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AN ERGODIC AND TRANSIENT MARKOV MODEL  

FOR PENALTY REGULARISED PORTFOLIO  
 
Abstract. A collection of finite-number assets with discontinuous ergodic and 

transient return models are the subject of this paper, and its objective is to present a 

novel mean-variance Markowitz portfolio solution for them. We provide a methodology 

for choosing a portfolio using a penalty regularised Markov algorithm. In order to 

ensure the convergence to a singular portfolio solution, Tikhonov's regularisation, one 
of the most well-liked methods for handling discrete ill-posed problems, is crucial. We 

propose optimality conditions and relations for this system and build equivalent penalty 
regularised optimisation models. We begin by describing the qualities and conditions 

that permit the identification of a single solution for the penalty regularised projected 

utility of a given optimal portfolio. The Markowitz portfolio optimisation problem 
therefore converges to a unique solution. Together with the limitations, the utility 

function is also penalised. For both the ergodic and the transient models, we compute a 

stationary policy. The new strategy is demonstrated using a numerical example. 
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1. Introduction 

 

1.1. Brief review 

The issue of choosing an ideal portfolio has been the focus of extensive 

theoretical and computational research in finance. A conceptually sound method of 

comparing uncertain outcomes is a basic problem in dealing with them. Markov 

decision processes (MDPs) constitute a powerful paradigm. We address the topic of 

penalised restrictions in MDPs in the current work. Many different kinds of 

constraints have been successfully handled using portfolio methods for MDPs. 

Finding penalised constraints for MDPs that can be studied using analytical 

formulation is our main objective. 

The model of Markov chains plays a fundamental role in the portfolio 

(Clempner and Poznyak, 2018). The traditional approach, founded by Markowitz 

(1952), is based on the mean-risk approach, that compares the portfolios with respect 

to two features: a) the expected return rate (the mean), and b) the variance (the risk), 

which is given by some scalar measure of the uncertainty of the portfolio return rate. 

Regarding these two factors, the mean-risk method suggests choosing Pareto-
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efficient portfolios. We incorporate these criteria in a mean-risk portfolio model by 

giving a parameter as a tradeoff between them. The mean-risk model can be solved 

numerically extremely effectively as a parametric optimisation problem, which 

makes this strategy particularly appealing. 

 

1.2. Markowitz model 

Let {𝑥1, 𝑥2, . . . , 𝑥𝑛} ∈ 𝑋 the fractions of the initial capital invested in assets 

1,2, . . . , 𝑛, the defining of the preference structure among realistic portfolios is the 

main challenge in formulating a meaningful portfolio optimisation issue. If we 

consider the mean return rate E[𝑅(𝑥)], followed by the subsequent optimisation 

problem has a useless and easy solution: make every effort asset with the highest 

predicted rate of return. In these, the process of portfolio optimisation typically turns 

to two methods. 

In the method, a dispersion measure is connected to the portfolio 𝜇(𝑅(𝑥)) 
is a representation of the return rate’s variability 𝑅(𝑥) . The function in the 

traditional Markowitz model 𝜇(𝑅(𝑥)) is the return rate’s variance 

𝜇(𝑅(𝑥)) = 𝑉𝑎𝑟[𝑅(𝑥)] 

but there are a lot of additional options available as well. 
 

Then, the mean-risk portfolio optimisation problem is formulated 

max
𝑥∈𝑋

 E[𝑅(𝑥)] − 𝛾𝑉𝑎𝑟[𝑅(𝑥)] 

The nonnegative parameter 𝛾 represents the preferred mean-to-risk conversion rate. 

If 𝛾 = 0, there is no value to the risk, and the issue is then reduced to one of 

maximising the mean. If the value is greater than zero, 𝛾 > 0, we seek a balance 

between the mean and the risk. Alternately, one can consider a family of problems 

parametrised by 𝑚  while minimising the risk function 𝜇(𝑅(𝑥))  and fixing the 

anticipated return rate E[𝑅(𝑥)] at some value 𝑚. 

 

1.3. Related Work 

Risk management for MDPs has been studied from a number of perspectives 

in the literature. In Filar and Kallenberg (1989), penalties for the erratic nature of 

rewards in MDPs are mentioned. The best policy is obtained by solving a nonlinear 

programming problem including occupation metrics. More research on the mean-

variance trade-off in MDPs is done in Sobel (1994) in the context of Pareto-optimality. 

The conditional value-at-risk of the total cost is constrained in Asiain et al. (2018) for 

MDPs with limited horizons. An offline iterative approach is employed to determine 

the optimum course of action because convex analytical techniques are thought to be 

inadequate for this sort of problem. Markov risk measures are developed by 

Ruszczyński (2010) for discounted MDPs with limited and infinite horizons. 

By extending the work of Sánchez et al. (2015) by offering a recurrent 

reinforcement-learning technique modifies policies using preprocessing and an 

Actor-Critic architecture. Clempner and Poznyak (2018) investigated whether the 
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mean-variance Markowitz customer portfolio optimisation issue could be solved 

using the penalty regularised expected utilities technique. A reinforcement-learning 

technique was created by Asiain et al. (2018) to compute the portfolio for 

controllable partially observable Markov chains. 

Almahdi and Yang (2017) provide an adaptive-based strategy that produces 

a variable weight allocation system to increase projected drawdown by expanding 

the work done in recurrent reinforcement learning (Moody and Saffell, 2001). 

Among reinforcement-based approaches, continuous time and continuous control-

based techniques have recently gained popularity. In this way, Aboussalah and Lee's 

multi-dimensional state space may be addressed by layered deep dynamic recurrent 

RL (Aboussalah and Lee, 2010). A continuous-time portfolio strategy was examined 

by García-Galicia et al. (2019). Assuming that the underlying asset portfolio process 

has a continuous-time discrete-state Markov chain, García-Galicia et al. (2019) 

investigated continuous-time reinforcement learning in the context of policy 

optimisation for financial portfolio management. 

Domínguez and Clempner (2010) resolve the multi-period mean-variance 

Markowitz's portfolio optimisation problem. The regularisation of Tikhonov has 

generated a lot of attention in the application industries. The idea of using Tikhonov's 

regularisation to generate effective algorithms is currently being researched. In this 

regard, Vázquez and Clempner (2020) proposed a portfolio strategy based on a 

Lagrange regularisation technique. There are numerous solutions based on 

Tikhonov's regularisation that have been developed to solve the Markowitz Mean-

Variance Portfolio Mode (Carrasco and Noumon, 2011; Fastrich et al., 2015).  

The application industries are quite interested in the regularisation of 

Tikhonov. It is still being investigated if Tikhonov's regularisation can be used to 

create efficient algorithms. In this context, a portfolio approach based on a 

Lagrangian regularisation technique was put out by Vázquez and Clempner (2020). 

Carrasco and Noumon (2010) and Fastrich et al. (2015) have created a number of 

techniques based on Tikhonov's regularisation to deal with the Markowitz portfolio 

mode. Using a finite or infinite horizon and continuous or discrete time might result 

in different results in the literature (Akian et al., 2001; Cvitanic and Karatzas, 1996; 

Davis and Norman, 1990; Liu, 2020; Ziemba, 2012; Nowak and Romaniuk, 2018; 

Mwanakatwe et al., 2019). 

 

1.4. Main results 

The Markowitz portfolio optimisation problem is addressed in this paper 

using Markov chains. 
 

 Optimises the portfolio performance considering ergodic and transient 

constraints. This approach has a fundamental advantage over the classical 

models. 

 Proposes a novel method for choosing a portfolio using a penalty regularised 

Markov technique. 
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 Guarantees the convergence to a unique portfolio solution dealing with discrete 

ill-posed problems using Tikhonov’s regularisation. 

 Provides comparable penalty regularised optimisation models and optimal 

requirements for this system. 

 Starts by outlining the characteristics and circumstances under which a single 

solution can be found for the penalty regularised projected utility of a certain 

optimum portfolio. 

 Employs the regularised poly-linear optimisation problem’s parameters to solve 

the problem. 

 Shows that the portfolio problem converges to a unique solution. Along with the 

limitations, the utility function is also penalised. 

 Computes a stationary policy for both, the ergodic and the transient model 

 Demonstrates the new approach using a numerical example.  

 

1.5. Organisation of the paper 

This paper is organised as follows. In section 2, we consider preliminaries 

for MDPs. In section 3 we develop the background for ergodic and transient systems. 

Section 4 formulates the portfolio problem. In section 5, we discuss the regularised 

penalty function for Markowitz portfolio. We illustrate our method in section 6 with 

a portfolio optimisation example, and then conclude the paper in section 7. 

 

2. Preliminaries 
 
 

A Markov chain (MC) is a tuple (𝒮,𝒜, 𝑃) where 𝒮 is the state space, 𝒜 

is the action space, 𝑃(𝑠′|𝑠, 𝑎)𝑠′,𝑠∈𝒮,𝑎∈𝒜  is the transition probability distribution 

where 𝑃(𝑠′|𝑠, 𝑎) ∈ 0,1] and ∑𝑠′∈𝒮 𝑃(𝑠
′|𝑠, 𝑎) = 1. A Markov decision process is a 

tuple 𝑀𝐷𝑃 = (𝑀𝐶, 𝑐) where 𝑐(𝑠′, 𝑠, 𝑎) is the utility function. During the process, 

the agent observes the current state of the environment 𝑠𝑛, applies control 𝑎𝑛, and 

incurs in a utility 𝑐𝑛 that is a known function of time (𝑠𝑛+1, 𝑠𝑛, 𝑎𝑛) at each discrete 

time 𝑛 = 1,2, . . . ∈ 𝑁 ⊆ ℕ.  

The transition matrix 𝑃(𝑠𝑛+1|𝑠𝑛, 𝑎𝑛) and the distribution 𝑃(𝑠0) describe 

the dynamics of a Markov chain, where 𝑃(𝑠𝑛) ∈ Δ(𝒮) and Δ(𝒮) is employed to 

indicate the collection of all probability distributions over 𝒮. The Markov chains are 

self-contained. The absolute values of the utility function 𝑢(𝑠′, 𝑠, 𝑎) are bounded 

by some constant. We assume that each Markov chain (𝑃(𝑠𝑛), 𝑃(𝑠𝑛+1|𝑠𝑛, 𝑎𝑛)) is 

irreducible, recurrent and aperiodic (ergodic), and that 𝑃  is its unique invariant 

distribution. Then, we have 𝑃(𝑠𝑛+1) = ∑𝑠𝑛∈𝒮 ∑𝑎𝑛∈𝒜 𝑃(𝑠𝑛+1|𝑠𝑛, 𝑎𝑛)𝑃(𝑠𝑛). There 

exists, as well, a state 𝑠∗ which is recurrent for every distribution 𝑃. 

Let 𝜋: 𝒮 → Δ(𝒜) be a stationary policy, where Δ(𝒜) is the 𝒜-simplex, 

which maps the state-space 𝒮 to a probability distribution on the action-space 𝒜 

and determines randomised actions based on the current state 𝑠𝑛. Let Π𝑎𝑑𝑚 be the 

admisible set of Markov policies, i.e.  
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Π𝑎𝑑𝑚 = {𝜋(𝑎𝑛|𝑠𝑛) |∑
𝑎𝑛∈𝒜

𝜋(𝑎𝑛|𝑠𝑛) = 1, 𝑠𝑛 ∈ 𝒮, 𝑎𝑛 ∈ 𝒜}. 

 

The utility at state vector 𝑠𝑛 , policy 𝜋(𝑎𝑛|𝑠𝑛) and probability 𝑃(𝑠𝑛) is 

given by: 

𝒞(𝜋) = ∑

𝑠𝑛∈𝒮

∑

𝑎𝑛∈𝒜

( ∑

𝑠𝑛+1∈𝒮

𝑐(𝑠𝑛+1, 𝑠𝑛, 𝑎𝑛)𝑃(𝑠𝑛+1|𝑠𝑛, 𝑎𝑛))𝜋(𝑎𝑛|𝑠𝑛)𝑃(𝑠𝑛) =

∑

𝑠𝑛∈𝒮

∑

𝑎𝑛∈𝒜

𝑊(𝑠𝑛, 𝑎𝑛)𝜋(𝑎𝑛|𝑠𝑛)𝑃(𝑠𝑛),

 

where 

𝑊(𝑠𝑛, 𝑎𝑛) = ∑𝑠𝑛+1∈𝒮 𝑐(𝑠𝑛+1, 𝑠𝑛, 𝑎𝑛)𝑃(𝑠𝑛+1|𝑠𝑛, 𝑎𝑛). 
 

A policy {𝜋𝑛}𝑛≥0  is called a optimal if for each 𝑛 ≥ 0  minimises the 

conditional mathematical expectation of the utility-function 𝒞(𝜋) by solving  

𝜋∗: = arg max
𝜋∈Π𝑎𝑑𝑚

𝔼{𝒞(𝜋)|ℋ𝑛} 

cuch that 𝒞(𝜋) is the average utility function.  
 

For ergodic Markov chains, the strong law of large numbers governs not 

only the objective requirement of average utility but also the stronger equality 

lim
𝑁→∞

𝑁−1∑
𝑁

𝑛=1
𝒞(𝜋𝑛) = max

𝜋∈Π𝑎𝑑𝑚
𝒞(𝜋) 

Note that the limit value on the left-hand side of the last equality is independent of 

the chain’s initial state. A policy 𝜋∗ ∈ Π𝑎𝑑𝑚  is average optimal if 𝒞(𝜋) =
max

𝜋∈Π𝑎𝑑𝑚
𝒞(𝜋). It is well known that there exists an average optimal deterministic 

policy 𝜋∗. 
For any policy 𝜋 ∈ Π𝑎𝑑𝑚  and any positive integer 𝑁 , we denote state-

action frequencies in the first 𝑁 periods by 𝑥(𝑠𝑛, 𝑎𝑛) 

𝑥(𝑠, 𝑎) = lim
𝑁→∞

𝑁−1∑
𝑁

𝑛=1
∑

𝑠𝑛+1∈𝒮

𝑃(𝑠𝑛)𝑃(𝑠𝑛+1|𝑠𝑛, 𝑎𝑛)𝜋(𝑎𝑛|𝑠𝑛) 

The 𝑀𝐷𝑃  is reduced to a stochastic process after the initial state and 

strategy are determined. A discrete-time stochastic process is a collection of random 

variables that are included into a random set {𝑋𝑛|𝑛 ∈ 𝑁}. The value 𝑋𝑛 ∈ 𝑆 is the 

state of the process at time 𝑛. 

The distribution vector 𝑃(𝑠𝑛) is defined as  

𝑃(𝑠𝑛+1) = ∑

𝑠𝑛+1∈𝒮

∑

𝑠𝑛∈𝒮

( ∑

𝑎𝑛∈𝒜

𝑃(𝑠𝑛+1|𝑠𝑛, 𝑎𝑛)𝜋(𝑎𝑛|𝑠𝑛))𝑃(𝑠𝑛) 

In the ergodic case, we ha that , 𝑃(𝑠𝑛) →
𝑛→∞

𝑃(𝑠). We shall now focus on stationary 

distributions. 
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3. Erogodicity and Non-ergodic 
 

3.1. Ergodic Markov chains 

Linear programming provides the tools needed to compute the optimal 

policies in problem (1). We only consider the stationary policy situation. Let us 

present this problem in terms of ergodic Markov chains with only communicating 

states, that is, there is a probability that for a finite number of transitions each state 

𝑠′ can be reached from any state 𝑠 applying action 𝑎. 

Let us first introduce the following definitions  

1.  the optimal action 𝑎∗ = 𝑎(𝑠∗) 

2.  the limiting probabilities of the states under the optimal policy is given by 

𝑥(𝑠, 𝑎) = 𝜋(𝑎|𝑠)𝑃(𝑠) 

3.  the maximum of the objective function is given  

𝐶∗(𝑥(𝑠, 𝑎)) =∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥∗(𝑠, 𝑎), 

such that  

 

1)∑𝑠∈𝒮 ∑𝑎∈𝒜 𝑥(𝑠, 𝑎) = 1

2)∑𝑎∈𝒜 𝑥(𝑠, 𝑎) > 0

3)∑𝑠∈𝒮 ∑𝑎∈𝒜 [𝜅𝑠′,𝑠 − 𝑃(𝑠
′|𝑠, 𝑎)]𝑥(𝑠, 𝑎) = 0, 𝑠′ ∈ 𝒮

} (∗) 

 

where 𝜅𝑠′,𝑠 is Kroneker’s variable and we denote the above set of constraints (∗) 

by 𝑋𝑎𝑑𝑚. 
 

Then, we have that the linear programming problem can be expressed 

4)∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥(𝑠, 𝑎) → max
𝑥∈𝑋𝑎𝑑𝑚

 

 

Theorem 1. The policy 𝜋(𝑠, 𝑎) is optimal if and only if 𝑥(𝑠, 𝑎) is a solution to the 

linear programming problem (3).  

Proof. Let 𝑥(𝑠, 𝑎)  be a feasible solution to problem (3) and 𝑥(𝑠, 𝑎) =
𝜋(𝑎|𝑠)𝑃(𝑠): 
 

1) Each 𝑥(𝑠, 𝑎) represents the “long-run average frequency” that belong to the 

simplex 

Δ = {𝑥(𝑠, 𝑎) |∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑥(𝑠, 𝑎) = 1, 𝑥(𝑠, 𝑎) > 0}. 

 

2) We have that  

∑

𝑎∈𝒜

𝑥(𝑠, 𝑎) = ∑

𝑎∈𝒜

𝜋(𝑎|𝑠)𝑃(𝑠) = 𝑃(𝑠) ∑

𝑎∈𝒜

𝜋(𝑎|𝑠) = 𝑃(𝑠) > 0. 
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3) The ergodicity constraint satisfies that  

𝑃(𝑠′) =∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑃(𝑠′|𝑠, 𝑎)𝑃(𝑠) 

 

such that 

∑

𝑎∈𝒜

𝑥(𝑠′, 𝑎) −∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑃(𝑠′|𝑠, 𝑎)𝑥(𝑠, 𝑎) =∑

𝑠∈𝒮

[∑

𝑎∈𝒜

(𝑥(𝑠′, 𝑎) − 𝑃(𝑠′|𝑠, 𝑎)𝑥(𝑠, 𝑎))] =
 

∑

𝑠𝑛∈𝒮

[ ∑

𝑎𝑛∈𝒜

[𝜅𝑠′,𝑠 − 𝑃(𝑠
′|𝑠, 𝑎)]𝑥(𝑠, 𝑎)] = 0 

 

4) The objetive function satisfies that taking 𝑥(𝑠, 𝑎) = 𝜋(𝑎|𝑠)𝑃(𝑠) 

𝒞(𝜋) =∑

𝑠∈𝒮

∑

𝑎∈𝒜

(∑

𝑠′∈𝒮

𝑐(𝑠′, 𝑠, 𝑎)𝑃(𝑠′|𝑠, 𝑎)) 𝜋(𝑎|𝑠)𝑃(𝑠) =

∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝜋(𝑎|𝑠)𝑃(𝑠) =∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥(𝑠, 𝑎) = 𝐶(𝑥(𝑠, 𝑎)).

 

 

As a result, we have 

min
𝑥∈𝑋𝑎𝑑𝑚

𝐶(𝑥(𝑠, 𝑎)) =∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥∗(𝑠, 𝑎) 

For recovering the relationship of interest 𝜋(𝑎|𝑠) and 𝑃(𝑠) we have that 

𝑥(𝑠, 𝑎) = 𝜋(𝑎|𝑠)𝑃(𝑠), then 

∑

𝑎∈𝒜

𝑥(𝑠, 𝑎) = ∑

𝑎∈𝒜

𝜋(𝑎|𝑠)𝑃(𝑠) = 𝑃(𝑠) ∑

𝑎∈𝒜

𝜋(𝑎|𝑠) = 𝑃(𝑠) 

as a result  

𝑃(𝑠) = ∑

𝑎∈𝒜

𝑥(𝑠, 𝑎) 

Now 

𝑥(𝑠, 𝑎) = 𝜋(𝑎|𝑠)𝑃(𝑠) = 𝜋(𝑎|𝑠) ∑

𝑎∈𝒜

𝑥(𝑠, 𝑎) 

which implies 

𝜋(𝑎|𝑠) =
𝑥(𝑠, 𝑎)

∑𝑎′∈𝒜 𝑥(𝑠, 𝑎
′)

 

 

The linear programming problem is more complicated for non-ergodic 

controlled Markov chains. 
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3.2. Non-ergodic controlled Markov chains 

Let 𝜏𝑠𝑠 represent the return time to state 𝑠 for 𝑋0 = 𝑠: 

𝜏𝑠𝑠 = min{𝑛 ≥ 1|𝑋𝑛 = 𝑠: 𝑋0 = 𝑠} 

denotes that the Markov chain started in state 𝑠 it determines the amount of time 

(number of steps) until it returns to state 𝑠. The non return is defined by 𝜏𝑠𝑠 = ∞ if 

𝑋𝑛 ≠ 𝑠 for 𝑛 ≥ 1. Denote by 𝜇𝑠: = 𝑃(𝜏𝑠𝑠 < ∞) the probability of ever returning 

to state 𝑠 given that the chain started in state 𝑠. A state 𝑠 is called recurrent if 𝜇𝑠 =
1 and transient if 𝜇𝑠 < 1. If 𝜇𝑠 = 1 then the chain will return to state 𝑠 infinitily 

often and if 𝜇𝑠 < 1  it will only be visited a finite (random) number of times. 

Counting the total number of visits to state 𝑠 for 𝑋0 = 𝑠 is 

𝜂𝑠 =∑
∞

𝑛=0
𝕀{𝑋𝑛 = 𝑠: 𝑋0 = 𝑠} 

where 𝕀{𝑋𝑛 = 𝑠} is the indicator function denoting if the 𝑛 − 𝑡ℎ state is 𝑠 having 

a geometric distribution 𝑃(𝜂𝑠 = 𝑛) = 𝜇𝑠
𝑛−1(1 − 𝜇𝑠), 𝑛 ≥ 1. The expected number 

of visits is thus given by 𝔼{𝜂𝑠} = (1 − 𝜇𝑠)
−1 (∑∞𝑛=0 𝑃

𝑛(𝑠, 𝑠)) for which a state 𝑠 
is called recurrent if 𝔼{𝜂𝑠} = ∞ (∑∞𝑛=0 𝑃

𝑛(𝑠, 𝑠) = ∞) and transient if 𝔼{𝜂𝑠} < ∞ 

(∑∞𝑛=0 𝑃
𝑛(𝑠, 𝑠) < ∞). When the limits exist, let 𝑠′ denote the long-run proportion 

of time that the chain spends in state 𝑠′:  

𝑃(𝑠′) = lim
𝑁→∞

1

𝑁
∑

𝑁

𝑛=1
𝕀{𝑋𝑛 = 𝑠

′} 

denote the long-run average frequency of state 𝑠′. 
 

Let us introduce for the stationary Markov strategies 𝜋(𝑎|𝑠) the function 

𝑓: 𝒮 → 2𝒜\{∅}  of the current state. The values 𝑥(𝑠, 𝑎)  denote the action 𝑎 ’s 

choice probabilities in the state 𝑥(𝑠, 𝑎) or, in other words, the policy in the class of 

randomised strategies is being sought. The ergodicity case reveals that there exists a 

unique 𝑓(𝑠)  for any 𝑠  such that 𝑥(𝑠, 𝑎) > 0  and 𝑥(𝑠, 𝑎) = 0  when 𝑎 ∉ 𝑓(𝑠) 
(the state will never be visited). 𝑥(𝑠, 𝑎)  is identified as the long-run average 

frequency of the state-action pair (𝑠, 𝑎). 
 

Let 𝐸 ⊆ 𝒮  be the reachable subset of states and and let ℛ =
{𝑅1, 𝑅2, . . . , 𝑅𝑙} be the set of closed connected recurrent set of states. The set 𝐸 and 

ℛ can be computed in linear-time. Let 𝑅 =∪𝑖=1
𝑙 𝑅𝑖, and the set 𝐸\𝑅 consists of 

transient states. 

 

We will try to find an auxiliary variable 𝑥(𝑠, 𝑎) which solve the following 

linear programming problem  
𝐶(𝑥(𝑠, 𝑎)) → max

𝑥∈𝑋𝑎𝑑𝑚
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𝐶(𝑥) =∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥(𝑠, 𝑎) 

where 

1)∑

𝑠∈ℛ

∑

𝑎∈𝒜

𝑥(𝑠, 𝑎) = 1

2) ∑

𝑎∈𝒜

𝑥(𝑠, 𝑎) ≥ 0, 𝑎 ∈ 𝒜, 𝑠 ∈ 𝑅

3)𝑥(𝑠, 𝑎) > 0, 𝑎 ∈ 𝑓(𝑠), 𝑠 ∈ 𝑅
4)𝑥(𝑠, 𝑎) = 0, 𝑎 ∉ 𝑓(𝑠), 𝑠 ∈ 𝑅

5)∑

𝑠∈𝒮

∑

𝑎∈𝒜

[𝜅𝑠′,𝑠 − 𝑃(𝑠
′|𝑠, 𝑎)]𝑥(𝑠, 𝑎) = 0, 𝑠′ ∈ 𝑅

}
 
 
 
 

 
 
 
 

(∗) 

 

 

6) ∑

𝑎∈𝒜

𝑦(𝑠′, 𝑎) −∑

𝑠∈𝒮

∑

𝑎∈𝒜

𝑃(𝑠′|𝑠, 𝑎)𝑦(𝑠, 𝑎) = 𝜉(𝑠′), 𝑠′ ∈ 𝐸\𝑅

7)𝑦(𝑠′) − ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑃(𝑠′|𝑠, 𝑎)𝑦(𝑠, 𝑎) = 0, 𝑠′ ∈ 𝑅

8) ∑

𝑎∈𝒜

𝑦(𝑠, 𝑎) > 0, 𝑠 ∈ 𝑅

9)𝑦(𝑠, 𝑎) = 0, 𝑎 ∉ 𝑓(𝑠), 𝑠 ∈ 𝐸\𝑅

10)∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑥(𝑠, 𝑎) =∑

𝑠∈𝑅

𝑦(𝑠)
}
 
 
 
 
 

 
 
 
 
 

(+) 

 

 

The numbers 𝜉(𝑠′) are an initial distribution of the chain (it is convenient 

to let 𝜉(𝑠′)  a uniform distribution). The solution defines the desired optimal 

variables 𝑥(𝑠, 𝑎) and 𝑦(𝑠, 𝑎), which refer to the states of the recurrent class and to 

the transient class, respectively. 

 

For determining the relations between policies and feasible solutions (𝑥, 𝑦), 
we define a stationary policy as follows 

 

𝜋(𝑠, 𝑎) =

{
 
 

 
 

𝑥(𝑠, 𝑎)

∑𝑎∈𝒜 𝑥(𝑠, 𝑎)
𝑎 ∈ 𝒜, 𝑠 ∈ 𝑅

𝑦(𝑠, 𝑎)

∑𝑎∈𝒜 𝑦(𝑠, 𝑎)
𝑎 ∈ 𝒜, 𝑠 ∈ 𝐸\𝑅
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4. Portfolio 
  

4.1. Mean-Variance Portfolio 

We are therefore proceeding with the notion of portfolio. The variance is 

given by 

𝑉(𝜋) = ∑

𝑠𝑛∈ℛ

∑

𝑎𝑛∈𝒜

[𝑊2(𝑠, 𝑎)𝜋(𝑎|𝑠)𝑃(𝑠) − 𝐶2(𝑥(𝑠, 𝑎))] 

where 𝑊(𝑠, 𝑎) are the rewards of the original MDP-process. The notion of variance 

based on the long-run frequency of occurrence of state-action which establish the 

rewards is defined 

𝑉(𝑥) = ∑

𝑠𝑛∈ℛ

∑

𝑎𝑛∈𝒜

[𝑊(𝑠, 𝑎) − 𝐶(𝑥(𝑠, 𝑎))]2𝑥(𝑠, 𝑎),. 

and 

𝑉(𝑦) = ∑

𝑠𝑛∈𝐸\𝑅

∑

𝑎𝑛∈𝒜

[𝑊(𝑠, 𝑎) − 𝐶(𝑦(𝑠, 𝑎))]2𝑦(𝑠, 𝑎). 

 

This definition is equivalent to 

𝑉(𝑥) = lim
𝑁→∞

𝑁−1∑
𝑁

𝑛=1
𝔼[𝑊𝑛(𝑠, 𝑎) − 𝐶(𝑥(𝑠, 𝑎))]

2 

and 

𝑉(𝑦) = lim
𝑁→∞

𝑁−1∑
𝑁

𝑛=1
𝔼[𝑊𝑛(𝑠, 𝑎) − 𝐶(𝑦(𝑠, 𝑎))]

2 

where 𝔼(⋅) denotes the expectation operator. 

 

Formulation of the problem. We consider the following optimisation 

portfolio problem 

                                       max
𝜋∈Π𝑎𝑑𝑚

𝐶(𝜋) − 𝛾𝑉(𝜋)                                                         (1) 

 

or in term of the long-run frequency we have  

                                                     

max
𝑥∈𝑋𝑎𝑑𝑚

𝐶(𝑥) − 𝛾𝑉(𝑥)

max
𝑦∈𝑌𝑎𝑑𝑚

𝐶(𝑦) − 𝛾𝑉(𝑦)
}                                                 (2) 

where 𝛾 ∈ (0,∞]. 
 

The Eq.(1) represents the average reward (𝐶(𝜋)) penalised by variance 

(𝑉(𝜋)) induced by the policy (𝜋 ∈ Π𝑎𝑑𝑚 ). The Eq.(2) can be expressed as the 

following convex quadratic form 

max
𝑥∈𝑋𝑎𝑑𝑚

[∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥(𝑠, 𝑎) − 𝛾∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊2(𝑠, 𝑎)𝑥(𝑠, 𝑎) + 
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+ 𝛾 (∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥(𝑠, 𝑎))

2

] + max
𝑦∈𝑌𝑎𝑑𝑚

[ ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑦(𝑠, 𝑎) − 

−𝛾 ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊2(𝑠, 𝑎)𝑦(𝑠, 𝑎) + 𝛾 ( ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑦(𝑠, 𝑎))

2

]  where 𝛾 ∈ (0,∞] 

 

The following theorems arise. 
 

Theorem 2. The policy 𝜋∗ is Pareto optimal  

Proof. Let us assume that 𝜋∗  is not optimal then there exist 𝜋 ∈ Π𝑎𝑑𝑚 

(𝜋∗ ≠ 𝜋) such that 𝐶(𝜋) − 𝑉(𝜋) ≥ 𝐶(𝜋∗) − 𝑉(𝜋∗). Then, from Eq.(1) we have that 

𝐶(𝜋) − 𝛾𝑉(𝜋) > 𝐶(𝜋∗) − 𝛾𝑉(𝜋∗) for 𝛾 ∈ (0,∞]. This is a contradiction to the fact 

that 𝜋∗ is the maximises Eq.(1).  
 

Theorem 3. Let the policy 𝜋∗ be optimal in Eq.(1), then 𝑥∗ is optimal in Eq.(2) 

and the maximum of Eq.(1) is the same as in Eq.(2)  

Proof. We have the following: 

𝐶(𝜋∗) − 𝛾𝑉(𝜋∗) = max
𝜋∈Π𝑎𝑑𝑚

𝐶(𝜋) − 𝛾𝑉(𝜋) = 

max
𝑥∈𝑋𝑎𝑑𝑚

[∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥(𝑠, 𝑎) 

−𝛾 (∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊2(𝑠, 𝑎)𝑥(𝑠, 𝑎) − (∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥(𝑠, 𝑎))

2

) + 

max
𝑦∈𝑌𝑎𝑑𝑚

[ ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑦(𝑠, 𝑎) − 𝛾 ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊2(𝑠, 𝑎)𝑦(𝑠, 𝑎) + 

𝛾 ( ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑦(𝑠, 𝑎))

2

] = 

[∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥∗(𝑠, 𝑎) − 𝛾∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊2(𝑠, 𝑎)𝑥∗(𝑠, 𝑎) 

+𝛾 (∑

𝑠∈𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑥∗(𝑠, 𝑎))

2

] + 

[ ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑦∗(𝑠, 𝑎) − 𝛾 ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊2(𝑠, 𝑎)𝑦∗(𝑠, 𝑎) 

𝛾 ( ∑

𝑠∈𝐸\𝑅

∑

𝑎∈𝒜

𝑊(𝑠, 𝑎)𝑦∗(𝑠, 𝑎))

2

] 
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Then, given that 𝑥∗(𝑠, 𝑎) = 𝜋∗(𝑎|𝑠)𝑃∗(𝑠)  ( 𝑠 ∈ 𝑅 ) and 𝑦∗(𝑠, 𝑎) =
𝜋∗(𝑎|𝑠)𝑃∗(𝑠) (𝑠 ∈ 𝐸\𝑅) the maximum of Eq.(1) is the same as in Eq.(2). 

 

Remark 1. The oposite statement holds. Let 𝑥∗ optimal in Eq.(2), then the policy 

𝜋∗ is optimal in Eq.(1) and the maximum of Eq.(1) is the same as in Eq.(2).  

 

 

4.2. Nonlinear programming format reformulation 

 

Introduce the following vectors 

𝑥 = col[𝑥(𝑠, 𝑎)], 𝑦 = col[𝑦(𝑠, 𝑎)]. 
Then the problem (8) can be represented as 

𝑓(𝑥, 𝑦):= �̃�𝑥 +
𝛾

2
[(�̃�𝑥)

2
− �̅�𝑥] + �̃�𝑦 +

𝛾

2
[(�̃�𝑦)

2
− �̅�𝑦] →  max

 𝑦∈𝑌𝑎𝑑𝑚
𝑥∈𝑋𝑎𝑑𝑚

 

where 

�̃� = diag(𝑊1|1, . . . ,𝑊1||𝐴|;𝑊2|1, . . . ,𝑊2||𝐴|; . . . ;𝑊|𝑅||1, . . . ,𝑊|𝑅|||𝐴|) 

�̅� = diag(𝑊1|1
2 , . . . ,𝑊1||𝐴|

2 ;𝑊2|1
2 , . . . ,𝑊2||𝐴|

2 ; . . . ;𝑊|𝑅||1
2 , . . . ,𝑊|𝑅|||𝐴|

2 ) 

�̃�2 = �̅� 

�̂� = diag(𝑊1|1, . . . ,𝑊1||𝐴|;𝑊2|1, . . . ,𝑊2||𝐴|; . . . ;𝑊|𝐸\𝑅||1, . . . ,𝑊|𝐸\𝑅|||𝐴|) 

𝑊 = 𝑑𝑖𝑎𝑔(𝑊1|1
2 , . . . ,𝑊1||𝐴|

2 ;𝑊2|1
2 , . . . ,𝑊2||𝐴|

2 ; . . . ;𝑊|𝐸\𝑅||1
2 , . . . ,𝑊|𝐸\𝑅|||𝐴|

2 ) 

�̂�2 = 𝑊 

  

The set of constraints 𝑋𝑎𝑑𝑚 and 𝑌𝑎𝑑𝑚 looks as 

𝑋𝑎𝑑𝑚: = {𝑥 ∈ ℝ
|𝑅||𝐴||�̅�𝑗

⊺𝑥 − �̅�𝑗
⊺𝑥 = 0(𝑗 = 1, . . . , |𝑅|), 

 

𝑥𝑠 > 0, 𝑒
⊺𝑥 = 1}, 𝑠 ∈ 𝑅 

where 𝑒⊺:= (1, . . . ,1) ∈ ℝ|𝑅||𝐴| and 

�̅�𝑗
⊺: = (0, . . . ,0⏟  

1

; 0, . . . ,0; . . . ; 0, . . . ,0; 1, . . . ,1⏟  
𝑗

; 0, . . . ,0; . . . ; 0, . . . ,0⏟  
|𝑅|

) ∈ ℝ|𝑅||𝐴| 

�̅�𝑗
⊺: = (𝑝𝑗|11, . . . , 𝑝𝑗|1|𝐴|⏟          

1

; 𝑝𝑗|21, . . . , 𝑝𝑗|2|𝐴|⏟          
2

; . . . ; 𝑝𝑗||𝑅|1, . . . , 𝑝𝑗||𝑅||𝐴|⏟          
|𝑅|

) ∈ ℝ|𝑅||𝐴|, 

𝑗 = 1, |𝑅|  

and 

𝑌𝑎𝑑𝑚 = {𝑦 ∈ ℝ
|𝐸\𝑅||𝐴||�̅�𝑗

⊺𝑦 − �̅�𝑗
⊺𝑦 = 𝜉(𝑠′), �̅�𝑗

⊺𝑦 − �̅�𝑗
⊺𝑦 = 0, 

𝑦𝑠 > 0, 𝑒
⊺𝑦 = 1, 𝑒⊺𝑥 − 𝑒⊺𝑦 = 0}, 𝑠 ∈ 𝐸\𝑅 
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5. Regularised penalty function Markowitz portfolio 
 

Let us consider the Markowitz portfolio model based on a regularised 

penalty function as following 

Φ̃𝑘,𝛿(𝑥, 𝑦):= 𝑓(𝑥, 𝑦) −
𝑘

2
[∑

|𝑅|

𝑗=1

[(�̅�𝑗 − �̅�𝑗)
⊺
𝑥]
2
+ (𝑒⊺𝑥 − 1)2 + 

∑

|𝐸\𝑅|

𝑗=1

[(�̅�𝑗 − �̅�𝑗)
⊺
𝑦 − 𝜉(𝑠′)]

2
+ ∑

|𝐸\𝑅|

𝑗=1

(�̅�𝑗 − �̅�𝑗)
⊺
𝑦 + (𝑒⊺𝑥 − 𝑒⊺𝑦)2] 

−
1

2
𝛿(‖𝑥‖2 + ‖𝑦‖2) 

where the parameters 𝑘 and 𝛿 are positive. Here the function [𝑧]+ is defined as 
[𝑧]+: = max(𝑧, 0). 

 

Notice also that 

arg max
 𝑦∈𝑌𝑎𝑑𝑚
𝑥∈𝑋𝑎𝑑𝑚

Φ̃𝑘,𝛿(𝑥, 𝑦) = arg max
 𝑦∈𝑌𝑎𝑑𝑚
𝑥∈𝑋𝑎𝑑𝑚

Φ𝜇,𝛿(𝑥, 𝑦) 

where 𝜇:= 𝑘−1 > 0 and  

Φ𝜇,𝛿(𝑥, 𝑦): = 𝜇𝑓(𝑥, 𝑦) −
1

2
[∑

|𝑅|

𝑗=1

[(�̅�𝑗 − �̅�𝑗)
⊺
𝑥]
2
+ (𝑒⊺𝑥 − 1)2 + 

∑
|𝐸\𝑅|
𝑗=1 [(�̅�𝑗 − �̅�𝑗)

⊺
𝑦 − 𝜉(𝑠′)]

2
+∑

|𝐸\𝑅|
𝑗=1 (�̅�𝑗 − �̅�𝑗)

⊺
𝑦 + (𝑒⊺𝑥 − 𝑒⊺𝑦)2]  (3) 

 

Let Φ𝜇,𝛿(𝑥, 𝑦) be the associated Markowitz portfolio function that satisfies Eq. (3). 

If the penalty parameter 𝜇 as well as the regularising parameter 𝛿 tend to zero in a 

special way, then we may expect that 𝑥∗(𝜇, 𝛿), 𝑦∗(𝜇, 𝛿), which are the solutions of 

the Markowitz portfolio optimisation problem under fixed parameters 𝜇, 𝛿 > 0  

                      Φ𝜇,𝛿(𝑥, 𝑦) → max
 𝑦∈𝑌𝑎𝑑𝑚
𝑥∈𝑋𝑎𝑑𝑚

,                               (4) 

tend to the set 𝑋∗ × 𝑌∗  of all solutions of the original Markowitz portfolio 

optimisation problem (4), that is,  

 

𝜌{𝑥∗(𝜇, 𝛿), 𝑦∗(𝜇, 𝛿); 𝑋∗⊗𝑌∗} →
0<𝛿,𝜇↓0,

𝜇

𝛿
↓0
0 

where 𝜌{𝑎; 𝑋∗⊗𝑌∗} is the Hausdorff distance between the point 𝑎 = (𝑎𝑥 , 𝑎𝑦) 

and the set 𝑋∗⊗𝑌∗ defined as 

𝜌{𝑎; 𝑋∗⊗Υ∗} =  min
𝑥∗∈𝑋∗,𝑦∗∈𝑌∗

(‖𝑎𝑥 − 𝑥
∗‖2 + ‖𝑎𝑦 − 𝑦

∗‖
2
) 
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6. Portfolio 
 

 

6.1. Mean-Variance Portfolio 
 

 

We make the assumption that investors will target the portfolio with the 
lowest risk under the one-period horizon and anticipate the returns to follow the same 
probability distribution. We think that there is no inflation or change in interest rates, 
and that the markets are stable. We assume transaction costs in trading and infinite 
trading by investors on an arbitrage-free market in order to be more realistic. We 
suppose that the system consists of fourteen states, the first seven correspond to the 
ergodic system, and the rest to the transient system. Fixing the initial values for 𝛾0 =
2.0 × 10−3 and 𝛿0 = 31.99. We have the resulting portfolio is given by 

 

𝜋(𝑠, 𝑎)

=

{
 
 
 

 
 
 

[
 
 
 
 
 
 
 
0.8151 0.1849
0.3162 0.6838
0.6926 0.3074
0.4363 0.5637
0.2941 0.7059
0.9930 0.0070
0.6592 0.3408

]
 
 
 
 
 
 
 

𝑎 ∈ 𝒜, 𝑠 ∈ 𝑅,

[
 
 
 
 
 
 
0.7509 0.2491
0.6884 0.3116
0.1347 0.8653
0.6030 0.3970
0.4587 0.5413
0.3021 0.6979
0.7729 0.2271]

 
 
 
 
 
 

𝑎 ∈ 𝒜, 𝑠 ∈ 𝐸\𝑅 

 
To turn a profit is the investor's main goal. An intelligent investor will try to 

select the portfolio with the lowest risk that meets this objective. To do this, we 
construct a mean-variance diagram for each potential portfolio of a hazardous asset, 
with the points denoting the returns 𝒞 and risk 𝒱𝑎𝑟 (variance). The convergence 
of the utility is shown in Fig. 1, the variance is shown in Fig. 2, and the convergence 
of the functional is plotted in Fig. 3. The convergence of the norm is seen in Fig. 4. 
The convergence of the portfolio policies is seen in Figures 5 and 6. 

 

  

Figure 1. Utility value of the portfolio Figure 2. Variance value of the 

portfolio 
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Figure 3. Functional value of the Portfolio  Figure 4. Convergence of the norm 
 

  

Figure 5. Convergence of the policy x   Figure 6. Convergence of the policy y 
 

 

 

7. Conclusions 
 

We introduced a novel method for choosing a portfolio. For a collection of 

finite-number assets with discontinuous ergodic and transient return models, the aim 

of this work is to provide a novel mean-variance Markowitz portfolio solution. We 

provide a technique for portfolio selection using a penalty regularised Markov 

approach. We have demonstrated that one of the most widely used methods for 

addressing discrete ill-posed problems, Tikhonov's regularisation, is crucial in this 

situation for ensuring the convergence to a singular portfolio solution. For this 

system, we offered equivalent penalty regularised optimisation models and 

optimality specifications. We began by describing the qualities and conditions that 

permit the identification of a single solution for the penalty regularised portfolio. 

Finally, we demonstrated that the initial Markowitz portfolio optimisation problem 
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converges to a singular solution. The utility function also suffers penalties in addition 

to the restrictions. We calculated a stationary policy for the ergodic and the transient 

models, respectively. A numerical example exemplifies the novel strategy and 

proves the effectiveness of the technique. Future difficulties will be the expansion 

of the method to multivariate and multistage benchmarks and outcomes. 
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