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AMERICAN-STYLE WARRANT PRICING — A MODEL BASED 

ON KoBoL PROCESS 

 

Abstract. Most of the research on the American-style warrant pricing is 

carried out under the framework of the B-S model, and the randomness of the 

financial market is limited. Under the KoBoL process, the American-style warrant 

pricing model is a partial differential equation with fractions, but there is a free 

boundary problem. The first-order fully implicit model is constructed using the 

coordinate transformation method and the penalty method, which converts the free 

boundary of the American warrant pricing model under the KoBoL process into a 

fixed boundary, and proves that the value of American-style warrant is not less 

than the exercise value. The theoretical analysis conclusion is verified by 

numerical simulation, and the influence of parameters on the contract value and 

the optimal exercise price is analysed. 

Keywords: American-style warrant, pricing model, KoBoL process, penalty 

function. 
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Introduction 
 

As a type of option, the American-style warrant has many similarities to 

the American option in terms of characteristics. Research on the pricing of 

American-style warrant is carried out under the framework of the B-S model (Rong, 

2008; Du, 2009; Wang, 2016). However, the B-S model has very limited reflection 

on the real financial market, and the continuous-time Brownian motion cannot fully 

reflect the randomness of the financial market (Chen and Lin, 2018). In order to 

improve the pricing model, some scholars have proposed KoBoL model based on 

the general 𝐿𝑒𝑣𝑦́  process as the basic model for the pricing of option risk assets. 
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This model introduces the "Damping" effect in the density function of the 

characteristic equation based on the 𝛼 steady-state process, which ensures that all 

conditional moments for realising risk assets are limited. Therefore, under the 

assumption that asset price follow the KoBoL process (Boyarchenko and 

Levendorski, 2012), the valuation of risky asset can be set as: 

 

dxt = (y − π)dt + dLt
KoBoL                          (1) 

 

It can be solved as: 

 

{
YT = Yte

(y−π)(T−t) + ∫ dLϑ
KoBoLT

t

π =
1

2
σα[p(λ − 1)α + q(λ + 1)α − λα − αλα−1(q − p)]

      (2) 

 

Where, 𝐱𝐭 is the logarithmic value of the risky asset 𝐱𝐭 = 𝐥𝐧𝐘𝐭, 𝐲 is the risk-free 

interest rate, T is the expiry time of the risky asset, 𝐋𝐭
𝐊𝐨𝐁𝐨𝐋 is the increment of 

𝐿𝑒𝑣𝑦́  process under the equivalent martingale measure, and 𝛑 is the convexity 

adjustment to make the expectation of 𝐘𝐓 become 𝐄[𝐘𝐓] = 𝐞
𝐲(𝐓−𝐭)𝐘𝐭, 𝛔 is the 

asset price volatility, 𝛂 is the parameter of the stable 𝐿𝑒𝑣𝑦́  process, 𝐩 is the 

probability of asset price rise, and 𝛌 is the asset risk price. 

The KoBoL process can not only solve the problem of "asymmetric 

distribution" of the pricing of risky asset, but also retain the best features of the B-S 

model. Some scholars have researched the pricing of risky asset under this 

framework. For example, the research of Marom and Momoniat (2009) shows that 

the 𝐿𝑒𝑣𝑦́  process can describe different types and stages of the market, and the 

KoBoL process shows good boundary convergence, which makes it perform better 

in practical applications. Based on the KoBoL process, Meng, et al. (2014) 

proposed a fast preprocessing iterative method for European option pricing using a 

band preprocessor. Cartea (2017) believes that the KoBoL process has achieved an 

appropriate balance between solving the characteristics of stock price evolution and 

the difficulty of mathematical processing, he used the KoBoL process to study the 

pricing of European option and barrier option, and a numerical analysis method of 

fractional differential equations is proposed. Zhang and Yin (2020) studied 

American option pricing based on the KoBoL process, and proposed a numerical 

discrete method for solving fractional partial differential equation, and theoretically 

analysed the sufficient conditions for the stability of the numerical format. 

Under the KoBoL process, the American-style warrant pricing model has a 

free boundary problem, and the governing equation is a fractional partial 

differential equation. For the free boundary problem, academia has proposed some 

methods, among which the penalty method is very effective in solving the 

American option pricing problem and the infinite-dimensional nonlinear problem, 

and this method has been highly recognised by academia. After coordinate 

transformation American-style warrant can be regarded as an American call option 
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under the KoBoL process. Therefore, under the KoBoL process, this paper uses 

coordinate transformation method and penalty method to improve the 

American-style warrant pricing model, and set up a first-order fully implicit model 

that suitable for American-style warrant pricing, and numerical simulation of the 

conclusion of the analysis is carried out, and the influence of parameters on the 

contract value of American-style warrant and the optimal exercise price is 

analysed. 

 

2. Model 

 

2.1 Governing equation 

The payment function of the American-style warrant contract can be 

written as: 

 

Γ(xT, T) = max (e
x − ψeγT, 0)                           (3) 

 

Where, 𝛄(𝛄 > 𝒚) is the cost of capital, and 𝛙 is the contract price. According to 

the no-arbitrage pricing principle, the contract value 𝛀(𝐱, 𝐭) at time t satisfies: 

 

Ω(x, t) = e−y(T−t)EG[Γ(xT, T)]                         (4) 

 

Where, 𝐄𝐆 is the conditional expectation operator under the measure 𝐆. With the 

research conclusions of Zhang and Yin (2020), the contract value 𝛀(𝐱, 𝐭) can be 

obtained to satisfy the formula (5). 

 
∂Ω(x,t)

∂t
+ [y − π − λα−1(p − q)]

∂Ω(x,t)

∂t
+
1

2
σα[pex

λxHxh
α e−λxΩ(x, t) +

qe−∞
−λxHx

αeλxΩ(x, t)] = (y +
1

2
σαλα)Ω(x, t)                (5) 

 

Where, 𝐱 ∈ (−∞, 𝐱𝐡], 𝐭 ∈ [𝟎, 𝐓], 𝟏 < 𝜶 < 𝟐, 

π =
1

2
σα[p(λ − 1)α + q(λ + 1)α − λα − αλα−1(q − p)] 

and 

ex
λxHxh

α e−λxΩ(x, t) =
eλx

Π(2 − α)

∂2

∂x2
∫

e−ληΩ(η, t)

(η − x)α+1−n

xh

x

dη 

e−∞
−λxHx

αeλxΩ(x, t) =
e−λx

Π(2 − α)

∂2

∂x2
∫

eληΩ(η, t)

(η − x)α+1−n
dη

x

−∞
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2.2 Boundary conditions 

According to the characteristics of the American-style warrant contract, the 

boundary conditions of the mathematical model can be obtained (Wang and Chen, 

2020; Chen et al., 2015). 
 

{
 
 

 
 

limx→−∞Ω(x, t) = 0

Ω(xh, t) = e
xh − ψeγt

∂Ω(xh,t)

∂x
= Yh = e

h

Ω(x, T) = max (ex − ψeγT, 0)

                      (6) 

 

To sum up, formulas (5) and (6) are the American-style warrant pricing 

model obtained under the KoBoL process. Since the contract can be executed in 

advance, the contract value must meet the following condition: 

 

Ω(xt, t) ≥ max (e
xt − ψeγt, 0)                           (7) 

 

 

2.3 Coordinate transformation 

In order to eliminate the influence of the time variable 𝐞𝐭 in the boundary 

conditions on the numerical results, coordinate transformation is carried out, let: 

 

θ = x − γt, θh = xh − γt, e
−γtΩ(x, t) = Ψμ(θ, t)          (8) 

 

After variable transformation, the pricing models (5) and (6) can be 

transformed into: 

 

   
∂Ψμ(θ,t)

∂t
+ α

∂Ψμ(θ,t)

∂θ
+
1

2
σα[peθ

λθHθt
α e−λθΨμ(θ, t)] + qe−∞

−λθHθ
αeλθΨμ(θ, t) 

= bΨμ(θ, t)                                     (9) 

 

Where, 𝛉 ∈ (−∞,𝛉𝐡] , 𝐭 ∈ [𝟎, 𝐓] , 𝟏 < 𝜶 < 𝟐 , 𝛂 = 𝐲 − 𝛑 − 𝛌 − 𝛌𝛂−𝟏(𝐪 − 𝐩) , 

𝐛 = 𝐲 − 𝛄 + 𝛔𝛂𝛌𝛂/𝟐, 𝐥𝐢𝐦
𝛉→∞

𝚿𝛍(𝛉, 𝐭) = 𝟎, 𝚿𝛍(𝛉𝐡, 𝐭) = 𝐞
𝛉𝐡 −𝛙 ,

𝛛𝚿𝛍(𝛉𝐡,𝐭)

𝛛𝛉
= 𝐞𝛉𝐡  , 

𝚿𝛍(𝛉, 𝐓) = 𝐦𝐚𝐱 (𝐞
𝛉 −𝛙,𝟎). Therefore, formula (7) is transformed as follows: 

 

Ψμ(θ, t) ≥ max (e
θ −ψ, 0)                                (10) 

 

We can see that 𝚿𝛍(𝛉, 𝐭) can be regarded as an American call option 

under the KoBoL process, where 𝐞𝛉 is the price of the underlying asset, 𝛙 is the 

exercise price, and 𝐞𝛉𝐡 is the optimal execution boundary. In addition, the right 

boundary 𝛉𝐡 of the equation is unknown, which brings difficulties to the solution 

of the model. The penalty method can be used to transform the free boundary 

problem into a fixed boundary problem to facilitate the solution.  



 
 
 
 
 
 
 

American-style Warrant Pricing — A Model Based on KoBoL Process 

 

 

303 

2.4 Penalty function 

 

Adding a penalty function term to the governing equation (9) can solve the 

problem of free boundary. The penalty function term in this paper is 
𝛍𝐑

𝚿𝛍(𝛉,𝐭)+𝛍−𝐪(𝛉)
, 

where, 𝐪(𝛉) = 𝐞𝛉 − 𝐋, 𝟎 < 𝛍 ≤ 𝟏  is an infinitesimal constant, and R is a 

pending parameter. By adding the penalty function term to the fractional 

differential equation (9), the original equation is transformed into: 

 

 
∂Ψμ(θ,t)

∂t
+ α

∂Ψμ(θ,t)

∂θ
+
1

2
σα[peθ

λθHθmax
α e−λθΨμ(θ, t)] + qe−∞

−λθHθ
αeλθΨμ(θ, t) 

+
μR

Ψμ(θ,t)+μ−q(θ)
= bΨμ(θ, t)                         (11) 

 

Where, 𝛉 ∈ (−∞,𝛉𝐦𝐚𝐱] , 𝐭 ∈ [𝟎, 𝐓] , 𝟏 < 𝛂 < 𝟐 , 𝐥𝐢𝐦
𝛉→∞

𝚿𝛍(𝛉, 𝐭) = 𝟎 , 

𝚿𝛍(𝛉𝐦𝐚𝐱, 𝐭) = 𝐞
𝛉𝐦𝐚𝐱 −𝛙, 𝚿𝛍(𝛉, 𝐓) = 𝐦𝐚𝐱 (𝐞

𝛉 −𝛙, 𝟎), 𝐞𝛉𝐦𝐚𝐱 is the maximum 

value of the underlying asset price. According to the conclusions of Yan and Qin 

(2018), the maximum stock price is generally 3 to 4 times the exercise price, so the 

numerical analysis below will also refer to this range. 

 

3. Theoretical Derivation 

 

In this part, we will show the derivation process of the first-order fully 

implicit model. Assuming that the positive integers m and n make the space step 

∆𝛉  satisfy 𝐦∆𝛉 = 𝛉𝐦𝐚𝐱  and the time step ∆𝐭  satisfy 𝐧∆𝐭 = 𝐓  respectively, 

then𝛉𝐣 = (𝐣 − 𝟏)∆𝛉 , 𝐭𝐢 = (𝐢 − 𝟏）∆𝐭 , Where, 𝐣 =. . . , −𝟐,−𝟏, 𝟎, 𝟏, 𝟐, …𝐦+ 𝟏 , 

𝐢 = 𝟏, 𝟐,… , 𝐧 + 𝟏. The first-order space and time derivatives use forward and 

backward difference methods respectively. Using the 𝐺𝑟�̈�𝑛𝑤𝑎𝑙 − 𝐿𝑒𝑡𝑛𝑖𝑘𝑜𝑣 

formula to approach the left and right fractional derivatives: 

 

eθ
λθHθmax

α e−λθΨμ(θj, ti) =
1

(Δθ)α
∑ Gρ,λ

α Ψμ(θj+ρ−1, ti) + o(Δθ
2)

M−j+2
ρ=0   (12) 

 

e−∞
−λθHθ

αeλθΨμ(θj, ti) =
1

(Δθ)α
∑ Gρ,λ

α Ψμ(θj−ρ+1, ti) + o(Δθ
2)∞

ρ=0       (13) 

 

Where, 𝐆𝛒,𝛌
𝛂  is the coefficient of the fractional derivative and satisfies the 

following conditions: 

 

G0,λ
α = γ1φ0e

∆θλ, G1,λ
α = γ1φ1 + γ2φ0 

    Gρ,λ
α = (γ1φρ + γ2φρ−1 + γ3φρ−2)e

−(ρ−1)∆θλ (ρ≥2) 
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The parameter 𝛗𝟏 of 𝐆𝛒,𝛌
𝛂  satisfies the following iterative relationship, 

that is 𝛗𝟎 = 𝟏  and 𝛗𝛒 = (𝟏 −
𝟏+𝛂

𝛒
)𝛗𝛒−𝟏  (𝛒≥2), and the parameter 𝛄𝐢 (𝐢 =

𝟏, 𝟐, 𝟑) of 𝐆𝛒,𝛌
𝛂  satisfies 𝛄𝟏 + 𝛄𝟐+𝛄𝟑 = 𝟏 and 𝛄𝟏 − 𝛄𝟑 = 𝛂/𝟐. 

In summary, the fully implicit difference form of equation (11) can be 

written as: 

 

 
Ψj
i+1−Ψj

i

Δt
+ α

Ψj
i−Ψj−1

i

Δθ
+
1

2
σα[

p

(Δθ)α
∑ Gρ,λ

α Ψj+ρ−1
im−j+2

ρ=0 +
q

(Δθ)α
∑ Gρ,λ

α Ψj−ρ+1
i ]∞

ρ=0  

+
μR

Ψj
i+μ−q(θj)

= bΨj
i                               (14) 

 

The corresponding boundary conditions are approximated as 𝐥𝐢𝐦
𝐣→∞

𝚿𝐣
𝐢 = 𝟎, 

𝚿𝐦+𝟏
𝐢 = 𝐞𝛉𝐦𝐚𝐱 −𝛙 and 𝚿𝐣

𝐧+𝟏 = 𝐦𝐚𝐱(𝐞𝛉𝐣 −𝛙,𝟎), Where, 𝚿𝐣
𝐢 = 𝚿𝛍(𝛉𝐢, 𝐭𝐢). 

The penalty function term is used to approximate the governing equation to 

obtain the fully implicit form of the fractional partial differential equation. Based 

on this, 𝚿𝐣
𝐢 still satisfies the inequality (10), which verifies the effectiveness of the 

difference scheme. Before the proof, combined with the research of Xi and Cao 

(2014), Ma, et al. (2019) and other scholars, Lemma 1 is proposed. 

 

Lemma 1 

If max {
(2−α)(α2+α−8)

2(α2+3α+2)
,
(1−α)(α2+2α)

2(α2+3α+4)
} ≤ γ3 ≤

(2−α)(α2+α−3)

2(α2+3α+2)
, for 𝟏 < 𝜶 <

𝟐 , 𝛌 > 0 , then 𝐆𝛒,𝛌
𝛂  satisfies φ0 = 1 ,  φ1 = −α ,  0 ≤. . . ≤ φ3 ≤ φ2 ≤ φ1 ≤

1,∑ φρ = 0
∞
ρ=0 , G1,λ

α ≤ 0, G0,λ
α + G2,λ

α ≥ 0, Gρ,λ
α ≥ 0 (ρ≥2). 

 

Lemma 2 

When 𝟏 < 𝜶 < 𝟐, 𝛌 > 0, then 𝐆𝛒,𝛌
𝛂  satisfies the equation: 

 

 ∑ Gρ,λ
α = (γ1e

Δθλ + γ2 + γ3e
−Δθλ)(1 − e−Δθλ)α∞

ρ=0  

 

Refer to the conclusions of Hao, et al. (2015), if the constant 𝐳 ∈ (−𝟏, 𝟏], 
then (𝟏 − 𝐳)𝛂 = ∑ 𝛗𝛒𝐳

𝛒∞
𝛒=𝟎 . On the basis of Lemma 1, we can get: 

 

       ∑ Gρ,λ
α∞

ρ=0 = ∑ (γ1φρ + γ2φρ−1 + γ3φρ−2)e
−(ρ−1)Δθλ + G0,λ

α + G1,λ
α∞

ρ=2  

            = γ1e
Δθλ∑ φρe

−(ρ−1)Δθλ∞
ρ=2 + γ2∑ φρ−1e

−(ρ−1)Δθλ∞
ρ=2 + 

                     γ3e
−Δθλ∑ φρ−2e

−(ρ−2)Δθλ∞
ρ=2 + G0,λ

α + G1,λ
α  

              = γ1e
Δθλ[(1 − e−Δθλ)

α
+ αe−Δθλ − 1] + γ2[(1 − e

−Δθλ)
α
− 1] 

                     +γ3e
−Δθλ(1 − e−Δθλ)

α
+ γ1e

Δθλ − αγ1 + γ2 

                = (γ1e
Δθλ + γ2 + γ3e

−Δθλ)(1 − e−Δθλ)
α
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Theorem 1 

If 𝚫𝐭 ≤
𝟏

𝛄−𝐲
, 𝛄𝟑 ≥

𝟏

𝟐
(𝐞𝛉𝐦𝐚𝐱−𝟏)−𝟏

𝐞𝛉𝐦𝐚𝐱+𝐞−𝛉𝐦𝐚𝐱−𝟐
, and R satisfies the following 

inequality: 
 

 R ≥ |a|
eθmax(eθmax−1)

eθmax
+ (

1

2
σαλα + |b|) (eθmax + ψ) 

 

Then 𝚿𝐣
𝐢  obtained by formula (14) satisfies the inequality 𝚿𝐣

𝐢 ≥

𝐦𝐚𝐱(𝐞𝛉𝐣 −𝛙, 𝟎). 

For the proof of Theorem 1, first prove that 𝚿𝐣
𝐢 ≥ 𝐞𝛉𝐣 −𝛙, and then prove 

that 𝚿𝐣
𝐢 ≥ 𝟎 exists for any i and j.Let 𝐪𝐣 = 𝐞

𝛉𝐣 −𝛙, 𝛝𝐣
𝐢 = 𝚿𝐣

𝐢 − 𝐪𝐣, we can get: 

 

  ϑj
i+1 −

a∆t

∆θ
ϑj−1
i +

1

2
σα∆t [

p

(∆θ)α
∑ Gρ,λ

αm−j+2
ρ=0 ϑj+ρ−1

i +
q

(∆θ)α
∑ Gρ,λ

α∞
ρ=0 ϑj−ρ+1

i ] +
μR∆t

ϑj
i+μ

+ ∆tF = (1 −
a∆t

∆θ
+ b∆t)ϑj

i  

 

Where, F =
a

∆θ
(qj − qj−1) − bqj +

1

2
σα[

p

(∆θ)α
∑ Gρ,λ

αm−j+2
ρ=0 qj+ρ−1 +

q

(∆θ)α
∑ Gρ,λ

α∞
ρ=0 qj−ρ+1]. 

As p+q=q, so |
p

(∆θ)α
∑ Gρ,λ

αm−j+2
ρ=0 +

q

(∆θ)α
∑ Gρ,λ

α∞
ρ=0 | ≤

∑ Gρ,λ
α∞

ρ=0

(∆θ)α
. 

Based on the Lemma 2, when 𝛄𝟑 ≥
𝛂

𝟐
(𝐞𝛉𝐦𝐚𝐱−𝟏)−𝟏

𝐞𝛉𝐦𝐚𝐱+𝐞−𝛉𝐦𝐚𝐱−𝟐
, we can get 

|
∑ 𝐆𝛒,𝛌

𝛂∞
𝛒=𝟎

(∆𝛉)𝛂
| ≤ 𝛌𝛂, then: 

 
1

2
σα |

p

(∆θ)α
∑ Gρ,λ

α ψ
m−j+2
ρ=0 +

q

(∆θ)α
∑ Gρ,λ

α ψ∞
ρ=0 | ≤

1

2
σαλαψ           (15) 

 

 
1

2
σα |

p

(∆θ)α
∑ Gρ,λ

α eθj+ρ−1
m−j+2
ρ=0 +

q

(∆θ)α
∑ Gρ,λ

α eθj+ρ−1∞
ρ=0 | ≤

1

2
σαλαeθmax  (16) 

 

Substituting formula (15) and formula (16) into equation 𝐅, we can get: 

 

|F| ≤ |a|
eθmax(eθmax−1)

eθmax
+(

1

2
σαλα + |b|)(eθmax +ψ)              (17) 

 

Let 𝛝𝐉
𝐢 = 𝐦𝐢𝐧𝐣𝛝𝐣

𝐢 and 𝛝𝐋
𝐢+𝟏 = 𝐦𝐢𝐧𝐣𝛝𝐣

𝐢+𝟏, then: 

 

{1 + b∆t −
1

2
σα∆t[

p

(∆θ)α
∑ Gρ,λ

αm−j+2
ρ=0 +

q

(∆θ)α
∑ Gρ,λ

α∞
ρ=0 ]} ϑJ

i −
μR∆t

ϑJ
i+μ

− ∆tF ≥ ϑL
i+1         

(18) 
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Define a new function: 

 

Φ(x) = {1 + b∆t −
1

2
σα∆t[

p

(∆θ)α
∑ Gρ,λ

αm−j+2
ρ=0 +

q

(∆θ)α
∑ Gρ,λ

α∞
ρ=0 ]} x −

μR∆t

x+μ
− ∆tF  

(19) 

 

According to the conclusion of Lemma 2, when 𝛄𝟑 ≥
𝛂

𝟐
(𝐞𝛉𝐦𝐚𝐱−𝟏)−𝟏

𝐞𝛉𝐦𝐚𝐱+𝐞−𝛉𝐦𝐚𝐱−𝟐
 and 

∆𝐭 ≤
𝟏

𝛄−𝐲
, we can get: 

 

1 + b∆t −
1

2
σα∆t [

p

(∆θ)α
∑ Gρ,λ

αm−j+2
ρ=0 +

q

(∆θ)α
∑ Gρ,λ

α∞
ρ=0 ] ≥ 1 + b∆t  (20) 

 

−
1

2
σα∆t

(γ1e
Δθλ+γ2+γ3e

−Δθλ)(1−e−Δθλ)
α

(∆θ)α
≥ 1 + b∆t −

1

2
σαλα∆t      (21) 

 

Determine the monotonicity of function 𝚽(𝐱) on the basis of 𝟏 + 𝐛∆𝐭 −
𝟏

𝟐
𝛔𝛂𝛌𝛂∆𝐭 = 𝟏 + (𝐲 − 𝛄)𝚫𝐭 ≥ 𝟎, for the function 𝚽(𝐱), according to 𝚽′(𝛝𝐉

𝐢) =

𝟏 + 𝐛∆𝐭 −
𝟏

𝟐
𝛔𝛂∆𝐭 [

𝐩

(∆𝛉)𝛂
∑ 𝐆𝛒,𝛌

𝛂𝐦−𝐣+𝟐
𝛒=𝟎 +

𝐪

(∆𝛉)𝛂
∑ 𝐆𝛒,𝛌

𝛂∞
𝛒=𝟎 ] +

𝛍𝐑∆𝐭

(𝛝𝐉
𝐢+𝛍)𝟐

≥ 𝟐  for 

conversion, it can be concluded that 𝚽(𝐱) is monotonically increasing. 

Assuming 𝛝𝐋
𝐢+𝟏 ≥ 𝟎, then 𝚽′(𝛝𝐉

𝐢) ≥ 𝟎. According to the value range of R 

in Theorem 1, we know that R+F≥0, then 𝚽(𝟎) = −∆𝐭(𝐑 + 𝐅) ≤ 𝟎. As the 

monotonicity of 𝚽(𝐱), it can be judged that 𝛝𝐉
𝐢 ≥ 𝟎, then 𝛝𝐣

𝐢 ≥ 𝟎. Based on the 

boundary condition of 𝛝𝐣
𝐧+𝟏 ≥ 𝟎, using the mathematical induction, we can get ∀𝐢, 

j, 𝛝𝐣
𝐢 ≥ 𝟎, and the first stage of the proof is completed. Then enter the second stage 

of the proof process to prove 𝛝𝐣
𝐢 ≥ 𝟎. According to the previous method, redefine 

𝚿𝐉
𝐢 = 𝐦𝐢𝐧𝐣𝚿𝐣

𝐢, 𝚿𝐋
𝐢+𝟏 = 𝐦𝐢𝐧𝐣𝚿𝐣

𝐢+𝟏. 

Since it was proved in the first stage that ∀𝐢, j,𝚿𝐣
𝐢 ≥ 𝐪𝐣, we can get 

𝛍𝐑∆𝐭

𝛝𝐉
𝐢+𝛍

≥

𝟎, then: 

     {1 + b∆t −
1

2
σα∆t[

p

(∆θ)α
∑ Gρ,λ

αm−j+2
ρ=0 +

q

(∆θ)α
∑ Gρ,λ

α∞
ρ=0 ]}ΨJ

i ≥ ΨL
i+1   (22) 

 

In summary, we can get 𝚿𝐉
𝐢 ≥ 𝚿𝐋

𝐢+𝟏. Assuming 𝚿𝐋
𝐢+𝟏 ≥ 𝟎, then 𝚿𝐉

𝐢 ≥ 𝟎.  

Based on the boundary condition 𝚿𝐣
𝐧+𝟏 ≥ 𝟎, it can be concluded that ∀𝐢, j, 𝛝𝐣

𝐢 ≥ 𝟎. 

In the actual financial market, the risk-free interest rate y and the capital 

cost 𝛄 usually satisfy 𝟎 < 𝐲 < 𝜸 < 𝟏 and 𝟏/(𝛌 − 𝐲) > 𝟏. Therefore, the time 

step length that limit the previous proof process is in line with the actual situation, 

and it can also be satisfied in the following numerical simulation. 
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4. Numerical simulation 

 

We use a numerical simulation example to test the correctness of the 

conclusions of previous theoretical analysis in this part. After verifying the 

previous conclusions through numerical calculations, we performed a sensitivity 

analysis of the parameters to compare whether there are significant differences 

under different parameter values. 

4.1 Numerical calculation 

In order to facilitate the simulation, the original semi-infinite area 

(−∞, 𝛉𝐦𝐚𝐱] × [𝟎, 𝐓] is divided into a finite area (𝛉, 𝐭) ∈ (𝛉𝐦𝐢𝐧, 𝛉𝐦𝐚𝐱] × [𝟎, 𝐓], 

Where 𝛉𝐦𝐢𝐧 = 𝐥𝐧 (𝟎. 𝟎𝟏), the left boundary condition in the original model is 

changed to 𝚿𝛍(𝛉𝐦𝐢𝐧, 𝐭) = 𝟎. For the convenience of description, the subscripts 𝛌 

and 𝛂 of 𝐆𝛒,𝛌
𝛂  are omitted in the rest of this paper. Redefine the spatial step 

length as ∆𝛉 = (𝛉𝐦𝐚𝐱 − 𝛉𝐦𝐢𝐧 )/𝐦, then 𝛉𝐣 = (𝐣 − 𝟏)∆𝛉 + 𝛉𝐦𝐢𝐧, j=1,2,...,m, then 

the matrix form of equation (14) is: 

 

[βI + ηN +ϖ1(pM
T + qM)]Ψμ

i − f(Ψμ
i) = Ψμ

i+1 +ϖ2E
i    (23) 

 

Where, 𝛃 = 𝟏 + 𝐛𝚫𝐭 −
𝐚𝚫𝐭

𝚫𝛉
, 𝛏 =

𝐚𝚫𝐭

𝚫𝛉
, 𝛡𝟏 =

−
𝟏

𝟐
𝛔𝛂𝚫𝐭

(𝚫𝛉)𝛂
,  𝛡𝟐 = −

𝟏

𝟐
𝛔𝛂𝚫𝐭, I is an m-1 

order identity matrix, 𝚿𝛍
𝐢 = (𝚿𝟐

𝐢 ,𝚿𝟑
𝐢 , … ,𝚿𝐦−𝟏

𝐢 ,𝚿𝐦
𝐢 ) , 𝐟(𝚿𝛍

𝐢) =

[(𝐟(𝚿𝟐
𝐢 ), 𝐟(𝚿𝟑

𝐢 ), … , 𝐟(𝚿𝐦−𝟏
𝐢 ), 𝐟(𝚿𝐦

𝐢 )]. At the same time, 𝐟(𝚿𝐣
𝐢) =

𝛍𝐑∆𝐭

𝚿𝐣
𝐢+𝛍−𝐪𝐣

𝐢, 𝐄
𝐢 =

(
𝐩

(∆𝛉)𝛂
𝐆𝐦,

𝐩

(∆𝛉)𝛂
𝐆𝐦−𝟏, … ,

𝐩

(∆𝛉)𝛂
𝐆𝟐,

𝐩

(∆𝛉)𝛂
𝐆𝟏)𝚿𝐦+𝟏

𝐢 , both M and N are square 

matrices of order m-1. 

  M =

[
 
 
 
 
𝐺1     𝐺2   0
𝐺2      𝐺1    𝐺0
⋮     ⋮    ⋮

        
⋯ 0   0
⋯ 0   0
⋱ ⋮    ⋮

𝐺𝑚−2 𝐺𝑚−3
𝐺𝑚−1 𝐺𝑚−2

    
𝐺𝑚−4 ⋯
𝐺𝑚−3 ⋯

    
𝐺1 𝐺1
𝐺1 𝐺1]

 
 
 
 

，𝑁 =

[
 
 
 
 
0 0 0
1 0 0
0 1 0

    
⋯ 0 0
⋯ 0 0
⋯ 0 0

⋮ ⋮ ⋮
0 0 0

    
⋱ ⋮ ⋮
⋯ 1 0]

 
 
 
 

 

Equation (23) is solved by Newton iteration as: 

 

 [βI + ηN +ϖ1(pM
T + qM) − Jf(φ

l−1)]Δφl 

= Ψμ
i+1 +ϖ2E

i+1 − [βI + ηN +ϖ1(pM
T + qM)]φl−1 + f(φl−1) 

φl = φl−1 + ρΔφl 
 

Where, l=1,2.3…., 𝐉𝐟(𝛗
𝐥−𝟏) is the Jacobian matrix of the vector 𝐟(𝛗𝐥−𝟏), and 

𝛒 ∈ (𝟎, 𝟏)  is the adjustment factor. In the numerical iteration process, it is 

assumed that the information of the current time 𝐭𝐢 and the previous time 𝐭𝐢+𝟏 is 
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known. Therefore, 𝚿𝛍
𝐢+𝟏 can be used as the initial value of the iterative sequence 

𝛗𝐥, that is 𝛗𝟎 = 𝚿𝛍
𝐢+𝟏. Set the amount of error 𝛍, when |𝝋𝒍 −𝝋𝒍−𝟏| ≤ 𝝁, take 

𝚿𝛍
𝐢 = 𝛗𝐥. 

The following is a numerical simulation of the previous conclusions. The 

setting of each parameter value refers to existing researches and the actual situation 

of the financial market (Table 1). All simulation processes are implemented by 

MATLAB. It should be pointed out that this part aims to prove the general law of 

American-style warrant pricing through numerical simulation, even though the 

setting values of parameters may be different from the actual situation, it does not 

affect the basic conclusions of this paper. 

 

Table 1. Parameter value setting and setting basis 

Parameter Value Setting basis 

𝑦 5% National debt yield is generally regarded as the reference 

standard for risk-free interest rate in the capital market. 

According to the difference of the deadline, the interest rates 

of national debts in various countries are generally between 

3.5% and 6.0%, the setting value in this paper is 5%. 

𝛾 20% The capital cost can be regarded as the average credit 

interest rate. According to the researches such as Schmitz 

(2005), Zhang and Yin (2020), the current annualised 

interest rate of commercial bank loans in various countries 

are generally between 16%-24%, this paper chooses 20%. 

𝛼 1.54 𝛼 ∈ (1,2), according to the research of Zhang and Yin 

(2020), Wang and Chen (2020) and other scholars, the 

maximum value is set to 1.54. 

𝜆 1 𝜆 > 0, according to the research of Chen and Lin (2018), 

Ma, et al. (2019), the maximum value is set to 1. 

𝜎 0.8 According to the research of Chen et al. (2015), Xi and Cao 

(2014) and other scholars, the maximum value is set to 0.8. 

T 2 The term of American-style warrant can be as long as 10 

years, however, it is generally 1-3 years in actual economic 

activities, this paper takes 2 years. 

𝜓 50 For ease of analysis, set this value to 50 units. 

 

The entire time axis and the space axis in Figure 1 show the surface of 

𝚿𝛍(𝛉, 𝐭)  and 𝚿𝛍(𝛉, 𝐭) −𝐦𝐚𝐱 (𝐞
𝛉 −𝛙, 𝟎) . First, use numerical methods to 

generate a smooth and stable approximate solution (Figure 1(a)). The curved 

surface in Figure 1(b) shows that for all i and j, the American-style warrant 



 
 
 
 
 
 
 

American-style Warrant Pricing — A Model Based on KoBoL Process 

 

 

309 

contract value 𝚿𝐣
𝐢 ≥ 𝐦𝐚𝐱 (𝐞𝛉𝐣 −𝛙, 𝟎) is established, which is consistent with the 

conclusion of Theorem 1. 

 

 

（a）                                （b） 

Figure 1. Contract transaction characteristics after coordinate transformation 

 

It can be seen in Figure 2(a) that the value of 𝚿𝛍(𝛉, 𝟎) increases with the 

increase of stock price, and is always greater than the value payment function. It 

can be found from Figure 2(b) that the optimal execution boundary increases as the 

expiration time increases. 

 

 

（a）                                （b） 

Figure 2. Contract value and the optimal execution boundary after coordinate 

transformation 
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4.2 Sensitivity analysis 

Use the inverse transformation of formula (8) to obtain the value of the 

American-style warrant and the optimal exercise price. As shown in Figure 3, the 

optimal exercise price will first increase and then decrease with the time to expiry. 

One of the reasons for this phenomenon is that the contract can be executed in 

advance, since the contract is still far from the expiration time, the time value of 

American-style warrant will increase, and make its exercise price gradually rise, 

such as the first half of the curve. Another important reason is that the final price in 

the pricing model will change over time. As the contract gets farther and farther 

from the expiry time, the contract holder needs to pay more capital cost, this leads 

to a decrease in the optimal exercise price. 

 

 

Figure 3. The optimal exercise price under different 𝜸 

 

  
（a）                                       （b） 

 

Figure 4. Contract value under different 𝝈 
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Figures (a) and (b) in Figure 4 show the impact of different 𝛔 on the 

contract value of American-style warrant. It can be seen that the value of the 

American-style warrant monotonically increases relative to 𝛔. It can be seen from 

the stock price driving equation that when other parameters remain unchanged, 

𝛑(𝛔)𝐝𝐭 increases correspondingly with 𝛔 increases, which cause the fluctuation 

of the random variable x to increase. Moreover, since the statistical deviation of the 

payment function 𝐦𝐚𝐱(𝐞𝐱 −𝛙𝐞𝛄𝐭) increases with the change of x, the contract 

holder has opportunities to obtain greater return. Therefore, the contract value of 

the American-style warrant increases monotonously with respect to 𝛔. 

 

 

 

 

Figure 5. The optimal exercise price under different 𝝈 

 

 

Figure 5 shows the effect of different 𝛔 on the optimal exercise price. It 

can be analysed from two perspectives. First, at the optimal exercise boundary, the 

contract value is equal to the exercise price. Therefore, the contract value will 

increase with the increase of 𝛔, which increases the optimal exercise price. Second, 

as the parameter 𝛔 becomes larger, the stock may obtain a higher price, which 

makes investors believe that the contract may have a higher value and will not 

choose to terminate the contract, which result in a higher exercise price. In 

summary, the optimal exercise price increases monotonically with respect to the 

parameter 𝛔. 
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（a）                                 (b) 

Figure 6. Contract value under different 𝜶 

 

Figure 6 shows the effect of different 𝛂 on the value of American-style 

warrant contract. It can be seen from Figures 6(a) and 6(b) that the contract value 

increases monotonously with respect to 𝛂 . According to the non-standard 

steady-state random variable 𝛂, it can be known that when there is no abnormal 

deviation in the stock price, it is possible to obtain greater stock value with 𝛂 

increases. Since the contract value changes in the same direction as the stock price, 

the contract value increases monotonically with respect to the parameter 𝛂. 
 

 

Figure 7. The optimal exercise price under different 𝜶 

 

Figure 7 shows the effect of different 𝛂 on the optimal exercise price. In 

the execution domain, the value of American-style warrant contract is equal to the 

exercise price. It can be seen from the foregoing that the optimal exercise price 

increases monotonously with respect to 𝛂. From the financial perspective, it can be 

considered that an increase in 𝛂 makes the stock price more likely to rise, which 

makes investors believe that the contract may have a higher value, and leading to a 

higher exercise price. 
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5. Conclusions 

 

Reasonable pricing of the American-style warrant has obvious significance 

for financial market risk control. This paper studies the pricing model of 

American-style warrant under the KoBoL process. Under the KoBoL process, the 

free boundary problem is transformed into a fixed boundary problem using 

coordinate transformation method and penalty method, the first-order fully implicit 

form of the American-style warrant pricing model is constructed, and it is proved 

that the penalty function difference method is useful for solving the governing 

equation is still valid, and finally a numerical simulation is carried out. The study 

found that the value of American-style warrant contract is not less than the exercise 

value, and the optimal exercise price decreases as 𝛄 increases. At the same time, 

due to the existence of 𝛄, the optimal execution boundary is no longer a monotonic 

function on the time to expiry. For the parameters 𝛔 and 𝛂, with the value of the 

contract increases, investors’ expectation of greater value for the stock price 

increases, which leads to an increase in the contract value and the optimal exercise 

price. The american-style warrant is an important derivative financial instrument in 

the financial market, its price not only involves the interests of investors, but also 

has an important impact on the stock market, it is an important inducing factor for 

systemic risks in the financial market. Following the changes in the financial 

market, especially the stock market, a more precise pricing of the American-style 

warrant will be an important demand from the practical and theoretical circles in 

the future. How can we further improve the effectiveness of the control equation on 

the basis of a fixed boundary? Does the stock value have a more specific range that 

is not less than the exercise value? This will be an important direction for us to 

continue to explore the American-style warrant in the future. 
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