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IMPROVED nu-SUPPORT VECTOR REGRESSION ALGORITHM 

BASED ON THE PRINCIPAL COMPONENT ANALYSIS 
 
 

Abstract. Principal component analysis (PCA) is the most commonly used 

approach for analysing high-dimensional data in order to achieve dimension 

reduction. However, outliers have an adverse effect on the PCA, and hence reduce 

the accuracy of the prediction model. To date, no research has been done to 

incorporate the PCA into the algorithm of support vector regression (SVR) technique 

in order to obtain an accurate prediction model with high accuracy. This paper 

focuses on improving the nu-SVR algorithm to handle the problem of outliers. A new 

hybrid PCA with the nu-SVR technique (PCA-SVR) has been established. The 

performance of the proposed PCA-SVR algorithm is extensively assessed by two real 

data sets and simulation studies. The outcomes indicate that the PCA-SVR algorithm 

is more efficient and reliable than the nu-SVR. 
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1. Introduction 

The analysis of high-dimensional data (HDD) in which the number of 

independent variables is much larger than the sample size (p >> n) has become 

increasingly important in many fields, such as in economics, engineering, and 

medicine. For instance, there are tens of thousands of gene expression values 

available in tumour classification utilising genomic data. However, the number of 

arrays is only on the order of 10. High-dimensional data poses a significant statistical 

challenge in data classification and other statistical analysis. A matrix associated 

with some algorithms in high-dimensional data may become singular. The problem 
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may become more complicated with non-linear relationships among variables and 

outliers in the data. In real applications, encountering non-normal data with a non-

linear relationship between input and output variables is quite common (Ukil, 2007). 

According to Hampel et al. (1986), a typical data set generally includes between 1 - 

10% outliers, and even the best quality data set cannot be confirmed to be absence 

of outliers. Outliers may generate apparent non-normality, and the entire classical 

inferential technique may fall as a result of their presence. In this case, it is 

imperative to call for new methods and theories, such as non-parametric methods, to 

take care of these concerns. 

Support Vector Machine (SVM) is a non-parametric technique that consists of a new 

learning algorithm class (Vapnik, 1999) that adheres to statistical learning theory. It 

has been used to solve classification and regression problems with great success. 

Additionally, Support Vector Regression (SVR) has the advantage of addressing 

rank-deficient, non-linear, and high-dimensional issues by applying the kernel 

method to turn non-linear relationships in the input space into linear relationships in 

high-dimensional feature space (Lahiri & Ghanta, 2009; Üstün et al. 2006). The main 

idea behind SVM modelling is its ability to classify and separate positive and 

negative training data with the greatest margin possible (Balfer & Bajorath, 2015). 

Although the SVR algorithm has proven to be efficient in dealing with high-

dimensional data (see (Mohammed Rashid et al. 2022; Rashid et al. 2021), it is 

unable to achieve dimensionality reduction simultaneously. 
 

Nowadays, real data sets usually contain several dimensions or high 

dimensions, due to the huge flow of data resulting from technological progress. To 

handle the high- dimensional data, this dimensionality needs to be shrunk or reduced. 

The process of transforming highly dimensional data into a useful representation of 

decreased dimensionality is known as dimensionality reduction. The dimensionality 

of the reduced representation should ideally match the intrinsic dimensionality of the 

data. The bare minimum of parameters required to explain the observable qualities 

of the data is known as the intrinsic dimension of the data (Fukunaga, 2013). 

Dimensionality reduction is crucial in many fields because it reduces the negative 

effects of dimensionality and other high-dimensional space characteristics (Jimenez 

& Landgrebe, 1998). As a result, dimensionality reduction makes it easier to 

categorise, visualise, and compress high-dimensional data.  

The principal component analysis (PCA) is a very common statistical 

multivariate technique that uses a limited number of components to try to explain the 

covariance structure of data (Hubert et al., 2005). Those components are linear 

collections of the main variables and are frequently used to analyse and better 

comprehend the many sources of variation. The PCA is commonly used for the 

analysis of high-dimensional data, because it is concerned with dimension reduction, 

which can be applied in many fields such as zip code classification, human face 

recognition, engineering, genetics, etc. see (Alter et al., 2000; Hastie et al., 2009; 

Zou and Xue, 2018). Most of PCA studies are focused on its applications in feature 

extraction and dimensional reduction. The majority of PCA applications involve 
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transforming samples into a new space and then denoting the sample using a lower-

dimensional representation of the new space. Due to the efficiency of the PCA 

method in many fields of application, it has been used in the development of many 

new statistical models, for example, Virmani et al. (2016) improved classification 

approaches of PCA-SVM and PCA with probabilistic neural network (PCA-PNN) 

based on computer-aided diagnostic (CAD) systems for the classification of breast 

tissue density. Moreover, Ye & Peng (2018) have developed an image processing 

model by combining the PCA method with the convolution neural network (CNN) 

to solve the problem of low recognition rate. Gan et al. (2012) improved the PCA 

method with linear discriminant analysis (LDA) that can be used to solve pattern 

recognition and classification methods. There are many combined methods with 

PCA in the literature, which have inspired us to propose a hybrid prediction model 

by combining the PCA with the newly developed nu-SVR method of Mohammed 

Rashid et al. (2022) to achieve dimensional reduction and high prediction accuracy 

at the same time. This hybrid model is denoted as PCA-SVR.  

The paper is organised as follows: The structure of the proposed method 

PCA-SVR is described in Section 2. In Sections (3 and 4) the performance of our 

proposed method is tested by using simulation studies and two real datasets. This 

paper is concluded with a discussion in Section 5. 
 

2. The Improved nu-Support Vector Regression Algorithm Based on 

Principal Component Analysis (PCA-SVR)  
 

This section summarises the proposed hybrid prediction model. The hybrid 

prediction model includes two main steps: first, we applied the PCA method to the 

high-dimensional data to reduce the dimensionality by extracting the principal 

components. Second, the nu-SVR model is used to produce a prediction model. The 

next sections provide an overview of the fundamentals of the PCA and nu-SVR 

methods. 

Hotelling (1933) was the first person to establish Principal Component Analysis 

(PCA), which is an unsupervised dimension reduction procedure. The PCA analysis 

aims to find a small number of linear combinations of the predictors that can be used 

to summarise data without losing too much information. This statistical method 

transforms a broad set of correlated variables into a smaller number of uncorrelated 

factors, called principal components. These orthogonal principal components solve 

the multicollinearity problem. 

From a dimension reduction standpoint, the PCA approach can be 

characterised as a series of orthogonal linear transformations of the original variables 

that preserve as much information as possible in the transformed variables (Zou and 

Xue, 2018). For example, let X be a matrix of data 𝑛 × 𝑝, where n represents the 

sample size and 𝑝 is the predictor, respectively.  For ease of explanation, let us 

assume that the column means of X are all 0. The first component is described as 

follows: 
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𝑍1 = ∑ 𝑎1𝑗𝑋𝑗 ,

𝑝

𝑗=1

 (1) 

 

in which  𝑎1 = (𝑎11, … , 𝑎1𝑝)𝑇 is selected in order to maximise 𝑍1variance. 

𝑎1 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

 𝑎𝑇 𝛴̂𝑎  

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑎1‖ = 1.  

Where 𝛴̂ = (𝑋𝑇𝑋) 𝑛⁄  and the remaining main components can be defined in the 

following order: 

𝑎𝑘+1 = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎

 𝑎𝑇 𝛴̂𝑎 (2) 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ‖𝑎1‖ = 1  𝑎𝑛𝑑  𝑎𝑇𝑎1 = 0, ∀1 ≤ 𝑙 ≤ 𝑘.  

According to this definition, the first 𝐾 loading vectors are the first 𝐾 eigenvectors 

of 𝛴̂. Components in the PCA approach can be obtained from the singular value 

decomposition (SVD) of the X matrix as follows: 

𝑋 = 𝑈𝐷𝑉𝑇 , (3) 

where 𝑈𝑛×𝑝 and 𝑉𝑝×𝑝 are the orthonormal matrices, and 𝐷 is a diagonal matrix with 

diagonal elements 𝑑1, … , 𝑑𝑝 in a descending order.  The eigenvectors of 𝛴̂ are the 

columns of 𝑉, and 𝑉 is the loading matrix of the principal components. We can 

deduce from 𝑋𝑉 = 𝑈𝐷 that 𝑍𝑘  =  𝑈𝑘  𝑑𝑘, where 𝑈𝑘 is the 𝑘𝑡ℎ column of 𝑈. The best 

low-rank approximation to the data matrix can be read as SVD. 

In this paper, the nu-SVR approach of Mohammed Rashid et al. (2022) is used to 

establish the prediction model, by adding the most components that interpret the 

variability of the dataset, which can be obtained from 𝑋 = 𝑈𝐷𝑉𝑇 = 𝑋∗, where 𝑋∗is 

represented the selected components.  Hence, the regression function is expressed as 

follows: 

𝑓(𝑋∗) = 𝑤, 𝛷(𝑋∗) + 𝑏, (4) 

in which 𝛷(𝑋∗) is a transform function from non-linear to linear dimensional space, 

w is the weight vector, and b is the bias term.  In order to improve the ability to 

generalise (prediction), the parameters 𝑤 and 𝑏  has to be estimated by using the nu-

tube loss function as follows: 
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𝐿𝑛𝑢 = {
0                           ;    |𝑦𝑖 − 𝑓(𝑋∗)|  ≤  𝑛𝑢                

 |𝑦𝑖 − 𝑓(𝑋∗)| − 𝑛𝑢     ;        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.                    
 (5) 

The nu parameter adjusts (minimises ɛ) the flexible tube automatically to keep track 

of the support vector's numbers and training errors in the tube. The parameter nu is 

an upper bound on the proportion of margin errors and a lower bound on the fraction 

of support vectors, as mentioned by Schölkopf et al. (1999). Thus, the problem in 

Equation (4) could be presented as a convex optimisation problem as follows: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 
1

2
‖𝑤‖2 + 𝐶 (𝑛𝑢 +

1

𝑙
∑(𝜉𝑖

𝑙

𝑖=1

+ 𝜉𝑖
∗))  

subject to {

𝑓(𝑋∗) – 𝑦𝑖    ; ≤  𝑛𝑢 + 𝜉𝑖

𝑦𝑖  –  𝑓(𝑋∗)    ;  ≤ 𝑛𝑢 + 𝜉𝑖
∗

𝜉𝑖 , 𝜉𝑖
∗   ≥   0  ,   𝑛𝑢 ≥  0.

 (6) 

where 𝐶 is the penalisation parameter and to understand that i = 1, ..., l, in which l 

refers to l-dimensional vectors of the corresponding variables. Hence, the final 

regression function for the proposed hybrid prediction model PCA-SVR can be 

obtained as follows: 

𝑓(𝑋∗) = ∑(𝛼𝑖
∗ − 𝛼𝑖)𝑘(𝑥𝑗

∗, 𝑥∗) + 𝑏

𝑙

𝑖=1

. (7) 

The kernel function 𝑘(𝑥𝑗
∗, 𝑥∗) is used to overcome non-linear relationships among 

variables in the input space. Moreover, it is very important to choose the suitable 

kernel function in the prediction model. Therefore, the Bessel kernel function is used 

in the PCA-SVR method because it has already been proven to have high efficiency 

and good performance; see (Mohammed Rashid et al., 2022). 

The algorithm of hybrid prediction model PCA-SVR can be summarised as the 

following steps: 

Step 1: The 𝑋 and 𝑌 variables need to be standardised at the outset to ensure that 

they are given the same weights. According to Narasimhan and Shah (2008), the data 

set must be scaled before applying the PCA approach. Hence, the standardisation 

can be done by the following equations: 

𝑥𝑖𝑗
∗ = 

𝑥𝑖𝑗−𝑥̅𝑗

𝑆𝑥
    𝑎𝑛𝑑  𝑦𝑖

∗= 
𝑦𝑖−𝑦̅

𝑆𝑦
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𝑖 = 1, … , 𝑛      𝑎𝑛𝑑   𝑗 = 1, … , 𝑝, 

Where 𝑥̅𝑗 , 𝑦̅ and 𝑆𝑥 , 𝑆𝑦 are the sample mean and sample standard deviations of 𝑋 

and 𝑌 matrices, respectively.    

Step 2: Compute the variance covariance matrix. 

Step 3: Compute the eigenvectors and eigenvalues using the covariance matrix as in 

step 2. 

Step 4: Determine and select the principal components (PCs) from the Equation (3). 

Step 5: Applying the prediction model SVR as in the Equation (7) by using the 

selected PCs from step 4. 

It should be noted that we used different sets of parameters (𝐶, ɛ, 𝑎𝑛𝑑 ℎ) as in (Dhhan 

et al., 2017). In the next section, the performance of the proposed hybrid prediction 

model PCA-SVR is assessed and compared with that of nu-SVR. This is assessed 

using a simulation study and real data sets. 

3. Simulations Studies 

This section includes two simulation studies to compare the proposed PCA-

SVR method with the nu-SVR method in the case of low-dimensional space (𝑝 < 𝑛) 

and high dimensional space (𝑝 >> 𝑛). The aim of these simulation studies is to 

demonstrate the effectiveness of the proposed PCA-SVR method in terms of 

dimension reduction, prediction accuracy, and time-consuming over the nu-SVR 

technique. It is worth noting that these simulation studies are designed by following 

Dhhan et al. (2018) simulation design. The proposed PCA-SVR method and nu-SVR 

are evaluated based on the prediction risk /or the mean squared error (MSE). The 

prediction risk (MSE) is simulated 1000 times in replications. Moreover, the datasets 

have been partitioned into 70% training data, which is used to build the model, and 

30% testing data, which is used to test the model. The kernel function that is used in 

this paper is the Bessel kernel function. 

3.1 Simulation 1 

In the first simulation, we consider the following multivariate linear 

regression model: 

𝑦𝑖 = 𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗 + 𝜖𝑖,

𝑝

𝑗=1

 (8) 

where β is a set of regression coefficients (𝛽1, … , 𝛽𝑝) = 1, and 𝑥𝑖𝑗   (𝑖 =

1, … , 𝑛 𝑎𝑛𝑑 𝑗 = 1, … , 𝑝) and the errors 𝜖𝑖  are generated from standard normal 

distribution  𝑁(0,1) for 𝑝 = 20 and 𝑛 = (50,100, 𝑎𝑛𝑑 200) which indicates that 
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𝑝 < 𝑛 (low-dimensional space). In order to see the impact of outliers, three good 

observations (1,2, and 3) are replaced with high values equal to 20. Moreover, this 

simulation study has been replicated 1000 times. 

Table 1 summarises the prediction error (MSE) of the proposed method 

PCA-SVR and the nu-SVR method based on different sets of free parameters (𝐶, 𝑛𝑢, 

and ℎ). Additionally, in order to achieve dimensional reduction, the PCA-SVR 

method selected the first two principal components, which are the most components 

that can explain the variability, as shown in Figure 1. Hence, all of the results show 

that the proposed PCA-SVR method is superior to nu-SVR for all combinations of 

parameter. It is interesting to observe that the nu-SVR method has the highest MSE 

when parameter 𝐶 =  1. In contrast, the proposed PCA-SVR method provides good 

performance in all cases of sets of parameters and sample size, as shown in Table 1 

and Figure 2. Another important factor to consider is the time consumed for each 

method. Table 2 shows the results for the computational running time for both 

methods, nu-SVR and PCA-SVR. We can observe that the proposed PCA-SVR 

method has less computation time than the nu-SVR, as shown in Figure 3. 

3.2 Simulation 2 

The second simulation study is similar to the previous simulation 

(Simulation 1), except that there is a large number of explanatory variables, which 

is equal to 3000, with different sample sizes n = (50, 100, and 200) which makes it 

very high dimensional data (𝑝 >> 𝑛) as well as different sets of free parameters 

(𝐶, 𝑛𝑢, and ℎ). In this simulation, we consider the same multiple linear regression 

model as in Equation (8). We let the regression coefficients 𝛽 = (𝛽1, … , 𝛽3000) = 1, 

𝑥𝑖𝑗  and 𝜖𝑖 are sampled from the standard normal distribution 𝑁(0,1). To see the 

effect of outliers in both the nu-SVR and PCA-SVR methods, we replaced three 

clean data points (1, 2, 𝑎𝑛𝑑 3) with large values equal to 20. Moreover, the proposed 

PCA-SVR method chooses the first and second principal components, as seen in the 

Figure 4 to achieve dimensional reduction. 

The results of the MSE values are shown in Table 3 and Figure 5. We can 

clearly observe from Figure 5 that the nu-SVR method still has very large values of 

prediction error (MSE) when the cost parameter 𝐶 = 1. However, the proposed 

PCA-SVR method shows a very good performance in terms of having the smallest 

values of MSE. Moreover, Table 4 and Figure 6 summarised the time consumed in 

both the nu-SVR and PCA-SVR methods. Once again, the proposed PCA-SVR 

method has proven to be effective because it requires significantly less computation 

time than nu-SVR. This feature in the PCA-SVR method should be highlighted, 

especially in the case of high-dimensional data because most of the methods dealing 

with high-dimensional data are time-consuming, see Figure 6. 
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Figure 1. Principal components for PCA-SVR method when 𝒑 = 𝟐𝟎 

 
 

 

 

Table 1. The prediction error (MSE) of nu-SVR and PCA-SVR 

methods when 𝒑 = 𝟐𝟎 and 𝒏 =(50,100 and 200) 
 

 

  

 

n 

P
a

ra
m

e
te

rs
 𝒏𝒖-SVR PCA-SVR 

𝒏𝒖 =0.2 𝒏𝒖 =0.3 𝒏𝒖 =0.2 𝒏𝒖 =0.3 

C=1 C=50 C=100 C=1 C=50 C=100 C=1 C=50 C=100 C=1 C=50 C=100 

50 

h=0.5 21.186 1.137 1.120 21.214 1.193 1.154 0.313 0.352 0.379 0.315 0.301 0.398 

h=1 21.660 1.131 1.235 21.961 1.110 1.320 0.411 0.328 0.408 0.316 0.417 0.418 

100 

h=0.5 21.106 1.328 1.417 11.677 1.419 1.459 0.497 0.451 0.568 0.499 0.483 0.575 

h=1 11.953 1.511 1.477 12.016 1.542 1.563 0.513 0.512 0.512 0.413 0.512 0.513 

200 

h=0.5 6.854 1.905 1.907 6.879 1.915 1.944 0.739 0.607 0.619 0.645 0.616 0.608 

h=1 6.990 1.908 1.928 6.996 1.903 1.908 0.769 0.737 0.804 0.710 0.894 0.870 
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Table 2. Comparison of the computational times of nu-SVR and PCA-SVR 

methods when 𝒑 = 𝟐𝟎 and 𝒏 = (𝟓𝟎, 𝟏𝟎𝟎 𝒂𝒏𝒅 𝟐𝟎𝟎) 
 

Figure 2. The MSE of nu-SVR and PCA-SVR for 20 predictors 

 

Figure 3. Computational running time for nu-SVR and PCA-SVR 

when 𝒑 =  𝟐𝟎 and 𝒏 =(50,100 and 200) 

n Parameters 

𝒏𝒖-SVR PCA-SVR 

𝒏𝒖 =0.2 𝒏𝒖 =0.3 𝒏𝒖 =0.2 𝒏𝒖 =0.3 

C=1 C=50 C=100 C=1 C=50 C=100 C=1 C=50 C=100 C=1 C=50 C=100 

50 
h=0.5 74.4 115.2 162.6 91.8 147 234 73.8 108 141 87 138 208.8 

h=1 96.6 177.6 265.8 97.2 213 303 93 151.8 212.4 92.4 178.2 258.6 

100 
h=0.5 88.2 171.6 247.2 89.4 196.2 461.4 84 164.4 234.6 83.4 189.6 444.6 

h=1 114 364.8 540.6 121.2 372 537 109.2 316.2 427.8 112.8 256.2 529.8 

200 

h=0.5 139.8 338.4 514.2 125.4 335.4 553.2 114 267 535.8 112.2 380.4 547.8 

h=1 113.4 415.2 690 139.8 525 906 108 376.2 610.2 99.6 457.8 805.2 
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Figure 4. Principal components for PCA-SVR method when p=3000 

 
Table 3. The prediction error (MSE) of nu-SVR and PCA-SVR methods when 

𝒑 = 𝟑𝟎𝟎𝟎 and 𝒏 = (𝟓𝟎, 𝟏𝟎𝟎 𝒂𝒏𝒅 𝟐𝟎𝟎) 

 
 

Table 4. Comparison of the computational times of nu-SVR and PCA-SVR 

methods when 𝒑 = 𝟑𝟎𝟎𝟎 and 𝒏 = (𝟓𝟎, 𝟏𝟎𝟎 𝒂𝒏𝒅 𝟐𝟎𝟎) 

 

n 

P
a
ra

m
et

er
s 𝒏𝒖-SVR PCA-SVR 

𝒏𝒖 =0.2 𝒏𝒖 =0.3 𝒏𝒖 =0.2 𝒏𝒖 =0.3 

C=1 C=50 C=100 C=1 C=50 C=100 C=1 C=50 C=100 C=1 C=50 C=100 

50 
h=0.5 21.938 1.264 1.311 22.138 1.206 1.229 0.420 0.421 0.458 0.406 0.482 0.465 

h=1 22.025 1.322 1.351 22.186 1.366 1.353 0.457 0.519 0.516 0.521 0.545 0.551 

100 

h=0.5 11.707 1.506 1.544 11.958 1.529 1.619 0.423 0.466 0.558 0.529 0.544 0.568 

h=1 11.688 1.408 1.425 11.805 1.399 1.421 0.582 0.592 0.626 0.550 0.617 0.618 

200 

h=0.5 6.793 1.786 1.750 7.071 1.725 1.856 0.621 0.649 0.637 0.627 0.712 0.825 

h=1 6.577 1.650 1.773 6.653 1.825 1.896 0.631 0.720 0.724 0.637 0.811 0.886 

n 

P
a
ra

m
et

er
s 

𝒏𝒖-SVR PCA-SVR 

𝒏𝒖 =0.2 𝒏𝒖 =0.3 𝒏𝒖 =0.2 𝒏𝒖 =0.3 

C=1 C=50 C=100 C=1 C=50 C=100 C=1 C=50 C=100 C=1 C=50 C=100 

5
0
 h=0.5 2430.6 2490.6 2622.6 1858.8 2526.6 2221.2 912.6 957 961.8 610.8 863.4 949.8 

h=1 2242.8 2320.8 2211.6 2238 2353.8 2731.8 666.6 992.4 963 607.8 882.6 990.6 

1
0
0
 h=0.5 1907.4 4500 5832 1974.6 4968 3960 2298.6 2424.6 2457.6 2272.2 2544.6 2553.6 

h=1 2170.2 4140 4932 2412 3780 6120 2106 2452.2 2648.4 2049.6 2567.4 2724.6 

2
0
0
 h=0.5 3101.4 8820 10080 4441.6 9000 10296 2716 5400 5724 2680 5436 5760 

h=1 3346.8 9000 10260 4561.6 9216 10440 2788 5436 5688 2752 5508 5832 
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Figure 5. The MSE of nu-SVR and PCA-SVR for 3000 predictors 

 

 

Figure 6. Computational running time for nu-SVR and PCA-SVR when 𝒑 =
 𝟑𝟎𝟎𝟎 and 𝒏 = (𝟓𝟎, 𝟏𝟎𝟎 𝒂𝒏𝒅 𝟐𝟎𝟎) 

 

 

4. Real Case Studies 

 

In this section, the comparison methods PCA-SVR and nu-SVR are 

illustrated through the analysis of two real data sets, first the prostate cancer data 

(low-dimensional data), and second the microarray data (high-dimensional data). 

These approaches were assessed using the mean square error of the testing data 

(MSE). The Bessel kernel function is used to transform the input space into high-

dimensional feature space. These data sets have been split into 70% as training data 

and 30% as testing data. 
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4.1 Prostate Cancer Data 

The prostate cancer data is the first real example in this paper. This dataset 

has been studied for estimations and variable selection by several researchers 

(Stamey et al., 1989; Friedman, 2001; Dhhan et al., 2018). This data set includes 97 

observations as sample size (𝑛 =  97) and 9 variables (𝑝 =  9), and that makes it 

low dimensional data (𝑝 < 𝑛). According to Wahid et al. (2017), the prostate cancer 

data contains three outliers in the response variable. This data set has been split into 

70% as a training sample for constructing the model and 30% as a testing sample for 

testing the model.  The PCA-SVR method has selected three principal components, 

which are the most components that can explain the variability in this data set, as 

shown in Figure 7(a). Hence, Table 5 summarises the prediction errors (MSE) for 

the nu-SVR and PCA-SVR methods by selecting each parameter (𝐶, 𝑛𝑢, and h) for 

three different values (small, medium, and large). As we observe in Figure 7 (b), the 

proposed PCA-SVR method has the lowest MSE than the nu-SVR method. 

 

 

Figure 7. Section (a) provides the principal components  

for the PCA-SVR method for the Prostate cancer data,  

and Section (b) provides the MSE of nu-SVR and PCA-SVR methods  

for Prostate cancer data. 
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Table 5. The MSE of nu-SVR and PCA-SVR methods  

for Prostate cancer data set 

 

 

 

4.2 Microarray Data-Riboflavin Production by Bacillus Subtilis 

Real high-dimensional data is our second example in this paper. Riboflavin 

production by bacillus subtitratus (Microarray data) has been studied by Bühlmann 

and Van (2011). This dataset consists of the response variable Y, which measures  

the logarithm of the production rate of riboflavin, and the explanatory variables 

𝑝 =  4088, which corresponds to the logarithms of expression levels of genes with 

a sample size of 𝑛 =  71, taken from the genetically homogeneous sample. In order 

to achieve the dimensional reduction, the proposed PCA-SVR method selected the 

first three principal components, which are the most components that can explain the 

variability in the microarray data set; see Figure 8(a). We used 70% of the data set 

as training data and 30% as testing data to test the performance of each method.  

Table 6 shows the result of applying nu-SVR and PCA-SVR with different 

sets of parameters (𝐶, 𝑛𝑢, and h). As shown in Figure 8(b), the proposed PCA-SVR 

method has lower MSE values compared to the standard method nu-SVR, indicating 

that the PCA-SVR method outperforms the nu-SVR method in terms of performance 

and efficiency. 

 

 

  

Parameters 
𝒏𝒖-SVR PCA-SVR 

C=1 C=50 C=100 C=1 C=50 C=100 

h=0.5 

𝒏𝒖 =0.1 0.2700628 0.5778399 0.7252587 0.292268 0.4439863 0.4261309 

𝒏𝒖 =0.2 0.716582 0.6962048 0.7087298 0.3315941 0.4773234 0.5591103 

𝒏𝒖 =0.3 0.7331763 0.7299576 0.7982088 0.3447063 0.5307738 0.547459 

h=1 

𝒏𝒖 =0.1 0.7764641 0.765243 1.049053 0.3192888 0.6031799 0.5646778 

𝒏𝒖 =0.2 0.716974 1.064234 1.233345 0.3346457 0.4820845 0.4509116 

𝒏𝒖 =0.3 0.7106957 1.21813 1.233552 0.3525686 0.4168797 0.431277 

 

h=5 

𝒏𝒖 =0.1 1.354441 1.404198 1.406178 0.3252778 0.46697 0.6159731 

𝒏𝒖 =0.2 1.350312 1.404217 1.524214 0.3763249 0.5139255 0.6356268 

𝒏𝒖 =0.3 1.369982 1.404226 1.545266 0.3993474 0.5141451 0.6357557 
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Figure 8. Section (a) provides the principal components for the PCA-SVR 

method for Microarray data, and Section (b) provides The MSE of nu-SVR 

and PCA-SVR methods for Microarray data 

 
Table 6. The MSE of nu-SVR and PCA-SVR methods for Microarray data set 

 

 

Parameters 
𝒏𝒖-SVR PCA-SVR 

C=1 C=50 C=100 C=1 C=50 C=100 

h
=

0
.5

 

𝒏𝒖 

=0.1 
0.8827066 0.8777829 0.887125 0.4541419 0.5472518 0.544104 

𝒏𝒖 

=0.2 
0.8694467 0.8777833 0.896458 0.4168072 0.4617277 0.4462234 

𝒏𝒖 

=0.3 
0.8715451 0.8777832 0.899845 0.4346946 0.3610354 0.3494144 

h
=

1
 

𝒏𝒖 

=0.1 
0.8167055 0.8373702 0.886954 0.4643128 0.5628258 0.5491446 

𝒏𝒖 

=0.2 
0.8480435 0.8373725 0.889664 0.4461962 0.4398063 0.4896922 

𝒏𝒖 

=0.3 
0.8330664 0.8373614 0.912354 0.443401 0.4223772 0.5141574 

h
=

5
 

𝒏𝒖 

=0.1 
0.817066 0.8377712 0.915478 0.344176 0.4876355 0.4985552 

𝒏𝒖 

=0.2 
0.8486222 0.8377717 0.923154 0.2722404 0.6001547 0.5708413 

𝒏𝒖 

=0.3 
0.8332969 0.8377631 0.951472 0.3113499 0.6000107 0.5702908 
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5. Discussion and Conclusions 

In this paper, we developed a hybrid prediction model PCA-SVR to achieve 

dimensional reduction and high prediction accuracy at the same time. Two 

simulation studies and real data sets with different scenarios of dimension (low and 

high) are employed to evaluate the performance of the PCA-SVR method.  The 

numerical evidence shows the superiority of the PCA-SVR method over nu-SVR in 

having the smallest values of MSE and taking less computational time in both 

situations (low- and high-dimensional data sets) as well as in reducing the curse of 

dimensionality. 
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