646 0.30129 0.12318 0.03907 
15 0.53883 0.22264 0.10511 0.13342 
20 0.54002 0.18331 0.09607 0.18060 
25 0.54073 0.15972 0.09065 0.20891 
30 0.54121 0.14398 0.08703 0.22778 
35 0.54155 0.13275 0.08445 0.24126 
40 0.54180 0.12432 0.08251 0.25136 
45 0.54200 0.11777 0.08101 0.25923 
50 0.54216 0.11252 0.07980 0.26552 

Source: Own calculations based on vector returns and covariance matrix (classic)  
of the best four stocks of the LQ45 index February-July 2023 period using R 3.6.1. 

 

Table 4. Weight of MVSK portfolio 
𝜸𝜸 BBRI ACES BRIS ASII 

0.5 0.01953 2.68255 0.56625 -2.26833 
1 0.44235 1.29067 0.33519 -1.06821 
2 0.51723 0.66164 0.20357 -0.38244 
5 0.53593 0.30170 0.12303 0.03934 

10 0.54000 0.18334 0.09603 0.18063 
15 0.54123 0.14398 0.08701 0.22778 
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𝜸𝜸 BBRI ACES BRIS ASII 
20 0.54183 0.12431 0.08250 0.25136 
25 0.54219 0.11251 0.07979 0.26551 
30 0.54242 0.10465 0.07798 0.27494 
35 0.54259 0.09903 0.07669 0.28168 
40 0.54272 0.09482 0.07573 0.28674 
45 0.54281 0.09154 0.07497 0.29067 
50 0.54289 0.08892 0.07437 0.29382 

Source: Own calculations based on vector returns, covariance, co-skewness, and co-kurtosis 
of the best four stocks of the LQ45 index February-July 2023 period using R 3.6.1. 

 
3.2.2 Weight of robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 portfolios 

We utilise the CovMcd and CovMest functions in R packages to weight the 
robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 and 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 portfolios for various risk aversion 𝛾𝛾. The stocks 
utilised are the best four stocks of the LQ45 index in the February-July 2023 
period, as shown in Table 1. Tables 5-6 show the resulting portfolio weights.  

Table 5. Weight of robust 𝑴𝑴𝑴𝑴𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹  portfolio  
𝜸𝜸 BBRI ACES BRIS ASII 

0.5 37.70183 -6.34245 2.19159 -32.55097 
1 19.06345 -3.11799 1.13786 -16.08333 
2 9.74427 -1.50576 0.61100 -7.84951 
5 4.15275 -0.53842 0.29488 -2.90921 
10 2.28892 -0.21597 0.18950 -1.26245 
15 1.66764 -0.10849 0.15438 -0.71353 
20 1.35700 -0.05475 0.13682 -0.43906 
25 1.17061 -0.02251 0.12628 -0.27439 
30 1.04636 -0.00101 0.11926 -0.16460 
35 0.95760 0.01434 0.11424 -0.08619 
40 0.89104 0.02586 0.11047 -0.02737 
45 0.83926 0.03482 0.10755 0.01837 
50 0.79785 0.04198 0.10521 0.05496 
Source: Own calculations based on vector returns and covariance (estimated by robust 

FMCD estimation) of the best four stocks of the LQ45 index February-July 2023 period 
using R 3.6.1. 

Table 6. Weight of robust 𝑴𝑴𝑴𝑴𝐶𝐶𝐶𝐶 portfolio 
𝜸𝜸 BBRI ACES BRIS ASII 

0.5 33.24738 -5.40152 5.30094 -32.14681 
1 16.83357 -2.64755 2.68538 -15.87140 
2 8.62667 -1.27056 1.37760 -7.73370 
5 3.70253 -0.44437 0.59293 -2.85108 

10 2.06115 -0.16898 0.33137 -1.22354 
15 1.51402 -0.07718 0.24419 -0.68103 
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𝜸𝜸 BBRI ACES BRIS ASII 
20 1.24045 -0.03128 0.20059 -0.40977 
25 1.07632 -0.00374 0.17444 -0.24702 
30 0.96689 0.01462 0.15700 -0.13851 
35 0.88873 0.02774 0.14455 -0.06101 
40 0.83011 0.03757 0.13520 -0.00289 
45 0.78452 0.04522 0.12794 0.04232 
50 0.74804 0.05134 0.12213 0.07849 

Source: Own calculations based on vector returns and covariance  
(estimated by robust CM estimation) of the best four stocks  
of the LQ45 index February-July 2023 period using R 3.6.1. 

3.3 Portfolios performance comparison 

The portfolio's returns, risks, and Sharpe ratios can then be determined using 
the portfolio weights, mean vectors, and covariance matrices. The portfolio's 
returns, risks, and Sharpe ratios are shown in Table 7.  

Table 7. Return, risk, and Sharpe ratio of portfolios 

𝛾𝛾 
𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 

Return Risk SR Return Risk SR Return Risk SR Return Risk SR 
0.5 0.0162 0.1700 0.0944 0.0095 0.0917 0.1019 0.1776 0.5951 0.2981 0.1676 0.5779 0.2898 
1 0.0090 0.0853 0.1037 0.0055 0.0444 0.1202 0.0890 0.2976 0.2986 0.0841 0.2890 0.2905 
2 0.0054 0.0433 0.1212 0.0036 0.0230 0.1501 0.0448 0.1490 0.2996 0.0424 0.1447 0.2920 
5 0.0032 0.0190 0.1621 0.0025 0.0121 0.1957 0.0182 0.0600 0.3011 0.0174 0.0583 0.2950 

10 0.0025 0.0121 0.1957 0.0022 0.0096 0.2090 0.0094 0.0307 0.3000 0.0090 0.0299 0.2961 
15 0.0023 0.0103 0.2064 0.0020 0.0091 0.2081 0.0064 0.0213 0.2946 0.0062 0.0207 0.2928 
20 0.0022 0.0096 0.2090 0.0020 0.0089 0.2059 0.0050 0.0167 0.2862 0.0048 0.0163 0.2862 
25 0.0021 0.0093 0.2090 0.0020 0.0088 0.2040 0.0041 0.0142 0.2758 0.0040 0.0138 0.2774 
30 0.0020 0.0091 0.2081 0.0019 0.0087 0.2024 0.0035 0.0125 0.2644 0.0034 0.0123 0.2674 
35 0.0020 0.0089 0.2070 0.0019 0.0087 0.2011 0.0031 0.0115 0.2527 0.0030 0.0112 0.2569 
40 0.0020 0.0089 0.2059 0.0019 0.0087 0.2001 0.0027 0.0107 0.2412 0.0027 0.0105 0.2465 
45 0.0020 0.0088 0.2049 0.0019 0.0087 0.1993 0.0025 0.0101 0.2303 0.0025 0.0100 0.2365 
50 0.0020 0.0088 0.2040 0.0019 0.0087 0.1986 0.0023 0.0097 0.2199 0.0023 0.0096 0.2270 
Source: Own calculations based on vector returns, covariance, co-skewness, and co-kurtosis 

of the best four stocks of the LQ45 index February-July 2023 period using R 3.6.1. 

4. Discussions  
 

Table 1 shows the four stocks used in this research, namely BBRI, ACES, 
BRIS, and ASII stocks, which are the four stocks with the best Sharpe ratio out of 
the 45 LQ45 stocks for February-July 2023. The Sharpe ratios for these stocks are 
0.1303, 0.1208, 0.033, and 0.0731, respectively. Table 1 also shows that the four 
stocks have skewness and kurtosis, with BBRI stock having the smallest skewness, 
namely 0.0802, and the stock with the highest kurtosis is BRIS stock, 10.2879. 
Meanwhile, Table 2 shows the normality of the stocks used in this research. From 
Table 2 it can be seen that all the stocks used are not normally distributed. 
According to the literature review presented in Section 1, it is not enough to use the 
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first and second moments (mean and covariance) in forming a portfolio; it must 
also involve the third and fourth moments (skewness and kurtosis). 

Figure 1 shows a distribution plot of data used in a multivariate manner. From 
Figure 1, it can be seen that the multivariate data used in this research contains 
outliers. Based on the literature review discussed in Section 1, an estimate resistant 
to outliers, namely a robust estimate, must be used to obtain a good estimate of the 
mean and covariance matrix. This study used two robust estimations for the mean 
and covariance matrix, namely, the FMCD robust and the CM robust estimations. 

Table 3 shows the portfolio weighting using the classic MV portfolio model. 
Table 3 shows that the stock with the smallest Sharpe ratio (ASII) has a weight 
starting from negative (moving towards positive as the value 𝛾𝛾 increases). The 
same thing also happens to stocks with the highest Sharpe ratio (BBRI). 
Meanwhile, the weight of the other two stocks, namely ACES and BRIS, decreases 
as the value 𝛾𝛾 increases. The same thing also happens in portfolio weighting using 
the MVSK model, as seen in Table 4. 

 Table 5 shows the portfolio weighting using the robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 portfolio 
model. Table 5 shows that the stock with the smallest Sharpe ratio has the smallest 
(negative) weight at 𝛾𝛾 = 0.5, and moves towards positive as the value of 𝛾𝛾 
increases, reaching a positive weight at 𝛾𝛾 = 45. The same thing also happened to 
the other three stocks. The weighting using the robust 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 portfolio model   is in 
line with the weighting using the robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 portfolio model, the results of 
which can be seen in Table 6.  

The return is not the only factor to consider when evaluating the performance 
of a portfolio, the risks also need to be taken into account. The Sharpe ratio is one 
of several metrics that can be used to assess portfolio performance. Table 7 shows 
the returns, risks, and Sharpe ratios of portfolios formed using the MV classic, 
MVSK, and robust MV portfolio model. From Table 7, it can be seen that the 
portfolio's performance using the robust portfolio model outperforms the portfolio 
using the MV classic portfolio model and the MVSK portfolio model. Furthermore, 
from Table 7, it can also be seen that for 𝛾𝛾 = 0.5  to 𝛾𝛾 = 20, the performance of 
the portfolio using the robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 model outperforms the performance of the 
portfolio using the robust 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 model. However, for 𝛾𝛾 > 20, the portfolio 
performance using the robust 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 model outperforms the portfolio using the 
robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 model.  

 
5. Conclusions and Future Research  

 
This paper presents two developments of the MV Markowitz portfolio model, 

namely the MVSK portfolio model and the robust MV portfolio model. In the 
robust MV portfolio model, there are two robust estimations used, namely the 
robust FMCD estimation and the robust CM estimation, which then produces two 
robust portfolio models, namely the robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 model and the robust 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 
portfolio model. The portfolios formed using these models are then compared in 
performance using the Sharpe ratio. The research results show that the performance 
portfolio formed using the robust MV model outperforms those formed using the 
MV classic and MVSK models. Furthermore, it is also found that for 𝛾𝛾 = 0.5 to 
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𝛾𝛾 = 20, the portfolio using the robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 model outperforms the portfolio 
using the robust 𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 model. However, for 𝛾𝛾 > 20, the portfolio using the robust 
𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶 model   outperforms the portfolio using the robust 𝑀𝑀𝑀𝑀𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 model.  

For future research, there is the possibility of constructing portfolio models 
that involve skewness, kurtosis, and the presence of outliers in the data. 
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