Professor Silvia Elena IACOB, PhD (corresponding author) E-mail: silvia.iacob@economie.ase.ro Bucharest University of Economic Studies, Romania

Associate Professor Andrei HREBENCIUC, PhD E-mail: andrei.hrebenciuc@economie.ase.ro Bucharest University of Economic Studies, Romania

Associate Professor Nicolae MOROIANU, PhD E-mail: nicolae.moroianu@economie.ase.ro Bucharest University of Economic Studies, Romania

Associate Professor Georgiana Daniela STOICA, PhD E-mail: monicad_d@yahoo.com Valahia University of Targoviste, Romania

Associate Professor Violeta-Andreea ANDREIANA, PhD E-mail: andreea.vivi@yahoo.com Valahia University of Targoviste, Romania

THE ASSESSMENT MODEL OF REGIONAL SUSTAINABLE DEVELOPMENT THROUGH THE BENCHMARKING ANALYSIS OF THE ENVIRONMENTAL SITUATION FROM 2017 AND 2021

Abstract. This study analyses the environmental changes that the South Muntenia region recorded in 2021 compared to 2017. The research has taken into account several aspects related to: climate change, sustainable waste management, water resources, and atmospheric pollutants. The analysis method used was the Benchmarking Analysis, following which we identified the main indicators for which the analysed region recorded improvements or, on the contrary, deterioration in one year compared to another year of analysis. The assessment of the aspects taken into account was based on both the information collected from the Environmental Registers and the opinions of specialists from the analysed region. The findings of the analysis have implications for decision-makers at the macro- and mezzo- economic level.

Keywords: Sustainable Development, Environment, Comparative Analysis, Pareto, Waste Management, Climate Change

JEL Classification: C00, H12, K32, M54, O10

DOI: 10.24818/18423264/57.3.23.15

1. Introduction

Benchmarking is the process of continuous improvement of performance by identifying, understanding, adapting, and implementing the best practices found inside/outside the organisation and involves the creation of partnerships for the exchange of information regarding processes and assessments, resulting in the establishment of realistic objectives.

It is a valuable tool for company management, local administrations, and governments in their development strategies. Companies, localities, states that compare their performances with others and identify the best practices obtain strategic, operational, and economic advantages, leading to an increase in the degree of competitiveness. It can also be achieved by comparing two periods of time, taking the year with the best achievements as a reference.

Most benchmarking initiatives relate to financial and management aspects, but lately environmental benchmarking has recently become a major element in environmental management. Most of the time, environmental benchmarking is carried out for companies, but it can also be easily adapted to the needs of knowing the performances, at the level of localities, areas, regions, and states, being a tool for analysing practices related to the environment.

Environmental benchmarking is done by comparing the achievements of the analysed area with those of the best in class or the situation from another year of the same area, the fields of application assuming the assessment of: Environmental Management Systems, Performance Management, Quality of Ecological Products, Environmental Accounting, Waste Management, Environmental Education, Vocational Training and Customer Relations. This working method can be applied by analysing the following aspects: Causes of Climate Change, Ways to Reduce the Effects of Climate Change, Atmospheric Pollutants, Air Quality, Environmental Policy Instruments, Effects of Climate Change and Environmental Education, Sustainable Management of Resources, Water Resources.

The main objective of this study is to evaluate the environmental situation in the Southern Region of Muntenia in 2021 compared to 2017. It also aims to identify the environmental aspects that have registered substantial improvements or, on the contrary, the degradation of the identified situation. The aim is to rank the environmental aspects analysed according to the importance given by the specialists, but also to identify the main causes that lead to the result obtained.

Considering that sustainable development is a concern of the modern world, we considered that bringing to attention a model for evaluating the environmental situation at the regional level is necessary for the expansion at the macro- and mezzo-level.

2. Literature review

The environment includes all living species, natural resources, vegetation, microorganisms, rocks, atmosphere, and climate.

The Assessment Model of Regional Sustainable Development through the Benchmarking Analysis of the Environmental Situation in 2017 and 2021

Air pollution harms the health of the environment. Emissions of many air pollutants have fallen substantially in recent decades, resulting in improved air quality, but pollutant concentrations remain very high (Penn World Table, 2020).

Studies carried out by scientists show how greenhouse gas emissions, mainly carbon dioxide, affect the way the planet's climate works (Gogu et al., 2021). The disruption of the cycle of the seasons also brings with it problems in the water cycle in nature, researchers observing a decrease in the amount of water that reaches the soil through rain or snow, and the increase in the plant population can represent the partial or even total elimination of moisture from the soil, which will lead to desertification (Zahid et. al., 2022).

The main problem of climate change is represented by carbon dioxide emissions and the effects they have on the atmosphere. Researchers show that, for the last 800,000 years, until the Industrial Revolution, the level of carbon dioxide was relatively stable, between 180-290 ppm parts per million (MacKenzie, 2003), but now the concentration of carbon dioxide has increased to 412 ppm, and in the year 2100 the level could reach up to 560 ppm (Alam and Murad, 2020; Menegaki, 2011).

Environmental problems can be understood and dealt with from an individual perspective, but we must take into account the fact that industrial activities and the private companies behind them are the ones that produce a large part of carbon dioxide emissions (Guanhua et al., 2022; Na-Ra, 2023).

A third of the carbon emissions worldwide, since 1965, are made by a group of 20 companies, the first five being (European Commission, 2011):

- Saudi Aramco (Saudi Arabia), which obtained 355.9 billion dollars from oil extraction in 2018, carbon emissions in the period 1965-2017 represent 4.38% of global emissions, and in the period 2018-2030 experts indicate an increase of 7.2% (Al-Mulali et al., 2015; Adeleye et al., 2022).

- Chevron (USA) operates in the oil field, with an annual profit of 158.9 billion dollars; during the period 1965-2017, it removed 3.3% of global production into the atmosphere, and in the 2018-2030 period specialists predicted a 20% increase in emissions.

- Gazprom (Russia) produced in the period 1965-2017, 3.19% of the total global emissions, and researchers' projections suggest that in the period 2018-2030, emissions will increase by 3%.

- ExxonMobil (USA) produced 3.09% of the amount of carbon produced between 1965-2017, and an increase in emissions of 35% is expected between 2018-2030 (World Bank, 2021).

- The National Oil Company of Iran produced 2.63% of the amount emitted between 1965-2017, and projections show an increase of 9.7% between 2018-2030 (Ergun et al., 2019).

After studying the specialised literature, we found that comparative analyses have been carried out, but not on the environment; therefore, we have not identified any source in which the benchmarking analysis can be applied. As a result, we consider it useful to apply this effective analysis method at the regional level. In order to more easily observe the results obtained from the benchmarking analysis, we correlated them with the Pareto analysis, as well as the graphical representation of the results obtained using the Spider Chart.

3. Research methodology

In this part of the study, we present the methodology for calculating environmental benchmarking at the level of a region. In the present case, the analysed region is South Muntenia, which includes the following counties: Prahova, Dâmbovița, Argeş, Ialomița, Călăraşi, Teleorman, Giurgiu. The proposed model analyses the environmental situation in the year 2021, a pandemic year, compared to the year 2017 prior to the outbreak of the Covid 19 pandemic. We chose the two periods trying to highlight the changes that appeared in the environmental situation as a result of the imposed restrictions.

The development of environmental benchmarking involves the following stages:

1) establishing the work team (of specialists);

2) documentation, gathering the information necessary for elaboration. This information can be gathered from the Annual Environmental Reports, which are drawn up both at the level of each county (from which data can be extracted for the main localities in the respective county) and at the level of the development regions.

3) assessment of the situation identified by developing the scorecard

4) interpretation of the results.

The assessment can be done using the following arrays 1 and 2 presented in Tables 1 and 2 as a tool.

	Table 1. Array 1								
Axis	Axis	Weight	Analytical	Maturity level		Weighted score			
	content		weight	Year 1	Year 2	Year 1	Year 2		

Table 1 Arres 1

			Table 4	2. Array 2					
Indicators	Indicator	Indicator	Ranking	Importance	Analytical	Mat	urity	Weig	ghted
groups	subgroups		subgroups	level	ranking	le	vel	sco	ore
				indicators		Year	Year	Year	Year
						1	2	1	2

Fable	2. <i>I</i>	Array	2
--------------	--------------------	-------	---

The proposed model involves the comparative analysis of environmental aspects from the years 2017 and 2021, the necessary data were collected from the Environmental Reports of the counties of the South Muntenia Region and following discussions with specialists from the Environmental Protection Agencies.

Regarding the score awarded, both for Array 1 and Array 2, it is established in collaboration with a team of specialists from the same agency. Weights are given from 0 to 1000, depending on the importance assigned by the team to each individual axis, the choice of weights being subjective. Within this model, each axis will have an individual weight, their content having a certain degree of importance, thus giving them different weights.

Next, we calculate the analytical weights, which are obtained by multiplying the weight of the axes by the weight of each indicator within the analysed axis and dividing by 1000.

The maturity level can be from 1 to 5 when analysing organisations or from 1 to 10 when analysing products or in the development of environmental benchmarking:

- 1 shows a very weak situation,

- 5 reflects an average situation

- 10 a very good situation, which does not require any kind of improvements.

Also, the assessment can be done using instead of scores from 1 to 10, percentage criteria either 10%, 20%, 30%,...., 100% or 25%, 50%, 75% or 100% of the ideal situation.

The awarding of points is done according to the real situation, ascertained as a result of the documentation. Each aspect analysed will receive a grade for each year, locality, area, region, country considered. The weighted scores are calculated using analytical weights, which are multiplied by the maturity level of each aspect studied. Total weighted scores are obtained for each analysed year, their value must be between 1000 and 10000.

Regarding Array 2, the difference appears at the level of detail, analysing groups of characteristics or indicators, subgroups of characteristics or indicators, and indicators or characteristics. The weights given to the subgroups represent the importance of each subgroup in the total group, and the analytical ranking is done by multiplying the weight of the indicator in the subgroup by the level of importance given and dividing by 1000.

The created scorecard involves the comparative analysis of environmental aspects from 2017 and 2021, the necessary data were collected from the Annual Environmental Reports and following discussions with specialists from the National Agency for Environmental Protection. The awarded score was established in collaboration with a team of specialists from the same agency. Within the presented model, the following groups of indicators were analysed: Climate changes, Sustainable waste management, Water resources, Atmospheric pollutants, Ways to reduce the negative effects of climate change.

Groups	Indicator subgroups	Indicator	Hierarchy of features- groups	Ranking features	Analytical ranking of features	Med Le 2017	lium vel 2021	Wei Sc 2017	ghted core 2021
1. matic unges 250	l.1 mate	Maximum /medium temperature	50	300	45	7	5	315	225
Cli che 2	Cli	Minimum/medium temperature	50	300	45	7	8	315	360

Table 3. Axis of interest 1: Climate change

Groome	Indicator	In Braden	Hierarchy of	Ranking	Analytical	Medium Level		Weighted Score	
Groups subgroups		Indicator	features- groups	features	features	2017	2021	2017	2021
		Medium annual amount of precipitation	50	400	60	7	8	420	480
		Subtotal	150	1000	150	-	-	1050	1065
	ctions to tet and apt to e change	1.2.1 Clean development mechanism	60	600	60	7	8	420	480
	1.2 A. attre ada climato	1.2.2 International emissions trading	40	400	40	7	8	280	320
		Subtotal	100	1000	100	-	-	700	800
		Total	250	-	250	-	-	1750	1865

Silvia Elena Iacob, Andrei Hrebenciuc, Nicolae Moroianu, Georgiana Daniela Stoica, Violeta-Andreea Andreiana

In the first group "Climate Changes", the subgroups of indicators "Climate" and "Actions to Attract and Adapt to Climate Changes" were analysed, in which the indicators "Average Maximum Temperature", "Average Minimum Temperature", "Average Annual Quantity of Precipitations". Following the analysis, we note that the group's score in 2021 was 115 points higher than that of 2017, due to some changes in the average annual maximum temperature. The first subgroup has the largest weight, but we note an improvement regarding the situation of international trading of emissions (Table 3).

The Assessment Model of Regional Sustainable Development through
the Benchmarking Analysis of the Environmental Situation in 2017 and 202

Groups	Indicator	Indicator	Hierarchy of feature-	Ranking	Analytical ranking of	Med	lium vel	Weighte	d score
	subgroups		groups	reatures	features	2017	2021	2017	2021
		2.1.1 Biodegradable	20	250	17,5	7	8	122,5	140
	ਵ	waste							
	cip:	2.1.2 Packaging and							
	inic	packaging waste	15	250	17,5	7	8	122,5	140
	Mr wa	2.1.3 Treatment and					-		
	2.1	recovery of municipal	10	200	14	7	8	98	112
ant		waste	25	200	21	7	0	1.477	1.00
sme		2.1.4 Waste disposal	25	300	21	/	8	147	168
age	Subtotal		70	1000	70	-	-	490	560
nan	ste	2.2.1 Industrial waste	20	100	20		0	1.60	
e n	2.2 lusi was	generation	30	400	28	6	8	168	224
ast 30	al	2.2.2 Industrial waste	40	600	42	5	7	210	204
2 K		Valorisation	40	1000	42	5	/	210	294
abl		Subtotal	70	1000	70	-	-	3/8	518
ain	IS	2.3.1 Waste batteries							
ust	am	and accumulators	20	300	18	4	6	72	108
s	stre	management							
(1	ste	2.3.2 Equipment	20	100		_	-	100	
	Va	waste management	20	400	24	5	1	120	168
		2.3.3 Used oils							
	0	Management	20	300	18	5	5	90	90
		Subtotal	60	1000	60	-	-	282	366
		Total		-	200	-	-	1150	1444

Table 4. Axis of interest 2: Sustainable waste management

Axis 2 "Sustainable Waste Management" has three subgroups, two with the same weight and the third with a slightly smaller weight. We find that in 2021 the situation has improved by approximately 300 points compared to 2017. The greatest improvement is registered by the first subgroup "Industrial Waste" in the aspects related to the generation of industrial waste, which received a score of 8 from a score of 6, as well as the disposal of industrial waste. We observe an improvement in the third subgroup, "Waste flows", which obtained 366 points in 2021, compared to 282 in 2017 (Table 4).

The situation of the management of used oils remained unchanged in the two years, although the management of this type of residue is not efficient, receiving the score 5 in both years of analysis.

		Table 5. Axis o	of interes	st 3: Wate	er Resou	rces			
Crowns	Indicator	Indicator	Hierarchy of	of Level of tures- importance roups	Analytical	Medium level		Weighted score	
oroups	subgroups		features- groups		features	2017	2021	2017	2021
	.1 face ters	3.1.1 Ecological status of water bodies	20	400	24	7	8	168	192
	3 Sur wa	3.1.2 Lake water quality	40	400	36	7	8	252	288
		Subtotal	60	1000	60	-	-	420	480
ater resources 150	ater ter	3.2.1 The connected population	20	350	21	8	9	168	189
	king w ste wa	3.2.2 The length of the sewage network	15	250	15	8	9	120	135
	3.2 Drin and wa	3.2.3 Polluting substances and pollution indicators in clean waters	25	400	24	6	7	144	168
3.V	Subtotal		60	1000	60	1	-	432	492
	Vater urces gement	3.3.1 Significant pressures on water resources	10	400	12	6	7	72	84
	3.3 V resou manag	3.3.2 Strategies for sustainable management	20	600	18	7	Q	126	144
		Subtotal	30	1000	30	-	-	198	228
		Total	150	-	150	-	-	1050	1200

Silvia Elena Iacob, Andrei Hrebenciuc, Nicolae Moroianu, Georgiana Daniela Stoica, Violeta-Andreea Andreiana

Axis 3 "Water Resources" is the one that registered the smallest increase, of 150 points in 2021 compared to 2017. This axis has three subgroups, two with an equal weight of 60 points and one with a lower weight of 30 points. The first subgroup, "Surface Waters", registers an increase of 60 points in 2021 compared to 2017. Both analysed indicators registered a slight improvement, because in 2021 they were evaluated with one point more than in 2017.

The subgroup "Drinking water and waste water" registered an increase of 60 points from 432 in 2017 to 492 points in 2021, all indicators having a superficial increase from one year of analysis to another. The increase of the sewage network from 1244 km in 2017 to 2013 in 2021 is noted. The last subgroup, the one with the lowest weight, increased by 30 points in 2021 when it recorded 228 points compared to 2017, when it had 198 points. We find slight improvements for both analysed indicators (Table 5).

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Groups	Indicator	Indicator	Hierarchy of	Level of	Analytical ranking of	Mediu	m level	Weig sco	ghted ore
Note 4.1.1 SO2 emissions 20 (1.1.2 Nox) 400 (2.4) 24 (8) 6 (6) 192 (1.2) 1 (1.2) 1.1.2 Nox emissions 20 300 18 6 8 108 1 (1.3.3 Ammonia) 1.1.3 Ammonia emissions 20 300 18 8 8 144 1 (1.3.3 Ammonia) Subtotal 60 1000 60 - - 4444 4 (1.2.2 Mercury) 1.1.3 Log 4.2.1 Cadmium emissions 15 250 15 8 7 120 1 4.2.2 Mercury emissions 15 250 15 8 5 120 7 4.2.3 Lead emissions 30 500 30 6 7 180 2 30 Subtotal 60 1000 60 - - 420 3 100 18 8 9 144 1 100 15 350 21 7 7 147 1 10	oroups	subgroups		features- groups	importance	features	2017	2021	2017	2021
Subtotal 60 100			4.1.1 SO2	20	400	24	8	6	192	144
OOT ED : String in the set of the set		s u us	emissions							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Ga Sio fyi ect	4.1.2 Nox	20	300	18	6	8	108	144
V E Q 4.1.3 Ammonia emissions 20 300 18 8 8 144 1 Subtotal 60 1000 60 - - 444 4 Subtotal 60 1000 60 - - 444 4 Subtotal 60 1000 60 - - 444 4 Subtotal 4.2.1 Cadmium emissions 15 250 15 8 7 120 1 4.2.2 Mercury emissions 15 250 15 8 5 120 7 4.2.3 Lead emissions 30 500 30 6 7 180 2 Subtotal 60 1000 60 - - 420 3 9 9 4.3.1 Polycyclic aromatic hydrocarbons 15 350 21 7 7 147 1 9 9 9 144 1 1 1 168 <td< td=""><td></td><td>H.1 vitl eff</td><td>emissions</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>		H.1 vitl eff	emissions							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		er v ac	4.1.3 Ammonia emissions	20	300	18	8	8	144	144
Subtotal 42.1 Cadmium emissions 15 250 15 8 7 120 1 4.2.2 Mercury emissions 4.2.2 Mercury emissions 15 250 15 8 5 120 7 4.2.3 Lead emissions 30 500 30 6 7 180 2 Subtotal 60 1000 60 - - 420 3 9.0 Subtotal 60 1000 60 - - 420 3 9.0 Subtotal 60 1000 60 - - 420 3 9.0 Subtotal 60 1000 60 - - 420 3 9.0 Subtotal of polychlorinated biphenyls 15 350 21 7 7 147 1 9.0 Subtotal 60 1000 60 - - 459 4		Sub	total	60	1000	60	-	-	444	432
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		ons y	4.2.1 Cadmium emissions	15	250	15	8	7	120	105
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Emissic f heavy netals	4.2.2 Mercury emissions	15	250	15	8	5	120	75
Yet emissions 30 500 30 6 7 180 2 Subtotal 60 1000 60 - - 420 3 Subtotal 60 1000 60 - - 420 3 Subtotal 60 1000 60 - - 420 3 Subtotal 4.3.1 Polycyclic aromatic hydrocarbons 15 350 21 8 8 168 16 Subtotal of 15 350 21 7 7 147 1 E Subtotal 60 1000 60 - - 459 4	200	0 5	4.2.3 Lead							
Subtotal 60 1000 60 - - 420 3 'jo .ju geo in the second	its	7	emissions	30	500	30	6	7	180	210
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	itar	Sub	total	60	1000	60	-	-	420	390
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	c pollı	ic. f	4.3.1 Polycyclic aromatic						168	168
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	erio	3 Emissions of risistent organi pollutants	hydrocarbons	15	350	21	8	8		
* * 2. 4.3.3 Hexo- clorbenzen 30 300 18 8 9 144 1 Subtotal 60 1000 60 - - 459 4	I. Atmosph		4.3.2 Emissions of polychlorinated biphenyls	15	350	21	7	7	147	147
Subtotal 60 1000 60 459 4	7	4. De	4.3.3 Hexo- clorbenzen	30	300	18	8	9	144	162
		Sub	total	60	1000	60	-	-	459	477
4.4.1 NMVOC 10 700 14 8 9 112 1			4.4.1 NMVOC	10	700	14	8	9	112	126
4.4.2 Total powders103006794254.5 Use of the second powders10300679425		4.4 Emissions of volatile organic compounds	4.4.2 Total powders	10	300	6	7	9	42	54
Subtotal 20 1000 20 154 1		Sub	total	20	1000	20	-	-	154	180
Total 200 - 200 1477 14		То	otal	200	-	200	-	-	1477	1479

The Assessment Model of Regional Sustainable Development through the Benchmarking Analysis of the Environmental Situation in 2017 and 2021

 Table 6. Axis of interest 4: Atmospheric Pollutants

Source: Authors' work

Regarding the situation of atmospheric pollutants, in 2021 the score obtained was 1479 points, and in 2017 1477 points.

This axis has four subgroups, three of them having equal weights, the third subgroup – "Emissions of Persistent Organic Pollutants" registering a slight improvement, having 477 points in 2021, 18 points more than in 2017. Within these subgroups, we note improvements regarding the emissions of hexachlorobenzene and polychlorinated biphenyls that received a grade with a higher point in the second year of analysis compared to the first year, which shows a slight improvement of the analysed situation. The first subgroup, "Emissions of gases with an acidifying effect", registers a decrease of 30 points in 2021 compared to 2017, based mainly on the increase in SO₂ emissions. We also note that NOx emissions have decreased and that the situation of ammonia emissions has remained relatively unchanged.

"Heavy Metal Emissions" represent the second subgroup and recorded a worsening of the situation by 30 points in 2021 when it was 30 points. The greatest deterioration can be seen in mercury emissions, which were rated 5 in 2021.

The last subgroup has an increase of 26 points in 2021 compared to 2010, when both analysed situations received a 9 grade from the 8 or 7 grades we had in the first year of analysis (Table 6).

Axis	Axis content	Weigh	Analytical	Maturity level		Weighted score	
		t	weight	2017	2021	2017	2021
fe	Use of biomass-based energy sources	100	20	8	8	160	160
ima	Efficiency of the energy industry	100	20	6	6	120	120
ts of cl	Improving the energy efficiency of thermal power plants	50	10	6	6	60	60
e effect 0	Replacement of less polluting classic means of transport	100	20	7	8	140	160
ative e 20	Protection and extension of forests	175	35	5	5	175	175
the neg chang	Educating the public about sustainability	150	30	5	7	150	210
equce	Improving the national inventory of greenhouse gas emissions	100	20	8	9	160	180
Ways to r	Implementing the commercialisation scheme of greenhouse gas emission certificates	100	20	8	8	160	160
	Improving the legislative framework	125	25	7	8	175	200
TOTAL		1000	200	-	-	1300	1425

 Table 7. Interest axis 5: Ways to Reduce the Negative

 Effects of Climate Change

Source: Authors' work

Within this axis, we did not use subgroups, because the aspects analysed do not allow the application of the unfolded array. We see an increase of 125 points in 2021 compared to 2017, obtained mainly from the improvement of concerns at all levels for educating the public in the sense of sustainability.

Also, the situation of the national inventory of greenhouse gas emissions, the legislative framework, as well as the implementation of the channelization scheme of greenhouse gas emissions certificates have also improved.

The situation remains unchanged in terms of the efficiency of the energy industry, the improvement of the energy efficiency of thermal power plants, as well as the protection and expansion of forests (Table 7).

		ignica beores		
No.	AXE	Year 2017	Year 2021	Ip 2021/2117
1	Climate change	1750	1865	1,065
2	Sustainable waste management	1150	1444	1,255

Table 8. Total Weighted Scores

The Assessment Model of Regional Sustainable Development through the Benchmarking Analysis of the Environmental Situation in 2017 and 2021

3	Water resources	1050	1200	1,142
4	Atmospheric pollutants	1477	1479	1,001
5	Ways to reduce the negative effects			
	of climate change	1300	1425	1,096
TOTA	AL	6727	7413	1,101

Performance Index
$$_{RSM} = \frac{SCP RSM}{SCP RSM} * 100 = \frac{7413}{6727} * 100 = 110,1$$

Following the environmental benchmarking of the South Muntenia Region, we note a general improvement in the situation, the score of 2021 being 7413 compared to 6727, which led to a performance index of 1.101 (Figure 1). It should be noted that for each analysed axis, the performance index indicates an improvement of the analysed situation.

Source: Authors' work

In order to identify the indicators that have the greatest importance in the results obtained, the work continues with the PARETO analysis, which is done through three stages (Table 9):

• the descending ordering of the analytical characteristics and weights of each group;

• determining the relative frequency by dividing each analytical weight by 10;

• establishing the cumulative breeding frequency. The process is repeated until the characteristic that approaches the 80-20 rule. The rule describes the fact that in almost any problem, the little (20%) represents the essential, and the many (80%), represents the less valuable part (it depends from which angle the situation is viewed).

	Tuble >+1 urete i mui		J 515
Indicator	Analytical weight	Frequency	Increasing cumulative frequency
Medium annual amount of precipitation	60	6	-
Clean development	60	6	12
mechanism			
Medium maximum		4.5	16.5
temperature	45	4,5	16,5
Minimum-Medium	45	4,5	21
temperature			
Recovery of industrial	42	4,5	25,5
waste			
International trading of	40	15	20
emissions	40	4,5	50
Lake water quality	36	3,6	33,6
Protection and	35	3.5	37 1
expansion of forests		3,5	57,1
Lead emissions	30	3	40,1
Educating the public in			
the sense of	30	3	43,1
sustainability			
Waste generation	28	2,8	5,9
Improving the	25	2.5	48.4
legislative framework	25	2,5	
Polluting substances in	24	24	50.8
water	21	2,1	50,0
SO2 emissions	24	2,4	53,2
Ecological state of	24	2.4	55.6
waters		_,.	
Equipment waste	24	2.4	58
management		_,.	
Polycyclic aromatic	21	2.1	60.1
hydrocarbons		_,.	7
Emissions of			
polychlorinated	21	2,1	62,2
biphenyls			
I ne population	21	2.1	(1)
connected to the water	21	2,1	04,3
Iletwork Wests dispess!	21	2.1	
waste disposal	21	۷,1	00,4

 Table 9. Pareto Analysis

Indicator	Analytical weight	Frequency	Increasing cumulative frequency
Use of energy sources	20	2.0	68.4
based on biomass	20	2,0	08,4
Efficiency of the	20	2.0	70.4
energy industry	20	2,0	70,4
Replacing classic			
means of transport with	20	2,0	72,4
less polluting ones			
Improving the national			
inventory of	20	2.0	74.4
greenhouse gas	20	2,0	/4,4
emissions			
Implementation of the			
commercialization	20	2.0	76 /
scheme of greenhouse	20	2,0	70,4
gas certificates			
Battery and			
accumulator waste	18	1,8	78,2
management			
Strategies for			
sustainable			
management of water	18	1,8	80
resources			
Nox emissions	18	1,8	81,8
Ammonia emissions	18	1,8	82,4
Hexochlorobenzene	18	1,8	84,2
Management of used	19	1.9	86
oils	10	1,0	80
Biodegradable waste	17,5	1,75	87,75
Packaging and	17.5	1 75	80.5
packaging waste	17,5	1,75	83,5
The length of the sewer	15	15	01
network	15	1,5	<i>7</i> 1
Cadmium emissions	15	1,5	92,5
Mercury emissions	15	1,5	94
Treatment and recovery	14	1.4	95 /
of municipal waste	14	1,4	95,4
NMVOC	14	1,4	96,8
Significant pressures on	12	1.24	08
water resources	12	1,24	58
Improving the energy			
efficiency of thermal	10	1	99
power plants			
Total powders	6	0,6	99,6
TOTAL	1000	100	_

The Assessment Model of Regional Sustainable Development through the Benchmarking Analysis of the Environmental Situation in 2017 and 2021

The analysis shows that the first 25 indicators are the most important, having a weight of 80% of the total. Therefore, these indicators are the ones that require intervention to improve the environmental situation. The other indicators have a smaller weight of 20% and as such do not have a very important role in the final result.

4. Conclusions

Sustainable development is understood as a type of economic growth opposite to that which prevailed in the 19th and 20th centuries and which focused on the idea of using natural resources in parallel with protecting and preserving the environment (Ranju et al., 2023). The specialised literature, in addition to the four classic dimensions of sustainable development, economic, social, cultural, and environmental, also presents two other dimensions, namely temporal and digital.

Following the benchmarking analysis of the South Muntenia Region, we can say that the environmental situation is not very serious, but not very happy either. The score of 7413 points for the year 2021, i.e., a performance index compared to 2017 of 1.101, reflects a situation that requires some improvements, orienting the actions of decision-makers towards the promotion of environmental policies.

The ideal situation could be quantified in 10,000 points, which shows that the score of 7413 is above the average level, but far from a situation that no longer requires improvement. Compared to 2017 in 2021, the environmental situation improved by approximately 686 points.

In 2017, axis 1 "Climate change" was the best positioned, followed by axis four, "Atmospheric pollutants", while axis three, "Water resources" obtained the lowest score. In 2021, the axis that placed the best was also axis 1, and the least was axis three.

We note that in 2021, all analysed axes recorded smaller or greater improvements compared to 2017. The biggest difference in 2021 compared to 2017 appears on axis two, "Sustainable waste management", which in 2021 recorded 1444 points, 294 points higher than in 2017. Axis four saw a slight improvement in one year over the other, with a score difference of only 2 points.

In 2021, the management of waste oil saw no improvement, while the management of waste batteries and accumulators and waste equipment increased, being scored two points higher. Deterioration of the subgroup that assesses heavy metal emissions, with mercury emissions registering a substantial deterioration.

The main polluters in this region must focus their attention on reducing pollutant emissions by implementing "clean technologies" and prioritising aspects of environmental management.

REFERENCES

[1] Adeniran, A.A., Ayesu-Koranteng, E., Shakantu, W. (2022), A Review of the Literature on the Environmental and Health Impact of Plastic

Waste Pollutants in Sub-Saharan Africa. Pollutants, 2(4), 531-545, https://doi.org/10.3390/pollutants2040034;

- [2] Alam, M., Murad, M. (2020), The Impacts of Economic Growth, Trade Openness and Technological Progress on Renewable Energy Use in Organization for Economic Cooperation and Development Countries. Renew. Energy 145 (1), 382-390, https://doi.org/10.1016/j.renene.2019.06.054;
- [3] Al-Mulali, U., Ozturk, I., Lean, H.H. (2015), The Influence of Economic Growth, Urbanization, Trade Openness, Financial Development, and Renewable Energy on Pollution in Europe. Nat. Hazards, 79, 621-644, https://doi.org/10.1007/s11069-015-1865-9;
- [4] Ergun, S., Owusu, P., Rivas, M. (2019), Determinants of Renewable Energy Consumption in Africa. Environmental Science and Pollution Research, 26 (1): 15390-15405, https://doi.org/10.1007/s11356-019-04567-7;
- [5] Gogu, E., Radu, C., Deaconu, A., Frasineanu, C., Triculescu, M., Mişu, S., Toma, S. (2021), Assessing the Impact of Clean Energy on Sustainable Economic Growth in European Union Member States. Economic Computation and Economic Cybernetics Studies and Research, 55(4), 183-197, ASE Publishing; http://www.ecocyb.ase.ro/Articles2021_4.htm;
- [6] MacKenzie, J.J. (2003), Technology Growth Curves: A New Approach to Reducing Global CO2 Emissions. Energy Policy, 31(12), 1183-1187, https://doi.org/10.1016/S0301-4215(02)00191-X;
- [7] Menegaki, A.N. (2011), Growth and Renewable Energy in Europe: A Random Effect Model with Evidence for Neutrality Hypothesis. Energy Economics, 33, 257–263, https://doi.org/10.1016/j.eneco.2010.10.004;
- [8] Na-Ra, J., Seung-Won, H., Ko, B. (2023), Effects of Green Network Management of Urban Street Trees on Airborne Particulate Matter (PM_{2.5}) Concentration, nt. J. Environ. Res. Public Health 2023, 20(3), 2507, https://doi.org/10.3390/ijerph20032507;
- [9] Ranju K.R., Mamta D., Pushpak D., Nitish S., Neelam K., Dolly K., Pradeep K., Rama R.B., Abhishek W., Arvind K.B., Ravi K.B. (2023), Recent Trends, Opportunities and Challenges in Sustainable Management of Rice Straw Waste Biomass for Green Biorefinery. Energies 2023, 16(3), 1429, https://doi.org/10.3390/en16031429;
- [10] Zahid, Y., Brutu, M., Mihai, D., Hrestic, M., Ştefan, M.C., Popescu, C. (2022), Pollution Reduction as Catalyst between Environmental Resources Conservation Efforts and Sustainable Development: Investigation of Energy Firms in Circular Economy. Energies 2022,15(17), 6410, https://doi.org/10.3390/en15176410;
- [11] Zhou, G., Chen, S., Li, A., Xu, C., Jing, G., Chen, Q., Hu, Y., Tang, S., Lv, M., Xiao, K. (2023), Pollution Source Apportionment of River Tributary Based on PMF Receptor Model and Water Quality Remote

Silvia Elena Iacob, Andrei Hrebenciuc, Nicolae Moroianu, Georgiana Daniela Stoica, Violeta-Andreea Andreiana

Sensing in Xinjian River, China. Water 2023, 15(1), 7, https://doi.org/10.3390/w15010007;

- [12] *** European Commission (2011), Communication COM(2011)885 Final "Energy Roadmap 2050" by the European Commission the European Parliament, the European Council, the European Economic and Social Committee and the Committed of the Regions, European Union, Brussel;
- [13] **Penn World Table (2020),** *Penn World Table;* https://doi.org/doi.org/10.15141/S50T0R;