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A NOVEL MODEL FOR STOCK CLOSING PRICE PREDICTION 
USING CNN-ATTENTION-GRU-ATTENTION 
 

Abstract. Predicting stock price to avoid risk is the focus of stock research. 
A reliable predicting model could offer insights in stock price fluctuations and 
ultimately could provide the opportunity of gaining significant profits. In this 
paper, a new composite forecasting model is proposed to forecast the stock closing 
price of the next trading day. This model consists of three parts. Convolutional 
Neural Network (CNN) is used to collect: the factors that affect the stock price. 
attention mechanism (Attention) is used to compute the impact of stock data at 
different times on stock price. Gate Recurrent Unit (GRU) is used to forecast the 
stock price. It can make good time series prediction. Through comparison with 
CNN-Attention-LSTM-Attention, CNN-Attention-GRU, CNN-GRU-Attention and 
other traditional models. The experimental results indicate that the performance of 
this model is better to other models, and it has the best performance in evaluation 
metrics like MAE, RMSE and R2. It is more appropriate for stock price prediction. 

Keywords: stock price, prediction, Convolutional Neural Network, 
Attention, Gate Recurrent Unit.  

JEL Classification: O16   G12 C53 
 
1. Introduction 
The stock market is regarded as the barometer and weather vane of the 

current economic and financial activities of a country or a region. Predicting the 
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trend of stock price and grasping the changing law of stock market are always the 
research focus. With the help of accurate prediction technologies, regulators can 
timely monitor the existence of systemic risks and asset price bubbles in the stock 
market, which is conducive to the risk management of the stock market (Bukhar et 
al., 2020). At the same time, precise stock market forecast models can provide 
reasonable decision-making suggestions for investors. The forecast of stock price 
changes can also provide a reference for listed companies to make financing 
decisions, including but not limited to scheme selection, timing determination, cost 
reduction, uncertainty reduction, risk minimization, et al. Therefore, accurate 
forecast of the stock price is important to both regulators and investors.  

Predicting stock prices has always been a worldwide problem. There are 
mainly two kinds of stock price prediction methods. One is the traditional 
econometric methods including regression analysis, time series analysis; the other 
is machine-learning methods (Oh, 2005; Ren et al., 2019). Early scholars usually 
used technical analysis methods based on statistics. Over the years, scholars have 
proposed a variety of traditional prediction methods based on statistics and 
probability theory, such as the value at risk (VAR) model, Autoregressive 
Integrated Moving Average Model(ARIMA), error correction model (ECM), and 
kalman filter model (KFM) (Bhardwaj and Swanson, 2006; Wang, 2015). 
However, most of these methods require data to satisfy some constraint before they 
can be used，What is more, the method has also been criticized for its poor 
accuracy and stability. The stock market is, essentially, a dynamic, non-stationary, 
and chaotic system with many influencing factors and various uncertainties. The 
rapid changes in stock price are often dynamic and non-linear. In order to make 
accurate predictions, it is necessary to ensure that the prediction method can deal 
with big enough time series data and a large amount of data with certain inductive 
ability. However, the traditional statistical methods do not have such 
characteristics. Therefore, the traditional statistical methods are not performing 
well in predicting stock price. 

In recent years, more and more scholars have begun to try to use non-linear 
models to predict stock price. Given that machine learning methods can better deal 
with non-linear data, machine learning techniques such as logistic regression, 
decision tree and deep learning are widely used in financial data research. White 
(1998) applied neural networks to forecast IBM stock. The experimental results 
showed that neural networks were more suitable for stock price prediction, but it 
was not accurate enough. Zhang (2003) respectively used neural networks and 
ARIMA to predict stock. He indicated that neural networks had distinct advantages 
in non-linear data prediction. Nayak, Misra, and Behera (2017) used multi-layer 
perceptron (MLP) to forecast the stock index but the result was mediocre. Guo, 
Han, and Shen (2018) used SVR to forecast stock, but it was seldom applied to 
stock prediction because the parameters of SVR were difficult to determine. 
Nabipour, Nayyeri, and Jabani (2020) used long-short term memory (LSTM) to 
forecast stock price, and the results indicated that LSTM had relatively high 
accuracy in stock prediction. Sezer and Ozbayoglu (2020) applied convolutional 
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neural network (CNN) to forecast stock price but the accuracy of time series 
prediction was low because CNN was widely used in feature extraction and image 
recognition. Gu, Wu, and Pang (2020) combined combination of gate recurrent unit 
(GRU) and Attention to forecast individual stocks. The results indicated that the 
GRU and attention was  more feasible and effective than using attention or GRU 
alone. 

Focused on the non-linearity, uncertain interaction, randomness, and other 
features of stock price and on the basis of fully considering the time correlation 
between the stock price data and the changing trend among the data, a CNN-
Attention-GRU-Attention is proposed in this paper to forecast the stock closing 
price of the next trading day. First, CNN is applied to extract the features of the 
stock data. Then Attention is applied to compute the influence of different time 
states on the predicted value. Finally, GRU is applied to calculate the stock price. 
To prove the effectiveness of CNN-Attention-GRU-Attention proposed in this 
paper, the daily trading data of 6997 trading days of the Shanghai Composite Index 
(000001) from January 2, 1992, to August 31, 2020, is used as the experimental 
data. The data of 6497 trading days from January 2, 1992, to August 10, 2018 is 
used as the training set. Then, the model is applied to forecast the closing price of 
the Shanghai Composite Index from August 11, 2018, to August 31, 2020. At the 
same time, six models: CNN-Attention-LSTM-Attention, CNN-Attention-GRU, 
CNN-GRU-Attention, CNN-GRU, GRU, and LSTM are selected as comparative 
experimental models. The results indicate that CNN-Attention-GRU-Attention has 
higher forecast accuracy and stronger learning ability, and it has important practical 
value in stock price prediction. 

In summary, the contributions of this paper are:  
 Through the analysis of the stock data, it is found that the stock data 

followed time series. The CNN-Attention-GRU-Attention stock price 
prediction model is proposed. 

 Given that the stock data follows time series, it is proposed to use GRU to 
predict stock price. GRU can avoid the vanishing gradient problem and the 
exploding gradient problem caused by RNN. And Attention is applied to 
compute the influence of data at different time states on prediction to 
improve the forecast accuracy. 

 Taking the Shanghai Composite Index data as experimental data, 
comparative experiments are carried out. By comparing CNN-Attention-
LSTM-Attention with six other stock price prediction models, the accuracy 
and efficiency of CNN-Attention-GRU-Attention is proved. It is more 
appropriate for stock price prediction. 
2. Methodology 
2.1 CNN 
CNN was proposed by Lecun (1998). It can be effectively applied to 

feature extraction of data (Livieris et al., 2020). CNN can decrease the number of 
parameters through the local perception and weight sharing, thus improving the 
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degree of influence of different time points on the predicted stock value, and 
corresponding weights were assigned to each data item to make the model focus on 
important data items. 

The calculation process of Attention are as follows: 
 Firstly, the similarity or correlation of features is computed. Secondly, the 

Softmax function is used to normalize the output value of the previous stage to get 
the attention score. Finally, the final output value is obtained according to the 
weight coefficient. The formulas are shown: ݏ௧ = )ℎ݊ܽݐ ௛ܹ݇௧ + ܾ௛) (5)ܽ௧ = (௧ݏ)ݔܽ݉ݐ݂݋ݏ (6)

௧݋ = ෍ ܽ௧݇௧௧ (7)

Where ௛ܹ is the weight, ܾ௛ is the bias. 
 

2.4 The Structure of CNN-Attention-GRU-Attention 
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Figure 2. The Structure of CNN-Attention-GRU-Attention Diagram 
 



 
 
 
 
 
Wenjie Lu, Jiazheng Li, Jingyang Wang, Shaowen Wu 
____________________________________________________________ 

256 
 

CNN can extract features from data, so it is used in the feature extraction 
of data. On the time series. Attention can compute the influence of data at different 
times on the output data, so it is applied in time series prediction. GRU has a 
relatively similar performance compared with LSTM. It can learn better from time 
series data and is often used in time series prediction. Based on CNN, Attention, 
and GRU, a CNN-Attention-GRU-Attention is proposed to forecast stock price. Its 
main structure consists of CNN, Attention, and GRU. The model structure is 
displayed in Figure 2. 

2.5 The Training Process of CNN-Attention-GRU-Attention 
The training process of CNN-Attention-GRU-Attention is shown in Figure 

3. 

Judge whether  End 

Data Inputting

Data standardization

Model initialization

CNN Layer

Attention Layer

Error Calculation

Update Model

Yes

GRU Layer

Attention Layer

No

Dense Layer

 
Figure 3. Training Process of CNN-Attention-GRU-Attention Activity 

Diagram 
The steps are as follows: 

(1) Data Inputting: Enter the historical characteristic data of the target stock. 
(2) Data standardization: Because different dimension and dimensional unit 

existence big difference, the input stock data use the Z-score to standardize 
to ensure that in the training of the model each feature conforms to the 
same data distribution. 

(3) Model initialization: Initialize the weight and bias of each layer of the 
CNN-attention-Gru-attention model. 

(4) CNN Layer calculation and feature extraction : the standardized stock data 
in Step 2 is calculated through CNN to extract stock data time series 
features. The output data output1 is obtained. 

(5) Attention Layer: the data output1 is inputted into the Attention layer. The 
attention distribution probability is calculated by comparing the input lag 
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data of trading days to capture the relationship between data and highlight 
the influence of the important characteristic data of trading days in the 
input, and output data output2 is obtained 

(6) GRU Layer: the data output2 is inputted into the GRU layer. The output 
data output3 is obtained by using its hidden layer to calculate the time 
series. 

(7) Attention Layer: the data output3 calculated by the GRU layer is input into 
the Attention layer again. The influence of data at different times on stock 
price is calculated again, and output data output4 is got. 

(8) Dense Layer: the data output4 calculated by the Attention layer is input into 
the Dense layer, and the output5 is got. 

(9) Error Calculation and evaluation: the error between the output5 calculated 
by the Dense layer and the real value of the corresponding stock data is 
calculated. 

(10) Judge whether end: the end conditions are to complete the set epoch or the 
error of predictions is lower than a rated value. If one of the end conditions is 
met, the model training is ended; otherwise, continue to train the model 
according to step (11). 

 (11) Update model: the error is back propagated. The weight and bias of each 
layer are renewed. Then the whole CNN-Attention-GRU-Attention is updated. 
Jump to step (4) to continue training the model. 

2.6 The Prediction Process of CNN-Attention-GRU-Attention on Stock  
      Price  
The precondition of stock price prediction based on CNN-Attention-GRU-

Attention is that CNN-Attention-GRU-Attention has been trained. The prediction 
process of CNN-Attention-GRU-Attention is shown in Figure 4. 

Data inputting

Data standardization

Prediction

Normalized reduction of data

Outputting results

 
Figure 4. Prediction Process of CNN-Attention-GRU-Attention Activity 

Diagram 
The above steps are as follows: 

(1) Data inputting: Enter stock history trading data. 
(2) Data standardization. The input stock data is standardized usingZ-score. 
(3) Prediction: The data is input into CNN-Attention-GRU-Attention to be 

predicted. 
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(4) Normalized reduction of data: Since the data is predicted after 
standardization, the data predicted by CNN-Attention-GRU-Attention 
should be restored. 

(5) Outputting results: Output the reduced data to finish the stock price 
prediction process. 
3 Experiments 
Under the same operating environment, CNN-Attention-GRU-Attention is 

compared with LSTM, GRU, CNN-GRU, CNN-Attention-GRU, CNN-GRU-
Attention, CNN-Attention-LSTM-Attention, and CNN-Attention-GRU-Attention 
to prove the prediction accuracy. All models use Python and Keras based on 
Tensor Flow to implement. All the experiments use the same operating 
environment to carry out. To evaluate the prediction effectiveness of CNN-
Attention-GRU-Attention, this paper uses the Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE), Mean Absolute Percentage Error(MAPE), training 
time, and R2 as the evaluation index. 

3.1 Data description 
The stock data selected in this experiment are the daily trading data of the 

Shanghai Composite Index (000001) for a total of 6997 trading days from January 
2, 1992, to August 31, 2020. This data is got through the Wind. Select 8 technical 
indicators that influence stock price data. That is Opening Price(open) Highest 
Price (high) Lowest Price(low),  Closing Price(closing) , Volume, Turnover, Ups 
and Downs, Change. Some data are shown in Table 1. The first 6,497 trading days 
of the stock price data were divided into a training set and the last 500 trading days 
into a test set 

Table 1. Partial Original Stock Price Data 
Date Open High  Low Closing Volume Turnover Ups and Downs Change 

1992/1/2 292.75 293.74 293.75 292.76 293.75 92800 1339598 1 
1992/1/3 293.75 296.24 296.52 293.75 296.52 143600 1842222 2.77 
1992/1/6 296.52 297.68 297.68 296.52 297.68 340000 4236024 1.16 
1992/1/7 297.68 298.54 298.77 297.68 298.77 89200 1064008 1.09 
1992/1/8 298.77 299.65 299.66 298.77 299.66 65900 930535 0.89 

 
3.2 Model Implementation 
In this experiment, the parameter settings of CNN-Attention-GRU-

Attention are displayed in Table 2. 
 
Table 2. The CNN-Attention-GRU-Attention Parameter settings 

 
Parameters Value 

Convolution layer 
Filters 64 

Kernel-size 1 
Padding Valid 

Pooling layer 
Pool-size 1 
Padding Valid  
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3.4 Discussion 
As shown in table 3, every evaluation index of CNN-Attention-GRU-

Attention is the best. Its MAE, RMSE, MAPE is the smallest, and its R2 is the 
biggest, indicating its highest fitting degree. With the increase of model 
complexity, the training time will be increased, but the increased time belongs to 
the normal range. The performance rank of all models from high to low is CNN-
Attention-GRU-Attention, CNN-Attention-LSTM-Attention, CNN-Attention-
GRU, CNN-GRU-Attention, CNN-GRU, GRU, LSTM. Compared with LSTM, the 
MAE, RMSE, MAPE and R2 of GRU are respectively 27.457, 39.875, 0.9642% 
and 0.9642, while those of LSTM are respectively 27.551, 39.795, 0.9498% and 
0.9644. The results show that LSTM and GRU have almost the same prediction 
accuracy, but the training time of GRU is obviously reduced by 5s compared with 
LSTM. Compared with GRU, in CNN-GRU formed by adding CNN in front of 
GRU, MAE reduces from 27.457 to 27.340. RMSE reduces from 39.875 to 38.984. 
MAPE reduces from 0.9642% to 0.9406% and R2 adds from 0.9642 to 0.9658, 
indicating that the introduction of CNN can improve the forecasting accuracy. 
CNN can extract the features that affect the stock price. Compared with CNN-
GRU, in CNN-Attention-GRU, MAE reduces by 2.5% from 27.340 to 26.648. 
RMSE reduces by 1% from 38.984 to 38.593. MAPE reduces from 0.9406% to 
0.9191%. R2 adds by 0.0007 from 0.9658 to 0.9665. The results indicate that 
attention can improve the forecasting accuracy. Attention captures the effect of 
stock data at different times on stock prices. Compared with CNN-Attention-GRU, 
every performance of CNN-Attention-GRU-Attention is improved. It is MAE 
decreases by 1.4% from 26.648 to 26.266. RMSE decreases by 0.8% from 38.593 
to 38.266. MAPE decreases by 0.0141. R2 increases by 1.5%. The results show that 
the introduction of double Attention is more effective. Compared with CNN-
Attention-LSTM-Attention, the MSE of CNN-Attention-GRU-Attention reduces 
by 0.301 from 26.567 to 26.266; RMSE reduces by 0.183 from 38.449 to 38.266; 
MAPE reduces from 0.9153 to 0.9050; R2 increases to 0.9671; the training time 
reduces from 83.15s to 80.13s. The results show that when using the composite 
model, GRU has a higher performance than LSTM. Therefore, CNN-Attention-
GRU-Attention can make full use of the respective features of CNN, Attention, and 
GRU. CNN is applied to extract the features that affect the stock price. Attention is 
applied to compute the effect of stock data at different times on stock prices. GRU 
is applied for time series forecasting. The accuracy of stock price prediction is 
improved, which provides guidance for regulators and investors. 

 
4 Conclusions and future research 
In this article, a composite model (CNN-Attention-GRU-Attention) 

composed of CNN, Attention, and GRU is proposed to forecast the closing price of 
Shanghai Stock Composite index on the second trading day. In the model, to 
improve the forecasting effect, two aspects of characteristic screening and model 
structure are improved. CNN is applied to extract the features of the stock data. 
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Attention is applied to compute the influence of different time states on the 
predicted value. GRU is the main model to calculate the stock closing price. This 
paper uses the Shanghai Composite Index data to testify the accuracy of the 
prediction model and compares CNN-Attention-GRU-Attention with six models. 
Through comparison, it is concluded that CNN-Attention-GRU-Attention has the 
highest accuracy, and all its performance evaluation indicators are the best. The 
more complex compound model structure has higher accuracy than the single or 
simple compound model in stock price prediction. The proposal of CNN-Attention-
GRU-Attention has broad application prospect and has great significance for 
regulators and investors to understand the stock market. 

The future research will mainly have two aspects: 
• Every parameter of CNN-Attention-GRU-Attention is to be adjusted to 

improve its prediction accuracy. 
• To see if it is feasible to combine other neural networks and try to use the 

bidirectional GRU model to replace the GRU to improve the prediction 
accuracy of stock price. 
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