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CROSS-EFFICIENCY EVALUATION UNDER NON-DECREASING 

RETURNS TO SCALE AND WEIGHT RESTRICTIONS 

 
          Abstract. Data Envelopment Analysis (DEA) is a powerful technique for 

estimating the efficiency of decision-making units (DMUs) by assigning appropriate 

weights. To enhance the discriminative capabilities of DEA in evaluating DMUs, the 

cross-efficiency evaluation method has been introduced, based on peer evaluations. 

However, a significant challenge in cross-efficiency analysis lies in the non-

uniqueness of optimal weights. In this paper, we propose a novel approach to cross-

efficiency evaluation, emphasising the selection of weighted profiles within non-

decreasing returns to scale (NDRS) production technologies. This approach 

introduces conditions to ensure non-zero weights and reduce weight disparities. 

Additionally, we present two optimisation models from benevolent and aggressive 

viewpoints as secondary goals. To illustrate the effectiveness of the new approach, 

we provide numerical examples and an empirical application involving the 

performance evaluation of 14 airline companies. 
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1. Introduction 

Data Envelopment Analysis (DEA), introduced by Charnes, Cooper, and 

Rhodes in 1978, stands as a powerful non-parametric tool for evaluating the 

efficiency of homogeneous production units. It leverages linear programming 

techniques to assess the efficiency of Decision-Making Units (DMUs) involved in 

multifaceted production processes that encompass various inputs and outputs. What 

sets DEA apart is its flexibility to accommodate diverse input-output combinations, 

along with its ability to account for varying levels of production efficiency – be it 

increasing or decreasing – relative to the scale and output levels. 

DEA's versatility finds widespread application today, with organizations 

across diverse sectors, such as banking, postal services, healthcare facilities, 

educational centers, power generation plants, and refineries, harnessing its analytical 

prowess (Cook et al., 2013; Yang, 2014; Oukil and Amin, 2015). 

Yet, within DEA's power lies a potential pitfall. DMUs are free to choose 

arbitrary weights for their inputs and outputs, enabling them to maximise their 

efficiency scores. Although this flexibility is advantageous, it also poses challenges 

in the realm of performance evaluations. To address these issues and ensure equitable 

assessments, weight restrictions have emerged as an integral component of DEA 

models. Podinovski and Bouzdine-Chameeve (2015) have played a pivotal role in 

pioneering and advancing this concept within the DEA framework. 

Expanding upon the DEA paradigm, the cross-efficiency model, introduced 

by Sexton et al. (1986) and further refined by Doyle and Green in 1994, introduces 

a transformative shift from self-evaluation to peer-evaluation. This innovation has 

garnered considerable acclaim, offering a solution to one of DEA's inherent 

challenges: the presence of multiple efficient DMUs. In the cross-efficiency model, 

a second computational stage comes into play. Here, each unit shares its optimal 

weights, which are then used to assess the efficiency of other units. This approach 

levels the playing field, making it easier to rank all units within the system. For a 

more in-depth exploration of the practical applications of cross-efficiency, consider 

the valuable insights provided by Podinovski's work in 2016 and the recent 

contribution of Kiaei et al. (2023). 

However, the use of DEA linear programs introduces a potential stumbling 

block – the inevitability of alternate optimal solutions. This can leave the cross-

efficiency scores derived from the original DEA method somewhat ambiguous. 

Depending on the choice of these alternate solutions, a DMU's cross-efficiency 

rating may improve, albeit at the cost of potentially inflating the ratings of other 

DMUs, a concern voiced by Doyle and Green (1994) and Sexton et al. (1986). 

To mitigate the issue of non-unique DEA solutions, Sexton et al. (1986) and 

Doyle and Green (1994) introduced the concept of secondary goals. Additional 

methods for addressing non-uniqueness in DEA optimal weights within the cross-

efficiency context include the use of constant units (Cook & Zhu, 2014) and cross-

efficiency evaluation based on Pareto's improvement. A host of researchers have 
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further explored means to minimise the impact of non-uniqueness in DEA optimal 

weights in cross-efficiency assessments, exemplified in the works of Jahanshahloo 

et al., 2011; Dimitrov and Sutton, 2010; Guo et al.,2013; Wu et al., 2016; Liang et 

al., 2008; Rodder and Reucher,2011, 2012; Moeini et al., 2015, and others. 

Weight constraints also emerge as vital components in cross-efficiency 

when considering the concept of peer evaluation within secondary goals. Orkcu et 

al. (2011) proposed a method aimed at exploring alternative optimal solutions to curb 

unusual input and output weights. Wang and Chin (2010a) introduced a neutral 

model to select optimal weights, while Jahanshahloo et al. (2011) built upon the 

concept of symmetric weights, first introduced by Dimitrov and Sutton (2010), as 

part of a secondary goal approach. Ruiz and Sirvent (2010, 2011) further enriched 

the field by suggesting various weight-restriction methods as secondary goals within 

the cross-efficiency framework. Guo et al. (2013) introduced a novel cumulative 

method for cross-efficiency, which incorporates the preferences of decision makers. 

Jahanshahloo et al. (2014) proposed a secondary goal model to determine 

appropriate weights for DMUs, and Wu et al. (2015) explored a max-min model 

within the DEA framework to select optimal weights based on specific criteria. 

It should be noted that most DEA studies on cross-efficiency, including 

those mentioned above, predominantly adopt the assumption of Constant Returns to 

Scale (CRS) in production technology. This preference arises because Variable 

Returns to Scale (VRS) models can yield negative cross-efficiency scores when 

assessing unit performance. Nevertheless, Lim and Zhu (2014) have introduced a 

novel approach for cross-efficiency in VRS cases, grounded in a geometric 

interpretation of both CRS and VRS scores. These novel approaches, while 

promising, present challenges in their practical implementation, warranting further 

development for real-world use. 

This paper revolves around two pivotal concepts in cross-efficiency 

evaluation. First, it delves into the imposition of weight constraints on profile weight 

selection to eliminate unusual weights and ensure the presence of non-zero, more 

sensible weight values. Second, it explores the adoption of a more realistic 

representation of technology in real-world applications, known as non-decreasing 

returns to scale (NDRS), in contrast to the commonly used Constant Returns to Scale 

(CRS) assumption. Furthermore, given the persistent challenge of multiple weight 

solutions, we delve into the application of secondary goal models within this context, 

introducing benevolent and aggressive models under the NDRS framework. 

The structure of the remainder of this paper is as follows: Section 2 offers 

an in-depth exploration of preliminary concepts in cross-efficiency evaluation, 

particularly within the framework of NDRS. Section 3 is dedicated to the 

presentation of novel benevolent and aggressive models designed for cross-

efficiency assessment. Section 4 provides a concrete example and discusses the 

empirical application of the newly proposed models within the context of the airline 

industry. Section 5 concludes the paper, summarising its key findings and 

contributions. 
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2.  Preliminaries 

This section provides a concise introduction to the Non-Decreasing Returns 

to Scale (NDRS) model in the context of cross-efficiency evaluation. Through a 

simple numerical example, we illustrate the presence of multiple optimal solutions 

in cross-efficiency assessment when operating under the NDRS assumption. 

Consider a scenario where there exist 𝑛 production units awaiting 

evaluation. Each 𝐷𝑀𝑈𝑗  (where 𝑗 ranges from 1 to 𝑛) generates 𝑠 outputs (denoted 

as 𝑦𝑟𝑗, where 𝑟 spans from 1 to 𝑠) while utilising 𝑚 inputs (represented as 𝑥𝑖𝑗, with 

𝑖 ranging from 1 to 𝑚). We adopt the NDRS output-oriented DEA model in 

multiplier mode, which can be formulated as the following optimisation model: 

max 𝐸𝑑𝑑 = ∑ 𝑢𝑟𝑑𝑦𝑟𝑗
𝑠
𝑟=1 + 𝑢0  

Subject to 

                     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑 = 1,𝑚
𝑖=1                                                                                            (1)  

∑ 𝑢𝑟𝑑𝑦𝑟𝑗 −𝑠
𝑟=1 ∑ 𝑣𝑖𝑑𝑥𝑖𝑗

𝑚
𝑖=1 + 𝑢0 ≤ 0,      𝑗 = 1, … , 𝑛,  

                    ∀𝑟, ∀𝑖: 𝑢𝑟𝑑, 𝑣𝑖𝑑 ≥ 0,  𝑢0 ≥0. 

 

In this model, the non-negative variable 𝑢0 represents the NDRS 

technology, while 𝑣𝑖 and 𝑢𝑟 denote the weights assigned to the ith input and the rth 

output, respectively. To calculate the cross-efficiency scores for 𝐷𝑀𝑈𝑗, we consider 

the following ratio, in which 𝐷𝑀𝑈𝑗 is evaluated using the optimal weights of 𝐷𝑀𝑈𝑑: 

 

𝐸𝑑𝑗 =
∑ 𝑢∗

𝑟𝑑𝑦𝑟𝑗 + 𝑢0
𝑠
𝑟=1

∑ 𝑣∗
𝑖𝑑𝑥𝑖𝑗

𝑚
𝑖=1

  .   𝑗 = 1.2. … . 𝑛                                                                 (2) 

 

where * denotes an optimal solution for Model (1). It is important to note that under 

the Non-Decreasing Returns to Scale (NDRS) assumption, 𝐸𝑑𝑗 values are non-

negative. The cross-efficiency score for 𝐷𝑀𝑈𝑗 is defined as the simple average of 

all 𝐸𝑑𝑗 values for 𝑑 =  1, 2, … , 𝑛, as shown in Eq. (3). 

   𝐸̅̅ ̅̅
𝑗 =

1

𝑛
∑ 𝐸𝑑𝑗

𝑛
𝑑=1                                                                                                               (3)  

The computation of cross-efficiency scores presents a formidable challenge 

due to the proliferation of multiple optimal weight solutions stemming from Model 

(1) when assessing 𝐷𝑀𝑈𝑑. This intricacy frequently engenders ambiguity in the 

resulting cross-efficiency values, leading to instances where their definition becomes 

elusive. Furthermore, the process of computing these optimal weights may 

sporadically yield values of zero or, more problematically, values deemed 

unacceptable. Such occurrences add an additional layer of complexity to the 

assessment procedure. Notably, the challenge is further compounded by the vast 

range of variation observed in optimal weight solutions. Navigating this extensive 

spectrum to identify a suitable value becomes a Herculean and intricate endeavour. 
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These inherent intricacies in the evaluation process underscore the compelling need 

for robust methodologies capable of effectively addressing these issues. 

Example 1. To illustrate these complexities, consider a dataset comprising 

six DMUs, each characterised by two inputs and two outputs as detailed in Table 1. 

Notably, the table reveals the existence of two alternative sets of optimal weights in 

the last five columns, computed as part of the DMU evaluation process within Model 

(1). This example vividly demonstrates the presence of multiple solutions, 

emphasising the importance of a systematic approach to tackle the intricate 

landscape of optimal weights and their impact on cross-efficiency assessments. 

 

Table 1. Data and Multiple Optimal Weights from Model (1) 

 

 

Inputs 
 

Outputs 
 

Alternative optimal weights 

DMU x1 x 2 y 1 y 2 u* 0 v* 1 v* 2 u* 1 u* 2 

A 1.5 0.2 1.4 0.35 
0.433333 

(1) 

0.666667 

(0.5333) 

0 0.379006 0.103024 

(1) (0) (0) 

B 4 0.7 1.4 2.1 
0 

(0.175) 

0.137615 

(0.075) 

0.642202 0.144168 0.380079 

(1) (0) (0.39286) 

C 3.2 1.2 4.2 1.05 
0.0506522 

(0.2031) 

0.3125 

(0.3125) 

0 0.212739 0.053185 

(0) (0.12612) (0.2545) 

D 5.2 2 2.8 4.2 
0.0350953 

(0) 

0.192308 

(0.19231) 

0 0.096875 0.165156 

(0) (0) (0.23809) 

E 3.5 1.2 1.9 2.5 
0.2470046 

(0) 

0.285714 

(0.2857) 

0 0.067149 0.250165 

(0) (0) (0.34637) 

F 3.2 0.7 1.4 1.5 
0.2483801 

(0.2191) 

0.194384 

(0.0938) 

0.539957 0 0.431965 

(1) (0) (0.34729) 

 

Table 2 presents the cross-efficiency scores, derived from the optimal 

weight solutions generated by Model (1), and these scores are presented in 

the bottom row of the table. The optimisation tasks associated with Model (1) 

were conducted using Lingo 18.0 software, leveraging the computational 

capabilities of a laptop equipped with an 11th Gen Intel® Core™ i5 processor 

operating at a clock speed of 2.40 GHz. 
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Table 2. Cross-Efficiency Scores with Non-Decreasing Returns to Scale 
 

DMU A B C D E F 

A 

 

B 

1 

(1) 

1 

(1) 

0.4426 

(0.3529) 

1 

(1) 

1 

(0.3440) 

0.8296 

(0.4080) 

0.5559 

(0.2095) 

1 

(0.7636) 

0.6047 

(0.3261) 

0.9775 

(0.7912) 

0.5243 

(0.4155) 

0.8675 

(0.8131) 

C 

 

D 

0.7832 

(1) 

0.7922 

(0.2889) 

0.3681 

(0.7313) 

0.6728 

(0.650) 

1 

(1) 

1 

(0.4063) 

0.5374 

(1) 

1 

(1) 

0.5374 

(0.9864) 

0.93904 

(0.8844) 

0.4283 

(0.7614) 

0.6800 

(0.5804) 

E 

 

F 

1 

(0.2829) 

1 

(1) 

0.7581 

(0.6365) 

1 

(0.8822) 

1 

(0.3978) 

0.5527 

(0.3892) 

0.7581 

(0.9792) 

0.9866 

(0.6744) 

0.8659 

(0.8659) 

1 

(0.7115) 

1 

(0.5683) 

0.8963 

(0.8963) 

CROSS 

EFFICIENCY 

0.9292 

(0.8648) 

0.7069 

(0.7319) 

0.8970 

(0.5313) 

0.8063 

(0.7746) 

0.8208 

(0.7833) 

0.7327 

(0.7080) 

 

As demonstrated in Table 1, the presence of alternative weights leads to non-

uniqueness in the computed scores, resulting in the emergence of zero values within 

the optimal weight solutions. Additionally, the computed weights exhibit substantial 

dissimilarity. To illustrate this point, consider the output weight values obtained for 

Unit C: (𝑢1
∗  =  0.212739 and 𝑢2

∗  =  0.053185), contrasted with those for Unit D: 

(𝑢1
∗  =  0.096875 and 𝑢2

∗  =  0.165156). These values indicate a marked disparity 

in preference between the first and second outputs. To establish a definitive ranking 

order of DMUs and effectively discriminate among efficient units, Doyle and Green 

(1994) and Sexton et al. (1986) introduced and refined the concept of "secondary 

goals" within cross-efficiency evaluation. The objective of these secondary goal 

models is to mitigate the proliferation of multiple optimal weights. In this context, 

they introduced aggressive and benevolent models, where secondary goals either 

minimise or maximise the cross-efficiency scores of the other peer DMUs. The 

formulation of their introduced models can be expressed as follows: 

𝑚𝑖𝑛
𝑢,𝑣

𝑚𝑎𝑥
𝑗≠𝑑

{
∑ 𝑢𝑟𝑦𝑟𝑗+𝑢0

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

}  𝑜𝑟 𝑚𝑎𝑥
𝑢,𝑣

𝑚𝑖𝑛
𝑗≠𝑑

{
∑ 𝑢𝑟𝑦𝑟𝑗+𝑢0

𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

}  

𝑠. 𝑡     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1 = 1                                                                                                       (4)  

∑ urdyrj + u0 = θd
∗s

r=1   
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∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 + 𝑢0

𝑚
𝑖=1 ≤ 0                𝑗 = 1, … , 𝑛  

∀𝑟, ∀𝑖: 𝑢𝑟, 𝑣𝑖 ≥ 0, 𝑢0 ≥ 0. 

where 𝜃𝑑
∗  represents the efficiency score of 𝐷𝑀𝑈𝑑 under the Non-Decreasing 

Returns to Scale (NDRS) assumption obtained from Model (1). 

3. Non-Decreasing Return to Scale Cross-Efficiency with Weight 

Restrictions and New Secondary Goals 

In this section, we delve into the imposition of weight constraints when 

selecting weight profiles. Building upon the groundwork laid by Ruiz and Sirvent 

(2010) in the realm of weight restrictions, we introduce a novel approach to cross-

efficiency evaluation. To achieve this, we outline a two-step procedure, wherein a 

fresh secondary goal is proposed for Non-Decreasing Returns to Scale (NDRS) 

cross-efficiency assessment, integrated with weight restrictions aimed at mitigating 

weight disparities. 

Step 1: In the initial phase, we employ the Weight-Restricted Model (5). 

This model is designed to circumvent the occurrence of zero weights and excessive 

variations among the multiple optimal weight solutions, thus promoting more stable 

weight profiles. 

𝑚𝑎𝑥     𝜑𝑑 

𝑠. 𝑡     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1 = 1                                                                                                       (5)  

∑ 𝑢𝑟𝑑𝑦𝑟𝑗 + 𝑢0 = 𝜃∗𝑠
𝑟=1   

∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 + 𝑢0

𝑚
𝑖=1 ≤ 0  

𝑧𝑖 ≤ 𝑣𝑖
𝑑 ≤ ℎ𝑖              𝑖 = 1, … , 𝑚  

𝑧𝑜 ≤ 𝑢𝑟
𝑑 ≤ ℎ𝑜             𝑟 = 1, … , 𝑠 

𝑧𝑖

ℎ𝑖
≥ 𝜑𝑑 , 

𝑧𝑜

ℎ𝑜
≥ 𝜑𝑑, 

∀𝑖: 𝑧𝑖, ℎ𝑖 ≥ 0, 𝑧𝑜, ℎ𝑜 ≥ 0 
 

In this optimisation model, 𝜃𝑑
∗  represents the NDRS efficiency score of 

𝐷𝑀𝑈𝑑, as obtained from Model (1). The weight constraints implemented in Model 

(5) are introduced to restrict both the input and output multipliers, ensuring that they 

fall within the prescribed bounds of 𝑧𝑖, ℎ𝑖, 𝑧𝑜, and ℎ𝑜, respectively. It's worth noting 

that 𝜑𝑑 ≤ 𝑀𝑖𝑛 {
𝑧𝑖

ℎ𝑖
 ,

𝑧𝑜

ℎ𝑜
} ≤ 1 , and any value exceeding φ signifies that the ratios 

𝑧𝑖

ℎ𝑖
 

and 
𝑧𝑜

ℎ𝑜
 are approaching unity. Essentially, this configuration ensures that the 
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computed lower and upper bounds are as close as possible, effectively mitigating 

disparities in optimal weights. 

Additionally, 𝜑𝑑 serves as an indicator of the lack of correlation between 

the coefficients of the optimal solutions for 𝐷𝑀𝑈𝑑 's input and output weights. For 

instance, a 𝜑𝑑 value of 0.4 implies that, in the performance assessment of 𝐷𝑀𝑈𝑑, 

the lowest value for any input (or output) weight cannot be less than 40% of its 

highest value. 

Step 2: Subsequently, as part of the second step, we explore new benevolent 

and aggressive perspectives to formulate a bi-objective optimisation programming 

model. These models are tailored for the NDRS scenario and are designed to 

circumvent the emergence of zero weights and substantial weight disparities. 

max
𝑢,𝑣

min
𝑗≠𝑑

{
∑ 𝑢𝑟𝑦𝑟𝑗 + 𝑢0𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

}  𝑜𝑟 min
𝑢,𝑣

max
𝑗≠𝑑

{
∑ 𝑢𝑟𝑦𝑟𝑗 + 𝑢0𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

} 

𝑠. 𝑡     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1 = 1                                                                                                      (6)  

∑ 𝑢𝑟𝑑𝑦𝑟𝑗 + 𝑢0 = 𝜃𝑑
∗𝑠

𝑟=1   

∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 + 𝑢0

𝑚
𝑖=1 ≤ 0      , 𝑗 = 1, … , 𝑛  

𝑧𝑖
∗ ≤ 𝑣𝑖

𝑑 ≤ ℎ𝑖
∗             𝑖 = 1, … , 𝑚 

𝑧𝑜
∗ ≤ 𝑢𝑟

𝑑 ≤ ℎ𝑜
∗              𝑟 = 1, … , 𝑠 

∀𝑖: 𝑧𝑖 ≥ 0, 𝑧𝑜, 𝑢0 ≥ 0. 

It's essential to note that 𝑧𝑖
∗ , ℎ𝑖

∗, 𝑧𝑜
∗, and ℎ𝑜

∗  represent the computed optimal 

solutions from the first stage, while 𝜃𝑑
∗  signifies the efficiency score obtained through 

Model (1). 

A crucial observation is that Model (6) remains both feasible and bounded 

under all circumstances. It's worth emphasising that, in light of the acquired optimal 

solution, any 𝐷𝑀𝑈𝑗  with a cross-efficiency score of 
∑ uryrj+u0

s
r=1

∑ vixij
m
i=1

 less than 1 is 

deemed inefficient, whereas those with a score of 
∑ uryrj+u0

s
r=1

∑ vixij
m
i=1

 equal to 1 are 

classified as efficient. 

From a computational perspective, we can introduce non-negative slack 

variables 𝑠𝑗, transforming the inequality constraints in Model (6) into equality 

constraints: 

∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 + 𝑢0

𝑚
𝑖=1 + 𝑠𝑗 = 0   ,   𝑠𝑗 ≥ 0, 𝑗 = 1, … , 𝑛          (7)  

Alternatively, we can express this as:  

−(∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 + 𝑢0) + ∑ 𝑣𝑖𝑑𝑥𝑖𝑗

𝑚
𝑖=1 = 𝑠𝑗      , 𝑗 = 1, … , 𝑛.     
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Notably, for efficient 𝐷𝑀𝑈𝑗, an optimal weight profile exists in which 

∑ 𝑢𝑟𝑑
∗𝑠

𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑
∗ 𝑥𝑖𝑗 + 𝑢0

∗𝑚
𝑖=1 = 0, or equivalently, 𝑠𝑗

∗  =  0. Conversely, for 

inefficient 𝐷𝑀𝑈𝑗  not situated on the efficient frontier, we have ∑ 𝑢𝑟𝑑
∗𝑠

𝑟=1 𝑦𝑟𝑗 −

∑ 𝑣𝑖𝑑 
∗ 𝑥𝑖𝑗 + 𝑢0

∗𝑚
𝑖=1 < 0 in any optimal solution, corresponding to 𝑠𝑗

∗ >  0. Therefore, 

the efficiency score obtained relates inversely to the distance of its coordinates from 

the efficient frontier. Consequently, we can express this relationship as: 

min
𝑗≠𝑑

∑ 𝑢𝑟𝑦𝑟𝑗+𝑢0
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≡ max
𝑗≠𝑑

𝑠𝑗                                                                                               (8)  

This equivalence implies that the minimisation of the efficiency ratio 

 
∑ uryrj+u0

s
r=1

∑ vixij
m
i=1

 as the objective function is synonymous with the maximisation of 𝑠𝑗 

for each evaluated 𝐷𝑀𝑈𝑗 . Similarly, in a comparable manner: 

max
𝑗≠𝑑

∑ 𝑢𝑟𝑦𝑟𝑗+𝑢0
𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑚
𝑖=1

≡ min
𝑗≠𝑑

𝑠𝑗                                                                                                (9)  

Now, when considering the benevolent perspective, the corresponding 

model can be presented as follows: 

min
𝑢,𝑣

max
𝑗≠𝑑

𝑠𝑗 

𝑠. 𝑡     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1 = 1                                                                                                     (10)  

∑ 𝑢𝑟𝑑𝑦𝑟𝑗 + 𝑢0 = 𝜃𝑑
∗𝑠

𝑟=1   

∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 + 𝑢0

𝑚
𝑖=1 + 𝑠𝑗 = 0            , 𝑗 = 1, … , 𝑛  

𝑧𝑖
∗ ≤ 𝑣𝑖

𝑑 ≤ ℎ𝑖
∗             𝑖 = 1, … , 𝑚 

𝑧𝑜
∗ ≤ 𝑢𝑟

𝑑 ≤ ℎ𝑜
∗              𝑟 = 1, … , 𝑠 

∀𝑖: 𝑧𝑖 ≥ 0, 𝑧𝑜, 𝑢0 ≥ 0. 

Let max
𝑗≠𝑑

{𝑠𝑗} = 𝛼. In this case, the previously described minimax model can 

be equivalently reformulated as the following linear programming problem, which 

is considerably more straightforward to solve: 

min
𝑢,𝑣,𝑠

𝛼 

𝑠. 𝑡     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1 = 1                                                                                                     (11)  

∑ 𝑢𝑟𝑑𝑦𝑟𝑗 + 𝑢0 = 𝜃𝑑
∗𝑠

𝑟=1   

∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 + 𝑢0

𝑚
𝑖=1 + 𝑠𝑗 = 0            , 𝑗 = 1, … , 𝑛  

𝛼 ≥ 𝑠𝑗                        𝑗 = 1, … , 𝑛 

𝑧𝑖
∗ ≤ 𝑣𝑖

𝑑 ≤ ℎ𝑖
∗             𝑖 = 1, … , 𝑚 

𝑧𝑜
∗ ≤ 𝑢𝑟

𝑑 ≤ ℎ𝑜
∗              𝑟 = 1, … , 𝑠 

𝑧𝑜, 𝑧𝑖, 𝑢0 ≥ 0. 
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The benevolent perspective is integrated into Model (12). 

max
𝑢,𝑣

min
𝑗≠𝑑

𝑠𝑗 

𝑠. 𝑡     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1 = 1                                                                                                     (12)  

∑ 𝑢𝑟𝑑𝑦𝑟𝑗 + 𝑢0 = 𝜃𝑑
∗𝑠

𝑟=1   

∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 + 𝑢0

𝑚
𝑖=1 + 𝑠𝑗 = 0           , 𝑗 = 1, … , 𝑛  

𝑧𝑖
∗ ≤ 𝑣𝑖

𝑑 ≤ ℎ𝑖
∗             𝑖 = 1, … , 𝑚 

𝑧𝑜
∗ ≤ 𝑢𝑟

𝑑 ≤ ℎ𝑜
∗              𝑟 = 1, … , 𝑠 

𝑧𝑜, 𝑧𝑖, 𝑢0 ≥ 0 

 

When we substitute min
𝑗≠𝑑

{𝑠𝑗} = 𝛽, we can proceed to solve the following 

linear model: 

 

max
𝑢,𝑣

𝛽 

𝑠. 𝑡     ∑ 𝑣𝑖𝑑𝑥𝑖𝑑
𝑚
𝑖=1 = 1                                                                                                    (13)  

∑ 𝑢𝑟𝑑𝑦𝑟𝑗 + 𝑢0 = 𝜃𝑑
∗𝑠

𝑟=1   

∑ 𝑢𝑟𝑑
𝑠
𝑟=1 𝑦𝑟𝑗 − ∑ 𝑣𝑖𝑑𝑥𝑖𝑗 + 𝑢0

𝑚
𝑖=1 + 𝑠𝑗 = 0            , 𝑗 = 1, … , 𝑛  

𝛽 ≤ 𝑠𝑗                           𝑗 = 1, … , 𝑛 

𝑧𝑖
∗ ≤ 𝑣𝑖

𝑑 ≤ ℎ𝑖
∗             𝑖 = 1, … , 𝑚 

𝑧𝑜
∗ ≤ 𝑢𝑟

𝑑 ≤ ℎ𝑜
∗              𝑟 = 1, … , 𝑠 

𝑧𝑜, 𝑧𝑖, 𝑢0 ≥ 0. 

To illustrate these concepts, we apply both benevolent and aggressive 

viewpoints to the data presented in Table 1. In the initial step, using Model (5), we 

establish the lower and upper bounds for both inputs and outputs. The results of this 

step are summarised in Table 3. The primary objective here is to mitigate excessive 

weight dispersion. The lower values for φ signify a broader weight range, while 

higher values indicate a more constrained weight range. 
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Table 3. Lower and Upper Bounds for Input and Output Weights 

 

 

 

 

 

 

In the second step, we utilise the weight ranges outlined in Table 3 as a basis 

to compute the optimal weights and the value of α within the aggressive viewpoint. 

This computation is accomplished by solving the linear optimisation Model (11). 

The outcomes of this computation are presented in Table 4. 

Table 4. Computed Weights in the Aggressive Case 

 

As a result, unique cross-efficiency scores can be derived from the computed 

weights. It's important to emphasise that the diagonal elements in the cross-

efficiency matrix represent the NDRS efficiency scores of the units obtained from 

Model (1). 

 

Table 5. Cross-Efficiency Scores in the Aggressive Viewpoint 

 

 

 

 

DMU 𝝋 𝒖𝟎
∗  𝒛𝒊 𝒉𝒊 𝒛𝒐 𝒉𝒐 

A 1 0.2058824 0.4 0.625 0.4 0.5 

B 0.257775 0.07034215 0.148908 0.577668 0.097381 0.377774 

C 1 0 0.227273 0.227274 0.190476 0.190477 

D 0.61256 0 0.095338 0.155639 0.103558 0.169056 

E 0.242561 0.2288655 0.063982 0.263778 0.063982 0.260442 

F 0.114602 0.1754169 0.0887 0.774397 0.0494 0.430899 

DMU 𝜶 𝒖𝟎
∗  𝒗𝟏

∗  𝒗𝟐
∗  𝒖𝟏

∗  𝒖𝟐
∗  

A 0.8642241 0.265000 0.608621 0.435345 0.400000 0.500000 

B 0.2937 0.070000 0.148908 0.577667 0.097380 0.377774 

C 0.401 0.000000 0.227273 0.227273 0.190476 0.190476 

D 0.189 0.000000 0.155639 0.095338 0.103558 0.169057 

E 0.2333196 0.155188 0.195276 0.263778 0.075511 0.224537 

F 0.4555225 0.174517 0.185674 0.579775 0.049382 0.430899 

DMU A B C D E F 

A 1.0000 0.6489 1.0000 0.7986 0.7967 0.6634 

B 1.0000 1.0000 0.7489 1.0000 0.9880 0.8779 

C 0.8627 0.6241 1.0000 0.8148 0.7846 0.6232 

D 0.8084 0.7254 1.0000 1.0000 0.9397 0.7057 

E 0.6578 0.6582 0.6841 0.9068 0.8600 0.6389 

F 1.0000 1.0000 0.6469 0.9988 1.0000 0.8900 

Cross 

Efficiency 

0.8882 0.7761 0.8466 0.9198 0.8948 0.7332 
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The results of the benevolent case, computed using Model (12), are 

presented in Table 6. In this model, β serves a similar role as φ in Model (5). For 

instance, 𝐷𝑀𝑈𝐶 and 𝐷𝑀𝑈𝐹 exhibit β values of 0.623 and 0.649, respectively, 

indicating a greater dispersion of weights compared to 𝐷𝑀𝑈𝐴, which has a β value 

of 0.865. 

Table 6. Computed Weights in the Benevolent Case 

DMU 𝜷 𝒖𝟎
∗  𝒗𝟏

∗  𝒗𝟐
∗  𝒖𝟏

∗  𝒖𝟐
∗  

A 0.865 0.205882 0.588237 0.588230 0.453782 0.453782 

B 0.749 0.070342 0.148908 0.577668 0.097381 0.377774 

C 0.623 0.000000 0.227273 0.227273 0.190476 0.190476 

D 0.705 0.000000 0.155639 0.095338 0.103556 0.169056 

E 0.743 0.087328 0.195276 0.263778 0.0755111 0.260144 

F 0.649 0.174517 0.185674 0.579775 0.049382 0.430899 

Indeed, it is important to highlight that in both scenarios, both aggressive 

and benevolent, the new approach successfully avoids the selection of zero weights 

for both inputs and outputs. The computed cross-efficiency matrix and cross-

efficiency scores in the benevolent case are presented in Table 7. 

 

Table 7. Cross-Efficiency Scores in the Benevolent Viewpoint 

DMU A B C D E F 

A 1.0000 0.6489 1.0000 0.7986 0.7967 0.6634 

B 1.0000 1.0000 0.7489 1.0000 0.9880 0.8779 

C 0.8627 0.6241 1.0000 0.8148 0.7846 0.6232 

D 0.8084 0.7254 1.0000 1.0000 0.9397 0.7057 

E 0.9821 0.7584 0.7522 0.8488 0.8600 0.7383 

F 1.0000 1.0000 0.6469 0.9988 1.0000 0.8900 

Cross 

Efficiency 

0.9422 0.7928 0.8580 0.9102 0.8948 0.7498 

Additionally, it is worth observing that the cross-efficiency value for any 

unit in the benevolent case is always greater than or equal to the corresponding value 

in the aggressive case. Naturally, each case yields its own unique ranking order for 

the units. For instance, in the aggressive case, 𝐷𝑀𝑈𝐷 attains the highest rank, 

whereas in the benevolent scenario, 𝐷𝑀𝑈𝐴 secures the top position in the ranking 

order. 
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4. Illustrative application 

In today's competitive market landscape, the survival and success of 

businesses hinge on their ability to ensure customer satisfaction. This imperative 

becomes even more pronounced as competitive pressures continue to intensify. 

Consider the airline industry, where effective operations are essential for success. In 

this context, the management of customer needs and preferences takes on paramount 

significance. Prioritising service quality and aligning it with customer expectations, 

as assessed through their satisfaction with the services provided, can play a pivotal 

role in the resilience and success of passenger airlines operating in a highly dynamic 

and turbulent market (Tofallis, 1997). 

In this section, we employ the new proposed approach to illustrate its 

effectiveness by considering a dataset comprising 14 major international passenger 

airlines from the year 1990. This dataset encompasses three inputs and two outputs, 

and the reference data have been sourced from company annual reports, as published 

in IATA (Tofallis, 1997). 

 

 Inputs:  

x1: Aircraft capacity in ton-kilometers 

x2: Operating cost 

x3: Non-flight assets, include reservation systems, facilities, and current 

assets. 

 
 Outputs: 

y1: Passenger-kilometers 

y2: Non-passenger revenue 

 

Table 8 provides the input and output data, along with the efficiency scores 

computed under the NDRS assumption. In this evaluation, units 7, 10, 11, 12, and 

13 are identified as efficient.  

Table 8. Input/Output Data for 14 Passenger Airlines 

DMU 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚𝟏 𝒚𝟐 efficiency  

1 5723 3239 2003 26677 697 0.8932 

2 5895 4225 4557 3081 539 0.778 

3 24099 9560 6267 124055 1266 0.9475184 

4 13565 7499 3213 64734 1563 0.959 

5 5183 1880 783 23604 513 1 
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DMU 𝒙𝟏 𝒙𝟐 𝒙𝟑 𝒚𝟏 𝒚𝟐 efficiency  

6 19080 8032 3272 95011 572 0.97 

7 4603 3457 2360 22112 969 1 

8 12097 6779 6474 52363 2001 0.858 

9 6587 3341 3581 26504 1297 0.97 

10 5654 1878 1916 19277 972 1 

11 12559 8098 3310 41925 3398 1 

12 5728 2481 2254 27754 982 1 

13 4715 1792 2485 31332 543 1 

14 22793 9874 4145 122528 1404 1 

 

Table 9 lists the values of φ, α, and β, along with the benevolent and aggressive 

cross-efficiency scores for the 14 passenger airlines under the NDRS assumption. 

These scores are presented in two different scenarios: with and without weight 

control. 

Table 9. Benevolent and Aggressive Scores and Rankings  

for 14 Passenger Airlines 

 

The comparison between the cross-efficiency values in both aggressive and 

benevolent modes, without weight control, reveals relatively small differences. 

However, some notable distinctions are evident, as exemplified by DMU_3. 

Aggressive and Benevolent score 

without weight control 

Aggressive and Benevolent score with weight control  

DMU Aggressive 

score 

Benevolent 

score 
𝜑 𝛼 Aggressive 

score 
𝛽 Benevolent 

score 

1 0.6943 0.7906 0.000285 1.000000 0.755 0.303060 0.7575 

2 0.2371 0.2413 0.023983 1.000000 0.2367 0.224215 0.2379 

3 0.482 0.7533 0.038609 0.475203 0.7296 0.047184 0.7304 

4 0.572 0.8088 0.006265 0.530454 0.75 0.000433 0.7513 

5 0.9453 0.954 1 1.000000 0.9244 0.328284 0.9274 

6 0.5291 0.7474 0.046091 1.000000 0.7298 0.033606 0.7307 

7 0.7491 0.8571 0.048076 1.000000 0.7941 0.259322 0.7969 

8 0.4964 0.7097 0.008932 0.615680 0.6545 0.274520 0.6556 

9 0.6392 0.7689 0.014908 1.000000 0.7168 0.401931 0.7201 

10 0.7718 0.8075 0.040625 1.000000 0.775 0.173061 0.7770 

11 0.6231 0.8811 0.080436 0.558041 0.7596 0.172363 0.7609 

12 0.776 0.9079 0.039736 1.000000 0.8663 0.202492 0.8684 

13 0.854 0.9663 1 1.000000 0.9629 0.069579 0.9652 

14 0.5625 0.8446 0.754313 0.395271 0.8087 0.067428 0.8094 
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Conversely, with the imposition of weight control, the computed results demonstrate 

that cross-efficiency scores for both the aggressive and benevolent modes become 

significantly closer for each unit. For instance, consider DMU11; in the aggressive 

(benevolent) models without weight control data (Table 9), the scores are 0.6231 

(0.8811), respectively. In contrast, the aggressive (benevolent) models with weight 

control data (Table 9) yield scores of 0.7596 (0.7609) for the same DMU, 

respectively. This indicates that, with weight control data, the potential cross-

efficiency scores for this DMU fall within the range of [0.7596, 0.7609], whereas 

without weight control data, they span a wider interval of [0.6231, 0.8811]. 

The results also reveal distinct rank orders for the units when weight control 

is imposed. The ranking outcomes in the aggressive cross-efficiency method for this 

dataset are as follows. 

Without weight control: 

 𝐷𝑀𝑈13 ≻ 𝐷𝑀𝑈5 ≻ 𝐷𝑀𝑈12 ≻ 𝐷𝑀𝑈11 ≻ 𝐷𝑀𝑈7 ≻ 𝐷𝑀𝑈14 ≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈10

≻ 𝐷𝑀𝑈1 ≻ 𝐷𝑀𝑈9 ≻ 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈6 ≻ 𝐷𝑀𝑈8 ≻ 𝐷𝑀𝑈2 

With weight control: 

𝐷𝑀𝑈13 ≻ 𝐷𝑀𝑈5 ≻ 𝐷𝑀𝑈12 ≻ 𝐷𝑀𝑈14 ≻ 𝐷𝑀𝑈7 ≻ 𝐷𝑀𝑈10 ≻ 𝐷𝑀𝑈11 ≻ 𝐷𝑀𝑈1

≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈6 ≻ 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈9 ≻ 𝐷𝑀𝑈8 ≻ 𝐷𝑀𝑈2 

It is important to note that approximately 72% of the units experience a 

change in their ranking when weight control is introduced in the aggressive mode. 

For instance, 𝐷𝑀𝑈5 achieves the second rank without weight control, while it 

occupies the first position in terms of performance with weight control in the cross-

efficiency evaluation. Only for 𝐷𝑀𝑈12, 𝐷𝑀𝑈7, 𝐷𝑀𝑈11, and 𝐷𝑀𝑈2, the ranking 

remains consistent between the aggressive mode with and without weight control. 

A similar comparison was conducted in the benevolent mode, both with and 

without weight control. Based on the results presented in Table 9: 

Without weight control: 

𝐷𝑀𝑈5 ≻ 𝐷𝑀𝑈13 ≻ 𝐷𝑀𝑈12 ≻ 𝐷𝑀𝑈10 ≻ 𝐷𝑀𝑈7 ≻ 𝐷𝑀𝑈1 ≻ 𝐷𝑀𝑈9 ≻ 𝐷𝑀𝑈11

≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈14 ≻ 𝐷𝑀𝑈6 ≻ 𝐷𝑀𝑈8 ≻ 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈2 

With weight control: 

𝐷𝑀𝑈13 ≻ 𝐷𝑀𝑈5 ≻ 𝐷𝑀𝑈12 ≻ 𝐷𝑀𝑈14 ≻ 𝐷𝑀𝑈7 ≻ 𝐷𝑀𝑈10 ≻ 𝐷𝑀𝑈11 ≻ 𝐷𝑀𝑈1

≻ 𝐷𝑀𝑈4 ≻ 𝐷𝑀𝑈6 ≻ 𝐷𝑀𝑈3 ≻ 𝐷𝑀𝑈9 ≻ 𝐷𝑀𝑈8 ≻ 𝐷𝑀𝑈2 

It is evident that the ranking undergoes changes when weight control is applied 

in the benevolent mode. For instance, 𝐷𝑀𝑈10, which ranks fourth without weight 

control, drops to the sixth position in performance when weight control is integrated 

into the cross-efficiency evaluation. Notably, only for 𝐷𝑀𝑈12, 𝐷𝑀𝑈7, 𝐷𝑀𝑈4, and 

𝐷𝑀𝑈2, the ranking remains consistent between the benevolent mode with and 

without weight control. 
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In conclusion, it appears that the cross-efficiency values derived from the 

aggressive and benevolent modes with weight control offer more accurate and 

reliable predictions of the efficiency status of production systems compared to the 

assessments conducted without weight control. 

5. Conclusions 

Cross-efficiency analysis serves as a powerful tool for evaluating unit 

performance, offering valuable insights into its effectiveness. The incorporation of 

weight control within the cross-efficiency framework addresses significant issues 

related to zero or unrealistic weight assignments. Our proposed approach places a 

primary emphasis on the selection of weight profiles, thus mitigating the potential 

for DMUs to employ impractical weight schemes during cross-efficiency 

assessments. The notion of unrestrained weights for all DMUs lacks logical 

coherence, making the adoption of weight profiles a sound strategy for curbing 

excessive variations in weight allocations within the cross-efficiency evaluations. 

Through the establishment of upper and lower bounds for input and output weights, 

as prescribed by our methodology, we effectively restrain weight dispersion. 

Our approach strategically addresses the challenges posed by unrealistic or 

zero-weighting profiles, particularly in the context of efficient DMUs. Although we 

have presented our method using small-scale examples in this study, its potential to 

yield more comprehensive cross-efficiency scores, while avoiding implausible 

weight assignments, has been demonstrated. 

While cross-efficiency analysis has traditionally been associated with 

constant returns to scale efficiency (CRS), the significance of exploring variable 

returns to scale (VRS) efficiency should not be understated. Many real-world 

systems require VRS considerations rather than CRS, which emphasises the 

relevance of studying VRS within the cross-efficiency framework. In this paper, we 

have introduced a cross-efficiency model that selects weight profiles while 

accommodating non-decreasing returns to scale (NDRS) principles, effectively 

circumventing the challenges of negative, zero, and unrealistic weight assignments. 

Our numerical and empirical examples underscore the practicality and superiority of 

the proposed model. 

In the realm of cross-efficiency evaluation, various secondary goals have 

been introduced to address inherent limitations. The issue of weight multiplicity 

remains a prominent concern, prompting the development of pessimistic and 

optimistic models as extensions of our proposed approach. Through empirical 

applications, we have demonstrated the efficacy of both aggressive and benevolent 

strategies, reinforcing the superiority of our model in enhancing the accuracy and 

reliability of cross-efficiency assessments. 
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