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Abstract. In this paper, we offer a mathematical model for the construction 

and implementation of a set of models for analysing the stability of labour 

reproduction processes and model of saving energy, evaluating the parameters that 

determine the state of the system that describes the processes of labour 

reproduction, optimal management of these processes; methodical 

recommendations for making management decisions to ensure the stability of 

labour reproduction processes have been developed. 
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1. Introduction 

Recently, more and more attention has been paid to research for analysis of 

a model for detection of information attacks in computer networks (Dzhalladova et 

al., 2019), models which deal with the question of when the resource should be 

used on the condition that its use today might prevent it from being available to be 

used later. The analysis provides concepts, theory, applications, and distinctions to 

the market for understanding the strategic aspects of cyber conflict. Case studies 

include the same cyberattack and persistent cyber espionage applied by the same 
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country’s military (Dzhalladova et al., 2022). In this context, investigation, and 

construction of methods for stabilisation of different events and processes in the 

dynamic situation are relevant/topical. Moreover, recent events, such as  

COVID-19, the war in Europe, and other conflicts have shown that humans and 

their security in an undefined situation must be in the centre of science 

(Dzhalladova and Kaminskii, 2020). But along with these problems, there are 

always parallel economic aspects, some of which we consider below. Therefore, 

we have presented an improvement of a mathematical tool (Růžičková and 

Dzhalladova, 2011; Valeev and Dzhalladova, 1999) and its application in the 

investigation of some important economic problems in the current situation, 

particularly in Europe. 

In our paper, we offer a mathematical model, to help analyse the difference 

between the projected number of employed and unemployed people registered with 

the State Employment Service. This difference is explained by the instability of the 

economic situation in the countries. This is also due to the problems of economic 

activity of the population, the quantitative and qualitative balance between supply 

and need for labour, illegal external labour migration, and the shadow labour 

market. The results obtained are correlated with the assessment of the stability of 

the system of differential equation, describing the process of labour reproduction 

(Dzhalladova, 2018). As one of the areas of investment, investment in housing 

construction is proposed, which can become an effective mechanism for providing 

the population with mass, affordable housing. The choice of direction is based on 

the fact that the stability of the processes of labour reproduction is directly related 

to the creation of optimal living conditions for workers, primarily with the 

improvement of living conditions, for example, refugees in condition war. The 

constructed model made it possible to determine the conditions for optimising the 

portfolio of the investor resident incident. Also, in our paper, we investigated the 

model to determine the advantages of optimal behaviour at work for the worker’s 

organism (“problem of saved energy”). 

 

2. Main concepts and theorems 

To construct our model, we introduce some theoretical concepts and prove 

theorems. 

2.1. Statement of the problem 

Let Ω = (𝜔1, 𝜔2, . . . , 𝜔𝑛) be a collection of countable events. A 𝜎- algebra 

is a collection of all subsets of Ω. A filtration, 𝔽 is the smallest 𝜎-algebra. 

Later we introduce the Markovian random process, where the filtration is 

regarded as all the information up to the current time. In other words, filtration 

contains all and yet non-repeating information about the events. For example, if we 

look at the stock with a price 𝑆(𝑡) at time 𝑡, then write filtration as 𝔽𝑡, this 

filtration should include all the past information of the stock where 𝜏 < 𝑡 and all 
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the current information about financial statements, publicly announced on the 

news, etc. A probability measure ℙ is a function that maps a 𝜎-algebra to a real 

number between 0 and 1, that is  

ℙ: 𝔽 → [0,1]. 

 

A general case for a probability measure is:  

ℙ(𝐴)[0,1] for any arbitrary 𝐴 ∈  𝔽,  

∫Ω
ℙ(𝜔) = 1. 

Finally, we constructed a probability space is a triple: (Ω, 𝔽, ℙ) (Chen, 2009). 

 

On probability space (Ω, 𝔽, ℙ) we consider a system of linear differential 

equations with random coefficients  

𝑑Φ(𝜙, 𝑡)

𝑑𝑡
= 𝐺(𝑡, 𝜉(𝑡))Φ(𝑡) + 𝐵(𝑡, 𝜉(𝑡))Ξ(𝑡) 

Φ(0) = 𝜙(𝜔): Ω → R𝑚, 𝑑𝑖𝑚Φ = m, 

 

(1) 

  

where 𝜉(𝑡) is a random Markov process that takes the finite number of values 

𝜃1, 𝜃2, . . , 𝜃𝑛 with probabilities 

𝑝𝑘(𝑡) = 𝑃(𝜉(𝑡) = 𝜃𝑘), 𝑘 = 1,2, . . . , 𝑛 

that satisfy the following system of linear differential equations: 

𝑑𝑝𝑘(𝑡)

𝑑𝑡
= ∑

𝑛

𝑘=1

𝛼𝑘𝑠(𝑡)𝑝𝑠(𝑡), 𝑘 = 1,2, . . . , 𝑛. 

 

(2) 

 

The coefficients of the system (2) satisfy the well-known conditions 

(Gardiner, 1983; Feller, 1991) 

𝛼𝑘𝑠(𝑡) ≥ 0, 𝑘 ≠ 𝑠, ∑𝑛
𝑘=1 𝛼𝑘𝑠(𝑡) = 0, 𝑘, 𝑠 = 1,2, . . . , 𝑛. 

 

To describe the distribution density of the discrete-continuous random 

process (𝜉(𝑡), Φ(𝑡)), we can use a function of probability density in the form 

𝐹(𝑡, Φ, 𝜉(𝑡)) = ∑

𝑛

𝑘=1

𝑓𝑘(𝑡, Φ)𝛿(𝜉 − 𝜃𝑘) 

where 𝛿(𝜉 − 𝜃𝑘) - Dirac functions, 𝑤 −or Dirac delta distribution (also known as 

the unit inpulse) 𝑓𝑘(𝑡, Φ), 𝑘 = 1,2. . . . . 𝑛, are called the partial probability densities. 
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We also introduce the partial mathematical expectations 

𝑚. 𝑒.𝑘 (⊡) = 𝑚. 𝑒.𝑘 (𝜚(𝑡, Φ(𝑡), 𝜉(𝑡))) 

of an arbitrary function 𝜚(𝑡, Φ(𝑡), 𝜉(𝑡)) as follows 

𝑚. 𝑒.𝑘 (𝜚(𝑡, Φ(𝑡), 𝜉(𝑡)) = ∫
𝑅𝑛

𝜚(𝑡, Φ, 𝜃𝑘)𝑓𝑘(𝑡, Φ)𝑑Φ, 𝑘 = 1,2, . . . , 𝑛. 

 

Here 𝑅𝑚 is the standard Euclidean space of dimension 𝑚. Then the 

mathematical expectation of the function 𝜚(𝑡, Φ(𝑡), 𝜉(𝑡)) is 

𝑚. 𝑒. (⊡) = 𝑚. 𝑒. (𝜚(𝑡, Φ(𝑡), 𝜉(𝑡))) = ∫ ∫
+∞

−∞

(𝜚(𝑡, Φ, 𝜃𝑘)𝑓(𝑡, Φ))𝑑𝜉𝑑Φ
𝑅𝑚

= 

= ∑

𝑛

𝑘=1

∫
𝑅𝑚

𝜚(𝑡, Φ, 𝜃𝑘)𝑓𝑘(𝑡, Φ)𝑑Φ = ∑

𝑛

𝑘=1

𝑚. 𝑒.𝑘 (𝜚(𝑡, Φ(𝑡), 𝜉)) = ∑

𝑛

𝑘=1

𝑚. 𝑒.𝑘 (⊡) 

and then we consider the second-order partial moments as follows 

𝑝. 𝑚.𝑘 (⊡) = 𝑚. 𝑒.𝑘 𝜚(Φ(𝑡), Φ(𝑡)∗) , 

or 

𝑝. 𝑚. (⊡) = ∑

𝑛

𝑘=1

𝑝. 𝑚.𝑘 (⊡). 

Now we can formulate the problem of optimisation: 

It is required to find the system of equations (1) of optimal control in the form 

Ξ(𝑡) = 𝕊((𝑡, 𝜉(𝑡))Φ(𝑡) 

that minimises the value of the functional 

𝐽(𝑡) = 𝑚. 𝑒. (∫
∞

𝑡
(Φ∗(𝜏)𝐶(𝜏, 𝜉(𝜏))Φ(𝜏) + Ξ∗(𝜏)𝐷(𝜏, 𝜉(𝜏))Ξ(𝜏))𝑑𝜏)  (3) 

  

  

2.2. Synthesis of optimal control for general case 

Theorem 1. The necessary conditions for optimality of solutions of the system of 

equations (1) are expressed by the equalities  

𝑆𝑘(𝑡) = 𝐷𝑘
−1(𝑡)𝐵𝑘

∗(𝑡)𝜓𝑘(𝑡), 𝑘 = 1,2, . . . , 𝑛 (4) 

where 𝜓𝑘(𝑡), 𝑘 = 1,2. . . . . 𝑛, can be found from the system equations 
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𝑑𝑝. 𝑚.𝑘 (𝑡)

𝑑𝑡
= 

= ∑

𝑛

𝑠=1

𝛼𝑘𝑠(𝑡)𝑝. 𝑚.𝑠 (𝑡) + (𝐺𝑘(𝑡) − 𝐵𝑘(𝑡)𝐷𝑘
−1(𝑡)𝐵𝑘

∗(𝑡)𝜓𝑘(𝑡)) 𝑝. 𝑚.𝑘 (𝑡) + 

+𝑝. 𝑚.𝑘 (𝑡) (𝐺𝑘
∗(𝑡) − 𝜓𝑘(𝑡)𝐵𝑘(𝑡)𝐷𝑘

−1(𝑡)𝐵𝑘
∗(𝑡)) = 0, k = 1,2, . . . , 𝑛 

𝑑𝜓𝑘(𝑡)

𝑑𝑡
= −𝐺𝑘

∗(𝑡)𝜓𝑘(𝑡) − 𝜓𝑘(𝑡)𝐺𝑘(𝑡) − 𝐶𝑘(𝑡) + 

+𝜓𝑘
∗ (𝑡)𝐵𝑘(𝑡)𝐷𝑘

−1(𝑡)𝐵𝑘
∗(𝑡)𝜓𝑘(𝑡) − ∑

𝑛

𝑘=1

𝛼𝑘𝑠(𝑡)𝜓𝑘(𝑡), 

𝐺𝑘(𝑡) = 𝐺(𝑡, 𝜃𝑘), 𝐵𝑘(𝑡) = 𝐵(𝑡, 𝜃𝑘), 𝐶𝑘(𝑡) = 𝐶(𝑡, 𝜃𝑘), 

𝐷𝑘(𝑡) = 𝐷(𝑡, 𝜃𝑘), 𝑆𝑘(𝑡) = 𝑆(𝑡, 𝜃𝑘), 𝑘 = 1,2, . . . , 𝑛  

 

(5) 

with the initial coditions that 

𝜓𝑘(0) = 0, 𝑘 = 1,2. . . . . 𝑛. 

Proof. 

At first we use the well-known system of linear system equations for the 

second order partial moments 𝑝. 𝑚.𝑘 (⊡): 

𝑑𝑝. 𝑚.𝑘 (𝑡)

𝑑𝑡
= ∑

𝑛

𝑠=1

𝛼𝑘𝑠(𝑡)𝑝. 𝑚.𝑠 (𝑡) + 

+ (𝐺(𝑡) + 𝐵𝑘(𝑡)𝑆𝑘 (𝑡))𝑝. 𝑚.𝑘 (𝑡) + 𝑝. 𝑚.𝑘 (𝑡)(𝐺𝑘
∗(𝑡) + 𝑆𝑘

∗(𝑡)𝐵𝑘
∗(𝑡)) 𝑝. 𝑚.𝑘 (𝑡), 

𝑘 = 1,2. . . . . 𝑛. 

Rewite expression for functional (4) in explicit form 

𝐽(𝑡) = ∑

𝑛

𝑘+1

∫ (𝐶𝑘(𝜏) + 𝑆𝑘
∗(𝜏)𝐷𝑘(𝜏)𝑆𝑘(𝜏)) ⊙ 𝑝. 𝑚.𝑘 (⊡)𝑑𝜏

+∞

𝑡

. 

where operation ⊙ denotes a scalar product of matrices of the same order 𝑁 and 𝑆 

with ellements 𝑣𝑘𝑗, 𝑠𝑘𝑗, 𝑘 = 1,2, . . . , 𝑛; 𝑗 = 1,2, . . . , 𝑚: (Růžičková and 

Dzhalladova, 2011) 

𝑁 ⊙ 𝑆 = ∑

𝑛

𝑘=1

∑

𝑚

𝑗=1

𝑣𝑘𝑗𝑠𝑘𝑗. 
(6) 
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In the second step, we proved that (3) is a necessary condition for the 

optimality of solutions of the system of equations (1). 

We introduce the Hamilton function (Růžičková and Dzhalladova, 2011; 

Stengel, 1994). 

𝐻 = ∑

𝑛

𝑘=1

𝜓(𝑡) ⊙ ((𝐺𝑘(𝑡) + 𝐵𝑘(𝑡))𝑆𝑘(𝑡)) 𝑝. 𝑚.𝑘 (⊡) + 

+𝑝. 𝑚.𝑘 (⊡)(𝐺𝑘
∗(𝑡) + 𝑆𝑘

∗(𝑡)𝐵𝑘
∗(𝑡)) + ∑𝑛

𝑘=1 𝛼𝑘𝑠(𝑡)𝑝. 𝑚.𝑠 (⊡) +  

+ ∑

𝑛

𝑘=1

(𝐶𝑘(𝑡) + 𝑆𝑘
∗(𝑡)𝐷𝑘(𝑡)𝑆𝑘(𝑡)) ⊙ 𝑝. 𝑚.𝑘 (⊡),   

𝑘, 𝑠 = 1,2, . . . , 𝑛,  

 

 

 

(7) 

In accordance with the Pontryagin maximum principle, the necessary 

conditions of optimality have the form 

𝐷𝐻

𝐷𝑆𝑘
= 0, 𝑘 = 1,2, . . . , 𝑛, 

 

(8) 

where we used to denote 

𝐷𝐻

𝐷𝑆𝑘
= ‖

𝜕𝐻

𝜕𝑆𝑘𝑗
‖ , 𝑘, 𝑗 = 1,2, … , 𝑛. 

By using property  

𝐺𝑀𝐵 ⊙ 𝑆 = 𝐴𝑆𝐵 ⊙  𝑀 

of scalar products (6), we transform the matrix function (7) to the form convenient 

for the differentiation with respect to the matrices 𝑆𝑘(𝑡), 𝑘 = 1,2. . . . , 𝑛: 

𝐻 = ∑(2𝐺𝑘
∗(𝑡)𝜓𝑘(𝑡) ∘ 𝑝. 𝑚.𝑘 (⊡) + 2𝐵𝑘

∗(𝑡)𝜓𝑘(𝑡)𝑀𝑘(𝑡) ∘ 𝑆𝑘(𝑡) + 

𝑛

𝑘=1

 

+𝐶𝑘(𝑡)𝑝. 𝑚.𝑘 (⊡) + 𝐷𝑘(𝑡)𝑆𝑘(𝑡)𝑝. 𝑚.𝑘 (⊡) ⊙ 𝑆𝑘(𝑡) + 

+ ∑

𝑛

𝑠=1

𝛼𝑘𝑠(𝑡)𝜓𝑘(𝑡) ⊙ 𝑝. 𝑚.𝑘 (⊡)). 

 

 

 

 

(9) 

In view of property  

𝐷(𝑁 ⊙ 𝑆)

𝐷𝑆
= 𝑁 

of scalar products, the system of matrix equations (8) takes the form 
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𝐷𝐻

𝐷𝑆𝑘
= 2𝐵𝑘

∗(𝑡)𝜓𝑘(𝑡)𝑝. 𝑚.𝑘 (𝑡) + 2𝐷𝑘(𝑡)𝑆𝑘(𝑡)𝑝. 𝑚.𝑘 (𝑡) = 0, 𝑘 = 1,2, . . . , 𝑛 

whence we obtain equalities (3). 
 

In the final step, we exclude the matrices 𝑆𝑘(𝑡), 𝑘 = 1,2. . . . . 𝑛, from (7) 

and (9) and using equalities (3), we get the expressions 

𝐻 = ∑ (𝐺𝑘
∗(𝑡)𝜓𝑘(𝑡) ∘ 𝑝. 𝑚.𝑘 (⊡)

𝑛

𝑘=1

+𝜓𝑘(𝑡)𝐺𝑘
∗(𝑡) ⊙ 𝑝. 𝑚.𝑘 (⊡) + 

+𝐶𝑘(𝑡) ⊙ 𝑝. 𝑚.𝑘 (⊡) − 𝜓𝑘
∗ (𝑡)𝐵𝑘(𝑡)𝐷−1(𝑡)𝐵𝑘

∗(𝑡) ⊙ 𝜓𝑘(𝑡). 𝑚.𝑘 (⊡)) + 

+ ∑

𝑛

𝑘=1

𝛼𝑘𝑠(𝑡)𝜓𝑘(𝑡) ⊙ 𝑝. 𝑚.𝑘 (⊡). 

The variation in matrices 𝑝. 𝑚.𝑘 (⊡), 𝜓𝑘(⊡), 𝑘 = 1,2. . . . . 𝑛, is determined 

by the system of matrix linear differential equations 

𝑑𝑝. 𝑚.𝑘 (⊡)

𝑑𝑡
=

𝐷𝐻

𝐷𝜓𝑘
, 

𝑑𝜓𝑘(⊡)

𝑑𝑡
= −

𝐷𝐻

𝐷𝑝. 𝑚.𝑘
, 𝑘 = 1,2, . . . , 𝑛. 

(10) 

 

The system of equations (10) for the matrices 𝜓𝑘(⊡), 𝑘 = 1,2. . . . . 𝑛, does 

not depend on the matrices 𝑝. 𝑚.𝑘 (⊡), 𝑘 = 1,2. . . . , 𝑛, and is a generalisation of the 

matrix Riccati equation to the stochastic case. 
 

Assume that a solution such that 𝜓𝑘𝑟(⊡) = 0, 𝑘 = 1,2. . . . . 𝑛, is found. 

Then the matrices 𝜓𝑘𝑟(t), 𝑘 = 1,2. . . . . 𝑛,minimising our functional 

minJ(⊡)
𝑆(𝜏)

= m. 𝑒. ∫ Φ∗(𝜏) (𝐶(𝜏, 𝜉(𝜏))
∞

𝑡

+ S∗(𝜏, 𝜉(𝜏))𝐷(𝜏, 𝜉(𝜏))S(𝜏, 𝜉(𝜏))Φ(𝜏)) 𝑑𝜏 = 

= ∑

𝑛

𝑘=1

𝜓𝑘𝑟(𝑡) ⊙ 𝑝. 𝑚𝑘(⊡), ⊡≤ τ ≤ T . 

 

Then the function 𝜓(𝑡), 𝑘 = 1,2. . . . . 𝑛, realising the minimal value of 

functional (4) can be approximately obtained from the relation  

𝜓𝑘(𝑡) = lim
𝑟→∞

𝜓𝑘𝑟(𝑡). k = 1, … , n. 

The theorem is proved.  
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2.3. Synthesis of optimal control for the stationary case with semi-Markov 

coefficients 

Let us reformulate Theorem 1 for the case where the coefficients of the 

system of linear differential equations (1) and functional (4) are piecewise-constant 

functions. 

Assume that the coefficients of the system of linear differential equations 

𝑑Φ(𝜙, 𝑡)

𝑑𝑡
= G(𝜉(𝑡))Φ(𝑡) + 𝐵(𝜉(𝑡))Ξ(𝑡), 

 

 

(11) 

𝛷(0) = 𝜙(𝜔): 𝛺 → 𝑅𝑛 

depend on the semi-Markov process 𝜉(𝑡) that takes the finite number of 

values 𝜃1, 𝜃2, . . , 𝜃𝑛 with intensities matrix 

𝑄(𝑡) = [𝑞𝑠𝑘(𝑡) : 𝑠,  𝑘 = 1, 𝑛 ]: 𝑞𝑠𝑘(𝑡) ≥ 0; ∑ ∫ 𝑞𝑠𝑘(𝑡)𝑑𝑡
∞

0

= 1

𝑛

𝑠=1

 

𝑞𝑘(𝑡) = ∑ 𝑞𝑠𝑘(𝑡)

𝑛

𝑠=1

 

𝜒𝑘(𝑡) = ∫ 𝑞𝑘(𝑡)𝑑𝑡
∞

t

 

𝜒𝑘(𝑡) = 𝑃{𝑇𝑘 > 𝑡} 𝑘 = 1,2, … , 𝑛. 

 

Theorem 2 Assume that there exists an optimal control of the form 

Ξ(⊡) = 𝑆(𝜉(⊡))Φ 

for the system (11) that minimises the functional (3). Then the matrices 𝜓𝑘(𝑡), 𝑘 =
1,2. . . . . 𝑛, satisfy the system of matrix differential equations (5) with zero initial 

conditions  

𝜓𝑘(0) = 0, 𝑘 = 1,2, . . , 𝑛. 

Moreover, the minimal value of the functional J(t) is determined by the 

formula  

min
𝑆(𝜏)

𝐽(𝑡) = ∑

𝑛

𝑘=1

𝜓𝑘𝑇(⊡) ⊙ 𝑝. 𝑚. (⊡), 𝜏 > 𝑇. 
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3. Application to practical problem 

3.1. Model to determine the conditions for optimising the portfolio of the 

investor in the residential sector.  

For the practical implementation of optimal management of directions of 

investment in the labor force, a model of housing lending is built, which is 

described by a linear differential equation of the first order: 

𝑑𝜙(𝑡)

𝑑𝑡
= g(𝜉(𝑡))𝜙(𝑡) + 𝑏(𝜉(𝑡)) 

(12) 

where 𝜙(𝑡) – number of persons applying for credit, coeficients 

𝑔(𝜉(𝑡)) = {
𝑎1, 𝑖𝑓 𝜉(𝑡) = Θ1

𝑎2, 𝑖𝑓 𝜉(𝑡) = Θ2
, 𝑏(𝜉(𝑡)) = {

𝑏1, 𝑖𝑓 𝜉(𝑡) = Θ1

𝑏2, 𝑖𝑓 𝜉(𝑡) = Θ2
 

 

(13) 

Here 

• in state Θ1 persons repay the loan; 

• in state Θ2 persons accumulate the loan; 

• 𝑎1- a parameter characterising the intensity of the decrease in the number per unit 

of time at the expense of fully paid persons; 

• 𝑎2 - the average intensity of applications for accumulation; 

•𝑏1- a parameter characterising the intensity of growth due to the transition of 

rollers to the group that repays the debt; 

•𝑏2- parameter, which characterises the intensity of growth due to the transition of 

accumulators in the group of debt repayment; per unit of time at the expense of 

fully settled persons; 

• 𝜃1, 𝜃2 with probability 𝑝1 and 𝑝2, satisfying the next system: 

𝑑𝑝1(𝑡)

𝑑𝑡
= −𝜆𝑝1(𝑡) + c𝑝2(𝑡),

𝑑𝑝2(𝑡)

𝑑𝑡
= 𝜆𝑝1 − c𝑝2(𝑡), 𝜆 + 𝑐 = 0, 

0 < 𝜆, 𝑐 < 1 . 

As a mathematical toolkit, the method of momentary equations is proposed (Valeev 

and Dzhalladova, 1999). Taking into account (9) for equation (12), the moment 

equations of the first order are as follows 

𝑑𝑝. 𝑚.1 (𝑡)

𝑑𝑡
= (𝑎1 − 𝜆)𝑝. 𝑚.1 (𝑡) + c𝑝. 𝑚.2 (𝑡) + 𝑏1, 

𝑑𝑝. 𝑚.2 (𝑡)

𝑑𝑡
= (𝑎2 − 𝑐)𝑝. 𝑚.2 (𝑡) + 𝜆𝑝. 𝑚.1 (𝑡)) + 𝑏2, 

where 
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• 𝑝. 𝑚.1 – the average expected number of persons repaying the loan, 

• 𝑝. 𝑚.2 –- the average number of persons accumulating, 

• 𝑀(𝑡) = 𝑝. 𝑚.1 (𝑡) + 𝑝. 𝑚.2 (𝑡)–- the average number of persons applying for a 

loan, 

• 𝑀0 = 𝑀(𝑡0). 

 

The conditions of the stationary mode of operation of the proposed system 

are obtained. If 𝑎1(𝑡)  increases with the number of applications, then 

𝑏1(𝑡) 𝑎𝑛𝑑 𝑏2(𝑡) decreases and then 𝑎2(𝑡) increases. The transition process ends, 

and the set mode in the system has stationary characteristics:  

𝑑𝑝. 𝑚.1 (𝑡)

𝑑𝑡
=

𝑑𝑝. 𝑚.2 (𝑡)

𝑑𝑡
= 0. 

From this expression we obtain the number of applications in the system in 

the stationary mode (Fig.1-4 ): 

𝑝. 𝑚.1 (𝑡) =
𝑏1𝑎2 − (𝑏1 + 𝑏2)𝑐

𝑎1𝑎2 − (𝑐𝑎1 + 𝜆𝑎2)
 𝑀0, 𝑝. 𝑚.2 (𝑡) =

𝑏2𝑎1 − (𝑏1 + 𝑏2)𝜆

𝑎1𝑎2 − (𝑐𝑎1 + 𝜆𝑎2)
 𝑀0. 

 

For stability of existing banking system enough are holds equlity 

(Dzhalladova and Růžičková, 2020) 

2𝑐 = 2𝑏1 − 𝑎1 = 2𝑏2 − 𝑎2, if 𝑧 = 1 (stabile situation). 

 

 
Figure 1: Dependence of the average number of loan repayers and 

accumulators on the parameters of the system at  𝑀0 = 200, 𝑎1 = 0,5, 
 𝑎2 = 0,3.; Source: own 
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Figure 2: Dependence of the average number of loan repayers and 

accumulators on the parameters of the system at  𝑀0 = 200, 𝜆 = 0,3, 
 𝑏1 = 0,6 ; Source: own 

  

 

 
Figure 3: Dependence of the average number of loan repayers and 

accumulators on the parameters of the system at  𝑀0 = 200, 𝜆 = 0,2, 
 𝑎1 = 0,5; Source: own 

 

 
Figure 4: Dependence of the average number of loan repayers and 

accumulators on the parameters of the system at  𝑀0 = 200, 𝜆 = 0,3, 
𝒃 = 𝟎, 𝟑; Source: own 
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3.2. Model to determine the optimal behaviour advantageous to the worker’s 

organism 

It is then reasonable to expect that, at least in natural and well-practised 

tasks, the observed behaviour will be close to optimal. This makes optimal control 

theory as effective mathematical instruments for studying the control of movement 

(Pandy, 2001). Optimal control is also a very successful framework in terms of 

explaining the details of observed movement. For example, Todorov, in his own 

research (Todorov, 2004), briefly summarises the existing optimal control models 

from a methodological perspective, and then lists some research directions 

considered. Most optimality models of biological movement assume deterministic 

dynamics and impose state constraints at different points in time. These constraints 

can, for example, specify the initial and final posture of the body in one step of 

moving, or the positions of a sequence of states, which the hand must pass through. 

Since the constraints guarantee accurate execution of the task, there is no need for 

accuracy-related costs, which specify what the task is. The single cost is a cost rate 

of the movement or as our model process of working. It has been as energy, or the 

squared derivative of acceleration (i.e., jerk), or the squared derivative of joint 

torque (Todorov, 2004).  

The solution method is usually based on the maximum principle. 

Minimum-energy models are explicitly formulated as optimal control problems, 

while minimum-jerk and minimum-torque-change models are formulated in terms 

of trajectory optimisation. In our model, we easily transformed into optimal control 

of problem minimisation of the functional v(t). Let ϕ(t) be the vector of generalised 

coordinates of a human body move such as the human arm. Let v(t) be the vector 

of generalised forces. The equations of motion are describing by the linear 

differential equation. 

𝑑𝜙(𝑡)

𝑑𝑡
= g(𝜉(𝑡))𝜙(𝑡) + 𝑏(𝜉(𝑡))Ξ(𝑡) 

 

(14) 

 

Let 𝑔(𝜉(𝑡)) and 𝑏(𝜉(𝑡)) be defined as (13). 

 

Find the optimal control Ξ(𝑡) = 𝑠(𝑡, 𝜉(𝑡))𝜙(𝑡), from the condition of a 

minimum of a quadratic functional 

𝑣 = ∫
∞

0
⟨𝜙2(𝑡) + Ξ2(𝑡)⟩. 

We assume that the semi-Markov process 𝜉(𝑡) acquires two states 𝜃1 and 

𝜃2 with transition intensities 𝑞11(𝑡) = 𝑞22(𝑡) ≡ 0, 𝑞12(𝑡) = 𝑞21(𝑡) ≡
1

𝑇
(0 ≤ 𝑡 ≤

1

𝑇
), as well as, with each jump 𝜉(𝑡) from one state to another solution 

of the optimised system  

𝑑𝜙(𝑡)

𝑑𝑡
= (𝑔(𝜉(𝑡)) + 𝑠(𝑡, 𝜉(𝑡))) 𝜙(𝑡) 
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increases by a factor ℎ ≠ 0. Find the functions  

𝜒1(𝑡) = 𝜒2(𝑡) =
𝑇−𝑡

𝑇
. 

When 𝑔(𝜃𝑘) = 𝑔𝑘(𝑘 = 1,2) the system of equations (5) takes the form  

𝑑𝑅1(𝑡)

𝑑𝑡
= −1 − 2𝑎1𝑅1(𝑡) + 𝑅1

2(𝑡) +
𝑅1(𝑡) − ℎ2𝑅2(0)

𝑇 − 𝑡
, 

𝑑𝑅2(𝑡)

𝑑𝑡
= −1 − 2𝑎2𝑅2(𝑡) + 𝑅2

2(𝑡) +
𝑅2(𝑡) − ℎ2𝑅1(0)

𝑇 − 𝑡
. 

 

(15) 

 

The system of equations of the Riccati type (15) is integrated numerically 

on the interval [0, 𝑇). This system has a special point 𝑡 = 𝑇. To eliminate the 

feature, we take in the system of equations (15)  

𝑅1(𝑇) − ℎ2𝑅2(0) = 0, 𝑅2(𝑇) − ℎ2𝑅1(0) = 0, 

and  

𝑦𝑘(𝑧) = 𝑅𝑘(𝑇 − 𝑇𝑒𝑧)(𝑘 = 1,2). 

 

As a result, we obtain a system of differential equations  

𝑑𝑦1(𝑧)

𝑑𝑧
= 𝑇𝑒𝑧 (1 + 2𝑎1𝑦1(𝑧) − 𝑦1

2(𝑧)) − (𝑦1(𝑧) − 𝑐2𝑦2(0)), 

𝑑𝑦2(𝑧)

𝑑𝑧
= 𝑇𝑒𝑧 (1 + 2𝑎2𝑦2(𝑧) − 𝑦2

2(𝑧)) − (𝑦2(𝑧) − 𝑐2𝑦1(0)) 

 

(16) 

with initial conditions  

𝑦1(−𝐿) = ℎ2𝑦2(0), 𝑦2(−𝐿) = ℎ2𝑦1(0), 

where 𝐿 > 0 — quite a large number (𝐿 = 20). 
 

The system of equations (15) is integrated numerically by the Runge-Kutta method 

in between [−𝐿, 0] at specified values 𝑦𝑘(0)(𝑘 = 1,2). After finding new values 

𝑦𝑘(0)(𝑘 = 1,2) old values 𝑦𝑘(0)(𝑘 = 1,2) are replaced by the new ones. This 

method of successive approximations is convergent, and therefore we find 

functions  

𝑠𝑘(𝑡) = −𝑅𝑘(𝑡)(𝑘 = 1,2). 

 

The results of calculations, as well as the values of functions 

𝑅1(0,1𝑘𝑇), 𝑅2(0,1𝑘𝑇)(𝑘 = 1,2, . . . ,10) are given in the table 1. 
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Table 1. Results of calculations 

 

T = 0.5 T = 2 

k  R1   R2   k   R1   R2  

 1   6.549   7.0375   1   2.4478   2.8828  

 2   5.879   6.6516   2   2.2697   2.3117  

 3   5.395   5.3681   3   2.1502   1.9809  

 4   5.019   3.8630   4   2.0652   1.7632  

 5   3.714   3.4722   5   2.0021   1.6081  

 6   3.475   3.1592   6   1.9539   1.4915  

 7   3.2731   3.9019   7   1.9159   1.4003  

 8   3.1012   3.6858   8   1.8853   1.3269  

 9   3.9533   3.5013   9   1.8612   1.2665  

 10   3.8243   3.3415   10   1.8392   1.2157  

T = 8 T = 32 

 k   R1   R2   k   R1   R2  

 1   1.6510   1.6403   1   1.5991   0.9752  

 2   1.6522   1.2474   2   1.6086   0.8111  

 3   1.6415   1.0751   3   1.6118   0.7504  

 4   1.6357   0.9774   4   1.6133   0.7188  

 5   1.6322   0.9143   5   1.6142   0.6994  

 6   1.6299   0.8701   6   1.619   0.6862  

 7   1.682   0.8375   7   1.6154   0.6767  

 8   1.6269   0.8123   8   1.6157   0.6695  

 9   1.6259   0.7923   9   1.6159   0.6639  

 10   1.6252   0.7761   10   1.6161   0.6594  

  

 Thus, incorporating random control impact into an optimal control 

problem is equivalent to increasing the control energy cost. The cost increase 

required to make the two problems equivalent is, of course, impossible to compute 

solving the stochastic problem (since it depends on the unknown optimal value 

function).  

By the analyse of the obtained values, we will assumed that with growth 𝑇 

value of functions 𝑅2(𝑡) goes to the limit values 𝑅1 = 1,6180, 𝑅2 = 0,6180, that 

their coefficients acquire 𝑅1, 𝑅2 in the determined case in the absence of process 

transitions 𝜉(𝑡) from one state to another. Note also that the control coefficients are 

variable due to the non-stationary functions.  

𝜒(𝑡) = (𝑇 − 𝑡)𝑇−1(𝑘 = 1,2). 

The calculations were performed at the following values of the coefficients 

𝑎1 = 0,5; 𝑎2 = −0,5; ℎ = 1,5. Then the functional has a minimum value, or the 

human exerts minimum energy when working. 
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We have come to the conclusion that in order to preserve the energy of 

apparently his own strength, a person must work half the time, rest other half, and 

if work, then work with the coefficient of 1.5 of his capabilities. 

4. Conclusions 

Investing is less risky for those who provide a loan, the greater the number 

of people paying off the loan or having paid the loan off in full. The latter is 

associated with the level of wages as one of the main indicators of the quality of 

life of the population. Reducing risks affects the growth of investments in housing 

construction, which, in turn, leads to the growth of the country’s economy and the 

solution to the employment issues of the economically active population. Thus, 

construction is one of the important areas that contribute to the economic 

development of the state, since it begins the chain of activity of many related 

industries and represents a very important problem related to human security. The 

authors hope to discuss this problem further in their future work. 
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