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FORECASTING STOCK MARKET INDEX BASED ON PATTERN-

DRIVEN LONG SHORT-TERM MEMORY 

 
Abstract. Stock trend prediction is an important area of study for 

researchers and practitioners. In recent years, along with traditional statistical 

prediction models, machine learning and deep learning techniques have been 
increasingly adopted in various financial studies. Long Short-Term Memory 

(LSTM) is one of the deep learning models for predicting time-series data. In the 

case of vanilla LSTM, shared weights are learned based on all available data; 
hence, it is difficult to accurately learn patterns and predict the future value from a 

subset of data. In this paper, a pattern-driven hybrid model that combines an 

LSTM with an unsupervised learning algorithm is proposed for precise prediction 

of stock prices. The performance of the hybrid model is evaluated using Korea 
stock index data. The results demonstrate that the proposed model outperforms 

traditional recurrent neural network (RNN) and LSTM models. 

 
Keywords: Long Short-Term Memory, Forecasting, Pattern Clustering, 

Stock Index, Time-series Analysis. 

 
JEL Classification:C45, E37 

 
1. Introduction 

Forecasting has been a subject of interest for a long time, and this interest 

has led to a great number of studies in diverse fields, especially finance. However, 
financial time-series forecasting, particularly stock price forecasting, has been a 
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challenging problem for researchers and investors due to financial sectors having 
high volatility and time-varying environments. Thus, various stock market 

prediction approaches have been proposed. These methods include simple 

statistical linear regression models to state-of-the-art deep learning-based models. 
 

For decades, traditional statistical models, such as the autoregressive 

moving average and autoregressive integrated moving average models, have been 

widely used in economics for time-series prediction, primarily due to their ability 
to model linear relationships between the input and output (Box et al., 2015; 

Cheong, 2013; Idrees et al., 2019). However, linear assumptions often lack 

sufficient evidence (Enkeand Thawornwong, 2005); thus, adopting artificial neural 
network algorithms in the prediction of financial data has attracted increasing 

attention in industry and academia. Neural networks have rapidly gained 

preference because they demonstrate great suitability in handling incomplete, 
missing, or noisy data without requiring assumptions about the data distribution 

(Vellido et al., 1999). 

 

Numerous applications of ANNs have been studied, some of which have 
successfully predicted a wide range of financial data indicators (Refenes et al., 

1997; Vanstone & Finnie, 2009; Zhang et al., 1998). Enhanced neural networks 

have also been introduced as forecasting methods. For example, Maknickienė et al. 
(2011)applied a recurrent neural network (RNN) to investigate financial market 

predictions. Besides, a long short-term memory (LSTM) network, which is a 

variation of an RNN to solve vanishing gradient problems, has been implemented 

extensively in recent studies (Moon and Kim, 2019; Nelson et al., 2017). The 
remarkable performance of such methods demonstrates the superiority of LSTM on 

time-series data. However, a limitation exists, e.g., LSTMs tend to prefer recent 

data, which affect shared parameters significantly (Fu et al., 2018). As financial 
time-series data involve time-dependent relationships, LSTM often fails to capture 

such dynamics (Oh et al., 2019).  

 
Despite the high performance of LSTM, even the slightest improvement is 

desirable because this has a positive influence on financial investments. Therefore, 

improving the efficiency of forecast models remains a primary concern. 

Accordingly, hybrid models have been proposed. For example, Bildirici and Ersin 
(2009), Kristjanpoller et al. (2014), Wang and Que (2018), and Yang and Lin 

(2015) demonstrated hybrid models that combine different artificial intelligence 

techniques with traditional forecasting approaches. In addition, Pulido et al. (2014) 
suggested a combination of neural network and fuzzy aggregation based on particle 

swarm optimization to predict the Mexican stock exchange. Baek and Kim (2018) 

developed a modular architecture comprising two LSTM networks to refine the 
resulting deterioration in prediction accuracy. Ramos-Pérezet al. (2019) proposed a 

financial forecasting system using machine learning techniques with neural 
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networks. Overall, hybridized models outperform conventional single models by 
yielding lower test errors. 

 

This paper presents a hybrid pattern-driven LSTM (P-LSTM) model, 
which combines unsupervised and supervised learning algorithms, to solve the 

limitation of LSTM in which patterns in data are not learned precisely due to 

weights being shared between cells. The proposed P-LSTM model clusters 

financial time-series data based on subsequences of the same pattern and trains 

them separately for stable learning of weights. 
 

The remainder of this paper is organized as follows. Section 2 summarizes 

the two methodologies adopted to develop the proposed hybrid model. Section 3 

discusses the framework of the proposed P- LSTM model. Section 4 provides an 
in-depth discussion of experimental setups and processes, and, in Section 5, the 

experimental results are provided with detailed analysis. Finally, conclusions are 

given in Section 6. 

 
2. Background 

This section describes the architectures of the two key models that adopt 
the pattern-driven hybrid model, i.e., the balanced iterative reducing and clustering 

using hierarchies (BIRCH) clustering and LSTM algorithms. 

 

2.1 BIRCH clustering algorithm 

 BIRCH, developed by Zhang et al. (1996), is a typical integrated 

hierarchical clustering algorithm applicable to very large datasets and is known to 

achieve high-quality clustering with only one traversal. Its high efficiency is a 
result of the clever use of available memory to derive the best quality sub-clusters 

while reducing processing costs. In BIRCH, not every data point is equally crucial 

for clustering purposes. Consequently, the BIRCH clustering method provides a 
robust solution for managing noise (Thilagavathi et al. 2013). Moreover, when a 

Euclidean or Manhattan distance measure is used, BIRCH is preferred because the 

data attributes are continuous (Chiu et al. 2001).Such aspects make BIRCH 
algorithm a primary candidate for clustering. 

 

BIRCH is mainly composed of two phases. It first performs pre-clustering 

in which dense regions of data points are represented in summary statistics called 
clustering feature (CF). Then, hierarchical clustering is conducted to cluster the set 

of summaries. The CF represents the characteristics of a cluster and is denoted 

(𝑛, 𝐿𝑆, 𝑆𝑆), where n is the number of data in a sub-cluster, LS is the linear sum of 
the points, and SS is the sum of the squared of the points. New CF can be obtained 

by adding the CFs of two disjoint clusters as follows. 
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CF1 + CF2 = (𝑛1 + 𝑛2, 𝐿𝑆1 + 𝐿𝑆2, 𝑆𝑆1 + 𝑆𝑆2) 
 

The information in the CF is adequate to achieve high-quality clustering. 

Thus, the BIRCH algorithm is memory-efficient because it does not require the 
whole dataset. 

 

The CF comprises the nodes in a CF tree that is an in-memory data 

structure acting as the core of the BIRCH clustering algorithm. In a CF tree, leaf 
nodes form the non-leaf node, and non-leaf nodes form the root. The parameters of 

the CF tree are branching factor B, threshold T, and the number of entries in a leaf 

node L. Branching factor B establishes the limiting number of sub-clusters for each 

non-leaf node, and threshold T is the maximum radius of a cluster in a leaf node. If 

threshold Tis too small, significant space could be taken; thus, it is recommended 

to begin from 0 and increment the threshold slowly (Bing et al. 2004). 
 

The steps of the BIRCH clustering algorithm are summarized as follows. 

 
1. Build a CF tree to load data to the memory. Reconstruct the tree if memor

y is exhausted. 

2. Resize the dataset by removing outliers to adjust the size of the CF tree. 

3. Use the existing clustering algorithm on CF entries. 

4. (Optional) Refine the cluster by fixing incorrectly assigned data points. 

 
2.2 Long Short-term Memory  
Recurrent neural networks (RNN) are remarkably powerful models that 

process sequential patterns through internal loops; however, it is frequently 

difficult to train RNNs when handling long time lags due to back propagated error 

blowing up or decaying exponentially, also known as exploding and vanishing 
gradients, respectively. To address the vanishing gradients problem, the LSTM 

architecture was developed by Hochreiter and Schmidhuber (1997). LSTM 

introduces an innovative concept called a memory block, which is essentially an 
accumulator of state information.  
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Figure 1. Cell diagram of LSTM 

 
As shown in Fig. 1, the memory block comprises a memory cell and three 

main gates. The memory cell 𝑐𝑡  has a recurrently self-connected linear unit, an 

input gate 𝑖𝑡  that allows an incoming signal to alter (or block) the state of the 

memory cell, a forget gate 𝑓𝑡  that modulates the memory cell’s connection to keep 

only the relevant information from its previous state, and an output gate 𝑜𝑡 
allowing (or preventing) the state of the memory cell to influence other neurons. 

These components control the information flow and allow a gradient to be trapped 
in the cell, which prevents the gradient from becoming increasingly unstable. 

 

Mathematical expressions for the most common LSTM architecture, i.e., 
with forget gates, are given as follows. 

 

Input gate: 𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 + 𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)   (1)  
Forget gate: 𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓)   (2)  

Memory cell: 𝑐𝑡 = 𝑖𝑡⨀𝑐̃𝑡 + 𝑓𝑡⨀𝑐𝑡−1    (3)  
Input modulate gate: 𝑐̃𝑡  = tanh(𝑊𝑐𝑥𝑡 + 𝑈𝑐ℎ𝑡−1 + 𝑏𝑐)  (4)  
Output gate: 𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜)   (5)  
Block output: ℎ𝑡 =  𝑜𝑡⨀tanh (𝑐𝑡)    (6)  

 
Here, 𝑐̃𝑡  determines the amount of new information received in the cell 

state, 𝑥𝑡  is the input vector at time t, ℎ𝑡 is the hidden layer vector, W denotes input 
weighted matrices, U denotes recurrent weight matrices, and b denotes the bias 

vectors of LSTM. 𝜎(∙) is a pointwise nonlinear activation function, i.e., logistic 

sigmoid (
1

1+𝑒−𝑥
) in this case. Note that elementwise multiplication is denoted ⨀. 
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3. Proposed Pattern-driven LSTM 
The proposed P-LSTM framework has three primary stages, as shown in 

Fig. 2. The first stage involves pre-processing the input time-series data. The time-

series data are partitioned to be the same size as the timestep in the LSTM network. 
Then, each vector set is paired with a Y value, i.e., the closing price of the 

following day. These paired sets are divided into training and testing data. Each X 

value is min/max scaled from 0 to 1 based on their X vector set for the clustering 

process and Y values are also scale during the min and max of the corresponding X 
vector set. 

 

Patterns are defined in the second stage. Here, M clusters are classified by 
applying the BIRCH clustering algorithm to data with essentialinput features. 

These clusters depict all possible patterns in the provided data. Subsequently, all 

the batches in the training data are then distributedappropriately to the clusters, 
thereby generating a new form of training data. Additionally, batches of testing 

data are fed into the trained BIRCH model for assignment to a proper cluster. 

 

In the last stage, a LSTM network is built for each cluster. Here, the LSTM 
network is trained using the training data collected in the corresponding cluster. 

Finally, the testing data from the same cluster is fed into the trained LSTM neural 

network to perform the prediction. 

 
Figure 2. Architecture of proposed P-LSTM hybrid model 

 
4. Experimental Setup 

 

4.1 Data and pre-processing 
Daily data from the Korean stock market indexes, i.e., Korea Composite 

Stock Price Index (KOSPI) and Korea Securities Dealers Automated Quotation 
(KOSDAQ) were used to evaluate the performance of the prediction models. As 

seen in Table 1 and Figure 3, the data comprise 4593 daily records from January 2, 

2001 to July 31, 2019. The data were split into training data (80%) and testing data 
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(20%) after batch pre-processing. Here, the training data were used to train the 
LSTM models, and the testing data were used to validate the proposed model.  

 

Each data point is defined as 𝑋𝑡, and comprises five indicators: open price 
(stock price at the start of each trading day), high price (highest price of each 

trading day), low price (lowest price of each trading day), close price (stock price 

at the end of each trading day), and volume (number of shares traded in a security 

during each trading day). 
 

Note that the input variables were pre-processed to maximize the 

performance of the proposed P-LSTM model. First, the indicators of each day were 

bundled into a vector 𝑋𝑡,. Then, several of these vectors were put together to form 

the batch 𝑋̃by considering the size of the timestep (n) of the corresponding LSTM 

cell. As the magnitude of data varies, which prevents accurate clustering, each 

time-series vector set comprising consecutive days was min/max scaled as follows. 
 

𝑥′ =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
    (7)  

 
Here, x is the original value, 𝑥′is the scaled value, and 𝑥𝑚𝑎𝑥and 𝑥𝑚𝑖𝑛are 

the maximum and minimum values in each batch 𝑋̃  =  {𝑋1 , 𝑋2, ⋯ 𝑋𝑛},respectively. 

 

The Y value in each batch are also min/max scaled based on the minimum 
and maximum values of the corresponding 𝑋̃ vector set.In this study, the data 

dimension was set 20 days because, in this given period, the features are most 

effective as a moving average in the stock market.  

 

Table 1. Summary of training data and test dataset after batch preprocessing 

 

Dataset Train period (sample) Test period (sample) 

KOSPI 2001/01/02 ~ 2015/11/05 (3658) 2015/11/06 ~ 2019/07/31 (915) 

KOSDAQ 2001/01/02 ~ 2015/11/05 (3658) 2015/11/06 ~ 2019/07/31 (915) 

 

 
Figure 3. KOSPI (left) and KOSDAQ (right) index 
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4.2 Pattern Clustering 
Pattern clusters were classified with the 3658 pre-processed training data 

from the previous step based on the BIRCH clustering algorithm. For clustering, 

min/max scaled values between 0 and 1 were used. Then, the 915 pre-processed 
test data were assigned to the corresponding clusters based on the trained model.  

 

Here, the BIRCH hyperparameters were set to appropriate values through 

preliminary experiments based. First, the number of clusters was set to 8to prevent 
the number of data in each cluster from becoming too small relative to the limited 

number of data, although better patterns can be classified using a greater number of 

clusters. Second, the threshold and branching factor were set to 0.2 and 20, 
respectively, to distribute data evenly among clusters without destroying the 

pattern. As a result, eight clusters were obtained. Figures 4 and 5 show the number 

of allocated training and testing samples from KOSPI and KOSDAQ in each 
cluster. 

 

 
Figure4. Number of training and test samples in each cluster for KOSPI 

 

 
Figure 5. Number of training and test samples in each cluster for KOSDAQ 
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4.3 Model Hyperparameter 
An LSTM neural network was applied to each cluster. Thus, the number of 

networks was equal to the number of clusters. For the LSTM hyperparameters, 

optimum values were found by conducting inductive experiments. To prevent the 
model from overfitting, early-stopping was employed to stop training as required. 

Except for the epochs, the other hyperparameters were kept constant to maintain 

the universality of the experiment. The hyperparameters were set as follows: 

timestep = 20, learning rate = 0.001, input dimension = 5, hidden dimension = 1, 
and output dimension = 1 (the output dimension is the dimension of the closing 

price of the next day). Finally, the Adam optimizer and mean squared error were 

used as the optimization algorithm and loss function, respectively. 

 
4.4 Evaluation Metrics 

The experimental results were analysed according to the mean absolute 
error (MAE), root mean square error (RMSE) and mean absolute percentage error 

(MAPE) metrics.  

MAE =  
1

𝑛
∑ |𝑦𝑖 − 𝑓𝑖|𝑛

𝑖=1     (8)  

RMSE = √
1

𝑛
∑ (𝑦𝑖 − 𝑓𝑖)2𝑛

𝑖=1    (9)  

MAPE =  
1

𝑛
∑ |

𝑦𝑖−𝑓𝑖

𝑦𝑖
|𝑛

𝑖=1     (10)  

 

Here, 𝑦𝑖 and 𝑓𝑖are the actual and forecast values, respectively, and n is the 

number of forecasted values. The evaluation indexes of the M clusters were 
averaged using a simple arithmetic average method to facilitate the evaluation of 

the forecast results output by the proposed P-LSTM model.  

 
5. Results 

The KOSPI and KOSDAQ datasets were used to evaluate the effectiveness 

of the proposed P-LSTM model in forecasting actual financial time-series data. The 
prediction accuracy was compared to that of conventional RNN- and LSTM-based 

deep learning models.  

 
Figures 6 and 8 show the patterns obtained when BIRCH clustering was 

applied to the KOSPI and KOSDAQ training data, and Figs. 7 and 9 show the 

clustered KOSPI and KOSDAQ testing data. The lines in the figures are the 

connections of 𝑋4values, i.e., the closing price, from time (t-20) to time t. The x-

axis represents the length of the time step (20 days), and the y-axis represents the 

min/max scaled closing price. These figures show that the line density depends on 
the number of samples, all eight clusters demonstrate different patterns, and the 

pattern of the testing clusters perfectly matches that of the trained cluster. 
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Figure 6. Visualization of KOSPI patterns for each training cluster classified 

using BIRCH algorithm 

 

 
Figure 7. Visualization of KOSPI patterns for each testing cluster classified 

using BIRCH algorithm 
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Figure 8. Visualization of KOSDAQ patterns for each training cluster 

classified using BIRCH algorithm 

 

 
Figure 9. Visualization of KOSDAQ patterns for each testing cluster classified 

using BIRCH algorithm 
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Table 2.Number of Sample data and early-stopping epoch for each model 

 
  KOSPI KOSDAQ 

  Train Test 
Early 

Stopping 

epoch 

Training Test 
Early 

Stopping 

epoch 

P-
LSTM 

Cluster 1 736 204 21 766 220 48 

Cluster 2 323 97 87 511 149 38 

Cluster 3 471 126 42 319 71 51 

Cluster 4 322 75 40 289 78 83 

Cluster 5 788 187 28 821 171 39 

Cluster 6 359 92 35 447 112 39 

Cluster 7 203 48 34 309 62 35 

Cluster 8 456 86 14 196 52 115 

LSTM  3658 915 35 3658 915 49 

RNN  3658 915 22 3658 915 34 

 
The number of sample data and epoch for each model are summarized in 

Table 2. For the proposed P-LSTM, the numbers of distributed samples according 
to the patterns are noted. The evaluation results of the testing data fed into the 

corresponding neural network are listed in Table 3. The average results obtained 

using the KOSPI data are 13.285 (MAE), 18.475 (RMSE), and 0.610 (MAPE), and 
the average results obtained using the KOSDAQ data are 6.887 (MAE), 9.413 

(RMSE), and 0.948 (MAPE). The obtained results suggest that the values of cluster 

7 for the KOSPI data and cluster 3 for the KOSDAQ data are optimum. 

 

Table 3. Summary of P-LSTM forecasting evaluation results for each cluster 

 

  KOSPI KOSDAQ 

  MAE RMSE MAPE MAE RMSE MAPE 

P-

LSTM 

Cluster 1 15.110 19.517 0.704 8.184 10.969 1.169 

Cluster 2 13.530 17.650 0.635 6.505 9.156 0.878 

Cluster 3 9.754 13.722 0.437 8.798 11.537 1.188 

Cluster 4 12.697 19.384 0.587 5.368 7.851 0.740 

Cluster 5 11.783 15.392 0.534 5.329 7.246 0.718 

Cluster 6 15.213 20.513 0.692 6.391 8.366 0.884 

Cluster 7 14.151 20.632 0.674 7.930 10.241 1.124 

Cluster 8 14.042 20.987 0.616 6.592 9.940 0.886 

 Mean 13.285 18.475 0.610 6.887 9.413 0.948 

 Best 9.754 13.722 0.437 5.329 7.246 0.718 
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Figures 10 and 11 compare the actual values of the KOSPI and KOSDAQ 
indexes to the min/max scaled values returned to the original exponential scale. 

Here, the x-axis represents the independent data samples within each cluster rather 

than continuous time-series data.  
 

 
Fig. 10. Comparison of predicted data from P-LSTM and actual data for 

KOSPI in each cluster 

 

 
Fig. 11. Comparison of predicted data from P-LSTM and actual data for 

KOSDAQ in each cluster 



 

 
 

 

 

Donghwan Song, Moise Busogi, Adrian M. Chung  Baek,  Namhun Kim 

____________________________________________________________ 

38 

DOI: 10.24818/18423264/54.3.20.02 

 The testing data were also restored to the original index data to facilitate 
comparison with the actual indexes or the other models. The inverse scaled results 

compared to the results from the LSTM and RNN methods and the actual KOSPI 

and KOSDAQ values are shown in Fig. 12. As shown in Fig. 12 and Table 4, the 
pattern-based LSTM model captures the movement of the actual indexes as 

demonstrated by the lowest error compared to LSTM only or RNN. 

Table 4 summarizes the test errors of the compared models. As can be 

seen, the proposed model demonstrates improvements over the RNN model of 
49.07% (MAE), 45.80% (RMSE), and 46.51% (MAPE) for the KOSPI data, and 

10.49% (MAE), 8.59% (RMSE), and 11.15% (MAPE) for the KOSDAQ data. 

Compared to the LSTM model, the proposed model demonstrated approximately 
30.53% (MAE), 27.13% (RMSE), and 27.80% (MAPE) differences in performance 

for the KOSPI data, and 3.07% (MAE), 2.69% (RMSE), and 3.36% (MAPE) 

differences for the KOSDAQ data. 

 

 
Fig. 12. Comparison of predicted and actual values for (a) KOSPI data and (b) 

KOSDAQ data 
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Table 4. Comparison of test errors  

 

 KOSPI KOSDAQ 

 MAE RMSE MAPE MAE RMSE MAPE 

P-LSTM 13.187 18.142 0.605 6.857 9.448 0.948 

LSTM 18.983 24.898 0.838 7.074 9.709 0.981 

RNN 25.891 33.473 1.131 7.661 10.336 1.067 

 
6. Conclusion 

 With technological advancements, academics have adopted deep learning-
based methods to conduct meaningful studies into solving diverse time-series 

problems. In particular, RNN and LSTM models are commonly applied to such 

problems, and their architectures are frequently modified to improve predictive 
performance. However, due to their tendency to prefer recent inputs, they 

demonstrate limited efficacy when handling data over a period, e.g., financial time-

series data. Therefore, in this paper, we have proposed the P-LSTM model, which 

integrates LSTM into a classical unsupervised learning model, i.e., the BIRCH 
clustering algorithm, and works with an emphasis on a divide and conquer strategy. 

The proposed P-LSTM model (1) pre-processes time-series data by partitioning the 

data into a specific size and pairing to the closing price of the next day and then 
min/max scales in the range 0-1; (2) classifies patterns using the BIRCH clustering 

algorithm and assigns test data to proper clusters; and (3) builds individual LSTM 

neural networks for each cluster and feeds the test data for evaluation.  
 

The predictive power of the proposed P-LSTM model was validated by 

applying it to the KOSPI and KOSDAQ indexes. According to the results, the 

MAE, RMSE, and MAPE values for the KOSPI data decreased to 30.53% 
(49.07%), 27.13% (45.80%), and 27.80% (46.51%), respectively, of the 

corresponding KOSPI forecasting errors of LSTM (RNN). Besides, the test MAE, 

RMSE, and MAPE values for the KOSDAQ data decreased to 3.07% (10.49%), 
2.69% (8.59%), and 3.36% (11.15%), respectively, of the corresponding KOSDAQ 

forecasting errors of LSTM (RNN). These results demonstrate that the proposed P-

LSTM model outperforms conventional RNN and LSTM models and is more 

suitable for financial time-series prediction problems than conventional networks 
because their unique structures make it possible to learn patterns contained in input 

sequences.  

 
 This study has significance because suggests a new approach to pre-

processing and forecasting financial time-series data by combining learning 

techniques. Besides, the proposed P-LSTM model is not restricted to financial data, 
i.e., it can be applied to time-series data from other fields. Finally, the proposed 

network can extend research into hybrid frameworks. 
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Note that the effectiveness of the proposed P-LSTM model improves as the 
number of clusters increases, i.e., as more patterns are classified, more 

sophisticated predictions can be achieved. However, this increase of clusters 

undoubtedly leads to a reduced number of samples in each cluster, which results in 
the model prone to overfitting. Thus, in the future, solutions for insufficient data 

will be explored, such as data augmentation that reassembles time-series data with 

different properties based on patterns or using time-series data in minutes. 
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