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Abstract.This paper provides a solution to the customer portfolio for a given fixed 

desired expected rate of return under constraints based. We restrict the solution to a class of 

finite, ergodic, controllable continuous-time, finite-state Markov chains. We propose a 
regularized Lagrange method for the portfolio representation that ensures the strong 

convexity of the objective function and the existence of a unique solution of the portfolio. The 

solution is obtained by using the standard Lagrange method introducing the positive 

parameters 𝜃 and 𝛿, and the Lagrange vector-multipliers 𝜇0 and 𝜇1for the equality and 

inequality constraints, respectively, and forming the Lagrangian. We prove that if the ratio 
𝜃𝑛

𝛿𝑛
 tends to zero, then the solution of the original portfolio converges to a unique solution 

with the minimal weighted norm. We introduce a recurrent procedure based on the 

projection-gradient method for finding the extremal points of the portfolio. In addition, we 
prove the convergence of the method. A numerical example validates the effectiveness of the 

regularized portfolio Lagrange method. 

Keywords: Mean-variance portfolio selection; Tikhonov regularization; Lagrange; 
Continuous-time Markov chains; Applications in finance. 
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1.Introduction 

1.1.Brief review 

The mean-variance model was first proposed by Markowitz [16], its aim is to 

minimize the risk of the investment, expressed by the variance of the terminal wealth, 

with a given level of expected return for portfolio construction in a single period. The 
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mean-variance approach has become the foundation of modern finance theory and has 

inspired numerous extensions and applications. A relevant property of the model is that 

it makes possible for an investor to seek highest expected return after determining the 

acceptable risk level (measured by the variance of the expected return). A factor that 

dominates the movement of a stock is the trend of the market. To reflect the market 

trend, it is necessary to allow the key parameters to respond to the general market 

movements. 

Motivated by the importance of Markov-chain solutions for solving 

Markowitz’s portfolio [7, 10, 13, 14], there have been also continuing efforts in 

extending portfolio selection to continuous-time Markov models. Zhou and Yin [25] 

developed the continuous-time version of Markowitz’s mean-variance portfolio 

selection with regime switching and derived the efficient portfolio and efficient frontier 

explicitly. Yin and Zhou [23] suggested a random regime switching delineated by a 

finite-state Markov chain, based on a discrete-time Markov modulated portfolio 

selection model where the connections between discrete-time models and their 

continuous-time counterpart are revealed. They proved that the process of interest yields 

a switching diffusion limit using weak convergence methods and devised the portfolio 

selection strategies for the original problem and demonstrate their asymptotic 

optimality. BauerleandRieder [1] solved the problem using stochastic control methods 

utility maximization in a continuous-time-model with switching drift and volatility. Sass 

and Haussmann [20] consider only a switching drift which yields a setting with partial 

information where they derive explicit strategies using martingale arguments and 

Malliavin calculus. Taksar and Zeng [21] look at the discretized model and discuss 

relation to the continuous-time results. Brodiea et al. [2] presented a portfolio selection 

as a constrained least-squares regression problem considering a penalty approach. 

DeMiguel et al. [14,15] considered different portfolio algorithms including both a linear 

and a quadratic penalty regularization parameter. Putschögland Sass[17] extended the 

approach of [39] considering in addition convex constraints (as no-short-selling). Fan et 

al. [11] justified the use of a linear regularization parameter to identify sparse and stable 

portfolios validating the empirical results given in [15]. Sanchez et al. [19] presented an 

iterated method for solving a mean-variance customer portfolio optimization problem 

for Markov chains employing Tikhonov’s regularization method to ensure the 

convergence of the objective-function to a single optimal portfolio solution. On the 

same lines, Sanchez et al. [18] suggested a recurrent reinforcement learning approach 

that adjusts the Markov chains policies according to a preprocessing and an actor-critic 

architecture for computing the mean-variance customer portfolio. It is important to note 

that in this paper we present a completely different method for computing the 

mean-variance customer portfolio a new approach for regularization. Clempner and 
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Poznyak [5] considered a penalty-regularized expected utility and investigates the 

applicability of the method for computing the mean-variance Markowitz customer 

portfolio optimization problem. Zhang et al. [24] developed a method that combines the 

𝑙2 and 𝑙𝑝 norm penalties as well as the nonnegativity constraints to compute the simple 

portfolio model. For other applications of regularization methods for portfolio selection 

see [3, 12]. 

1.2. Main results 

Although several models have been used in a wide variety of situations, they 

have certain limitations. The fundamental problem is in the fact that the concave 

functional of the portfolio is not strongly concave and the evaluation of the portfolio 

optimization problem determines several admissible portfolio solutions. To address 

these shortcomings, this paper presents the following contributions: 

 Suggests a solution based on a continuous-time finite-state customer portfolio. 

 Proposes an 𝑙2 regularized Lagrange method for the portfolio representation. 

 Provides a poly-linear programming problem formulation of the problem 

 Shows that there exists a positive regularization parameter 𝛿 for which the Hessian 

matrix is strictly positive definite. 

 Proves that if the ratio 
𝜃𝑛

𝛿𝑛
↓ 0 then, the solution of the original portfolio converges 

to a unique solution with the minimal weighted norm. 

 Introduces a recurrent procedure based on the projection-gradient method. 

 Shows the convergence to a unique portfolio.  

 

1.3.Organization of the paper 

The reminder of the paper is organized as follows. The next Section presents the 

formulation of the problem. Section 3 describes the regularization method for 

Markowitz’s portfolio presenting the Theorems that describes the dependence of the 

saddle-point of the regularized portfolio Lagrange function on the regularizing 

parameters 𝛿, 𝜃  and analyses its asymptotic behavior. A continuous-time Markov 

portfolio approach is suggested in Section 4. Section 5 computes the Markov portfolio 

presenting the convergence of the method. A numerical example is presented in Section 

6. Section 7 concludes the paper. 

 
2.Regularized portfolio problem formulation 

The goal is to find a unique admissible portfolio 𝑥 ∈ 𝑋𝑎𝑑𝑚  (among all the 

admissible portfolios) whose expected terminal wealth is 𝐸(𝑥)  so that the risk 

measured by the variance of the terminal wealth 

 𝑉𝑎𝑟(𝑥):= 𝐸[𝑥 − 𝐸𝑥]2 
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is minimized. Finding such a portfolio 𝑥 ∈ 𝑋𝑎𝑑𝑚 where  

 𝑓(𝑥) = −𝐸(𝑥) +
𝜉

2
𝑉𝑎𝑟(𝑥) → min

𝑥∈𝑋𝑎𝑑𝑚
 

is referred to as the mean-variance portfolio selection problem where 
𝜉

2
 can be any 

positive number. Specifically, we have the following poly-linear programming problem 

re-formulation 

 

𝑓(𝑥) = 𝛼1 ∑

𝑁

𝑗1=1

𝑐𝑗1𝑥𝑗1 + 𝛼2 ∑

𝑁

𝑗1=1

∑

𝑁

𝑗2=1

𝑐𝑗1,𝑗2𝑥𝑗1𝑥𝑗2

+𝛼3 ∑

𝑁

𝑗1=1

∑

𝑁

𝑗2=1

∑

𝑁

𝑗3=1

𝑐𝑗1,𝑗2,𝑗3𝑥𝑗1𝑥𝑗2𝑥𝑗3+. . . +

𝛼𝑁−1 ∑

𝑁

𝑗1=1

∑

𝑁

𝑗2=1

. . ∑

𝑁

𝑗𝑁−1=1

𝑐𝑗1,..,𝑗𝑁−1𝑥𝑗1 . . . 𝑥𝑗𝑁−1 +

𝛼𝑁 ∑

𝑁

𝑗1=1

∑

𝑁

𝑗2=1

. . ∑

𝑁

𝑗𝑁=1

𝑐𝑗1,..,𝑗𝑁𝑥𝑗1⋯𝑥𝑗𝑁 → min
𝑥∈𝑋𝑎𝑑𝑚

𝛼𝑗 = {0; 1}(𝑗 = 1, . . . , 𝑁) are binary variables

𝑋𝑎𝑑𝑚:= {𝑥 ∈ 𝑅
𝑁: 𝑥 ≥ 0, 𝑉0𝑥 = 𝑏0 ∈ 𝑅

𝑀0 , 𝑉1𝑥 ≤ 𝑏1 ∈ 𝑅
𝑀1}

is a bounded set }
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                   (1) 

 

Notice that this portfolio problem may have non-unique solution and det(𝑉0
⊺𝑉0) = 0. 

The problem (1) is called feasible if there is at least one portfolio satisfying all the 

constraints. An optimal portfolio to the above problem is called an efficient portfolio 

corresponding to 𝑥 ∈ 𝑋𝑎𝑑𝑚 . Define by 𝑋∗ ⊆ 𝑋𝑎𝑑𝑚  the set of all solutions of the 

problem (1). The set of all the efficient points 𝑥 ∈ 𝑋∗ is called the efficient frontier. 

Following [6], let us consider the Markowitz Regularized Portfolio Lagrange 

function (RPLF) 

ℒ𝜃,𝛿(𝑥, 𝜇0, 𝜇1):= 𝜃𝑓(𝑥) + 𝜇0
⊺ (𝑉0𝑥 − 𝑏0) + 𝜇1

⊺(𝑉1𝑥 − 𝑏1) +
𝛿

2
(‖𝑥‖2 − ‖𝜇0‖

2 − ‖𝜇1‖
2)

                        (2)

  

where the parameters 𝜃, 𝛿 are positive and the Lagrange vector-multipliers 𝜇1 ∈ ℝ
𝑀1 
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are non-negative and the components of 𝜇0 ∈ ℝ
𝑀0 may have any sign. Obviously, the 

optimization problem  

ℒ𝜃,𝛿(𝑥, 𝜇0, 𝜇1) →  min
𝑥∈𝑋𝑎𝑑𝑚

max
𝜇0,𝜇1≥0

                                       (3) 

has a unique saddle-point on 𝑥 since the optimized RPLF (2) is strongly convex ([35]) if 

the parameters 𝜃 and 𝛿 > 0 provide the condition 
𝜕2

𝜕𝑥𝜕𝑥⊺
ℒ𝜃,𝛿(𝑥, 𝜇0, 𝜇1) > 0, ∀𝑥 ∈ 𝑋𝑎𝑑𝑚 ⊂ ℝ𝑁                               (4) 

and is strongly concave on the Lagrange multipliers 𝜇0, 𝜇1 for any 𝛿 > 0. In view of 

these properties RLF has the unique saddle point (𝑥∗(𝛿), 𝜇0
∗(𝜃, 𝛿), 𝜇1

∗(𝜃, 𝛿)) for which 

the following inequalities hold: for any 𝜇0, 𝜇1 with nonnegative components and any 

𝑥 ∈ ℝ𝑛 

ℒ𝜃,𝛿(𝑥, 𝜇0
∗(𝜃, 𝛿), 𝜇1

∗(𝜃, 𝛿)) ≥ ℒ𝜃,𝛿(𝑥
∗(𝛿), 𝜇0

∗(𝜃, 𝛿), 𝜇1
∗(𝜃, 𝛿)) ≥ ℒ𝜃,𝛿(𝑥

∗(𝛿), 𝜇0, 𝜇1)(5) 

As for the non-regularized function ℒ1,0(𝑥, 𝜇0, 𝜇1), it may have several (not necessarily 

unique) saddle points (𝑥∗, 𝜇0
∗ , 𝜇1

∗) ∈ 𝑋∗⊗Λ∗. 
Given the Markowitz Regularized Portfolio Lagrange function represented in 

Eq. (2). If the parameter 𝜃  and the regularizing parameter 𝛿  tends to zero by a 

particular manner (0 < 𝜃𝑛 ↓ 0,
𝜃𝑛

𝛿𝑛
↓ 0when𝑛 → ∞), then we may expect that 𝑥∗(𝜃, 𝛿) 

and 𝜇0
∗(𝜃, 𝛿), 𝜇1

∗(𝜃, 𝛿), which are the solutions of the min-max portfolio optimization 

problem (3) tend to the set 𝑋∗⊗Λ∗  of all saddle points of the original portfolio 

optimization problem (1), that is,  

𝜌{𝑥∗(𝜃, 𝛿), 𝜇0
∗(𝜃, 𝛿), 𝜇1

∗(𝜃, 𝛿); 𝑋∗⊗
Λ∗} →

𝜃,𝛿↓0
0                                              (6)   

where 𝜌{𝑎; 𝑋∗⊗Λ∗} is the Hausdorff distance defined as 

 𝜌{𝑎; 𝑋∗⊗Λ∗} = min
𝑧∗∈𝑋∗⊗Λ∗

‖𝑎 − 𝑧∗‖2 

In the next Section we will define exactly how the parameters 𝜃 and 𝛿 should 

tend to zero to provide the property (6). 

 

3.Uniqueness of the Markowitz portfolio 

The next theorems describe the dependence of the saddle-point 𝑥∗(𝜃, 𝛿) and 

𝜇0
∗(𝜃, 𝛿), 𝜇1

∗(𝜃, 𝛿) of the RPLF on the regularizing parameters 𝛿, 𝜃. 

 

Theorem 3.1 Let the portfolio be defined as  

ℒ𝜃,𝛿(𝑥, 𝜇0, 𝜇1):= 𝑓(𝑥) + 𝜇0
⊺ (𝑉0𝑥 − 𝑏0) + 𝜇1

⊺(𝑉1𝑥 − 𝑏1) +
𝛿

2
(‖𝑥‖2 − ‖𝜇0‖

2 − ‖𝜇1‖
2) 

Then, there exists a positive parameter 𝛿  for which the Hessian matrix 𝐻:=
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𝜕2

𝜕𝑥𝜕𝑥⊺
ℒ𝜃,𝛿(𝑥, 𝜇0, 𝜇1) is strictly positive definite.  

Proof. First, let us prove that the Hessian matrix 𝐻:=
𝜕2

𝜕𝑥𝜕𝑥⊺
ℒ𝜃,𝛿(𝑥, 𝜇0, 𝜇1) is 

strictly positive definite for all 𝑥 ∈ ℝ𝑁 and for some positive 𝜃 and 𝛿, satisfying a 

special relation, namely, 𝐻 > 0. We have 

𝜕2

𝜕𝑥2
ℒ𝜃,𝛿(𝑥, 𝜇0, 𝜇1) = 𝜃

𝜕2

𝜕𝑥2
𝑓(𝑥) + 𝛿𝐼𝑁×𝑁 ≥ 𝛿 (1 +

𝜃

𝛿
𝜆−) 𝐼𝑁×𝑁 > 0∀𝛿 > 𝜃|𝜆

−| 

 

𝜆−: = min
𝑥∈𝑋𝑎𝑑𝑚

𝜆min (
𝜕2

𝜕𝑥2
𝑓(𝑥)) 

fulfilling the property 𝐻 > 0 if 𝛿 > 𝜃|𝜆−|. This means that RLF (2) is strongly convex 

on 𝑥 and, hence, has a unique minimal point defined below as 𝑥∗.  

Theorem 3.2 Given the Portfolio Lagrange function represented in Eq. (2). Let 

us assume that 

1.  the bounded set 𝑋∗ of all solutions of the original portfolio optimization problem 

(1) is not empty and the Slater’s condition holds, that is, there exists a point 𝑥 ∈ 𝑋𝑎𝑑𝑚 

such that 

𝑉1𝑥 < 𝑏1                                                           (7) 

2.  The parameters 𝜃 and 𝛿 are time-varying, i.e., 

 𝜃 = 𝜃𝑛, 𝛿 = 𝛿𝑛(𝑛 = 0,1,2, . . . . ) 
such that 

0 < 𝜃𝑛 ↓ 0,
𝜃𝑛

𝛿𝑛
↓ 0when𝑛 → ∞                                           (8) 

 Then  

 

𝑥𝑛
∗ : = 𝑥∗(𝜃𝑛, 𝛿𝑛) →

𝑛→∞
𝑥∗∗

𝜇0
∗(𝜃𝑛, 𝛿𝑛) →

𝑛→∞
𝜇0
∗∗

𝜇1
∗(𝜃𝑛, 𝛿𝑛) →

𝑛→∞
𝜇1
∗∗

}
 

 
                                (9)  

where 𝑥∗∗ ∈ 𝑋∗ and (𝜇0
∗∗, 𝜇1

∗∗) ∈ Λ∗, define the solution of the original problem (1) 

with a unique minimal norm, i.e., 

‖𝑥∗∗‖2 + ‖𝜇0
∗∗‖2 + ‖𝜇1

∗∗‖2 ≤ ‖𝑥∗‖2 + ‖𝜇0
∗‖2 + ‖𝜇1

∗‖2

for all𝑥∗ ∈ 𝑋∗, (𝜇0
∗ , 𝜇1

∗) ∈ Λ∗
}                 (10)  

Proof. 

    In view of the properties 
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(∇𝑓(𝑥), (𝑦 − 𝑥)) ≤ 𝑓(𝑦) − 𝑓(𝑥)

(∇𝑓(𝑥), (𝑥 − 𝑦)) ≥ 𝑓(𝑥) − 𝑓(𝑦)
 

valid for any convex function 𝑓(𝑥) and any 𝑥, 𝑦, for RPLF at any admissible points 𝑥, 

𝜇0, 𝜇1 and 𝑥𝑛
∗ = 𝑥∗(𝜃𝑛, 𝛿𝑛), 𝜇0,𝑛

∗ = 𝜇0
∗(𝜃𝑛, 𝛿𝑛), 𝜇1,𝑛

∗ = 𝜇1
∗(𝜃𝑛, 𝛿𝑛) we have 

 

(𝑥 − 𝑥𝑛
∗ ,
𝜕

𝜕𝑥
ℒ𝜃𝑛,𝛿𝑛(𝑥, 𝜇0, 𝜇1)) − (𝜇0 − 𝜇0,𝑛

∗ ,
𝜕

𝜕𝜇0
ℒ𝜃𝑛,𝛿𝑛(𝑥, 𝜇0, 𝜇1)) −

(𝜇1 − 𝜇1,𝑛
∗ ,

𝜕

𝜕𝜇1
ℒ𝜃𝑛,𝛿𝑛(𝑥, 𝜇0, 𝜇1)) = ℒ𝜃𝑛,𝛿𝑛(𝑥, 𝜇0,𝑛

∗ , 𝜇1,𝑛
∗ ) −

ℒ𝜃,𝛿(𝑥𝑛
∗ , 𝜇0, 𝜇1) +

𝛿𝑛
2
+ (‖𝑥 − 𝑥𝑛

∗‖2 + ‖𝜇0 − 𝜇0,𝑛
∗ ‖

2
+ ‖𝜇1 − 𝜇1,𝑛

∗ ‖
2
)

(11) 

 

which by the saddle-point condition (5) implies 

𝜃𝑛(𝑥 − 𝑥𝑛
∗)⊺

𝜕

𝜕𝑥
𝑓(𝑥) + (𝑥 − 𝑥𝑛

∗)⊺[𝑉0
⊺𝜇0 + 𝑉1

⊺𝜇1 + 𝛿𝑛𝑥] +

(𝜇0 − 𝜇0,𝑛
∗ )

⊺
(𝛿𝑛 − 𝑉0𝑥 + 𝑏0) + (𝜇1 − 𝜇1,𝑛

∗ )
⊺
(𝛿𝑛 − 𝑉1𝑥 + 𝑏1) ≥

𝛿𝑛
2
(‖𝑥 − 𝑥𝑛

∗‖2 + ‖𝜇0 − 𝜇0,𝑛
∗ , ‖

2
+ ‖𝜇1 − 𝜇1,𝑛

∗ ‖
2
)

            (12) 

     Selecting in (12) 𝑥:= 𝑥∗ ∈ 𝑋∗  (𝑥∗  is one of admissible solutions such that 

𝑉0𝑥
∗ = 𝑏0  and 𝑉1𝑥

∗ ≤ 𝑏1 ) and 𝜇0 = 𝜇0
∗ , 𝜇1 = 𝜇1

∗  in view of the complementary 

slackness conditions 

(𝜇1
∗)𝑖(𝑉1𝑥

∗ − 𝑏1)𝑖 = (𝜇1,𝑛
∗ )

𝑖
(𝑉1𝑥𝑛

∗ − 𝑏1)𝑖 = 0 

we obtain  

𝜃𝑛(𝑥
∗ − 𝑥𝑛

∗)⊺
𝜕

𝜕𝑥
𝑓(𝑥∗) + (𝑥∗ − 𝑥𝑛

∗)⊺[𝑉0
⊺𝜇0
∗ + 𝑉1

⊺𝜇1
∗ + 𝛿𝑛𝑥

∗] +

(𝜇0
∗ − 𝜇0,𝑛

∗ )
⊺
(𝛿𝑛𝜇0

∗ − 𝑉0𝑥
∗ + 𝑏0) + (𝜇1

∗ − 𝜇1,𝑛
∗ )

⊺
(𝛿𝑛𝜇1

∗ − 𝑉1𝑥
∗ + 𝑏1) ≥

𝛿𝑛
2
(‖𝑥∗ − 𝑥𝑛

∗‖2 + ‖𝜇0
∗ − 𝜇0,𝑛

∗ ‖
2
+ ‖𝜇1

∗ − 𝜇1,𝑛
∗ ‖

2
) ≥ 0

 

Simplifying the last inequality, we have 

𝜃𝑛(𝑥
∗ − 𝑥𝑛

∗)⊺
𝜕

𝜕𝑥
𝑓(𝑥∗) + 𝛿𝑛(𝑥

∗ − 𝑥𝑛
∗)⊺𝑥∗ + 𝛿𝑛(𝜇0

∗ − 𝜇0,𝑛
∗ )

⊺
𝜇0
∗ +

(𝜇1
∗ − 𝜇1,𝑛

∗ )
⊺
𝛿𝑛𝜇1

∗ ≥ 0

 

Dividing both sides of this inequality by 𝛿𝑛 and taking 
𝜃𝑛

𝛿𝑛
→
𝑛→∞

0 we get 
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0 ≤  limsup
𝑛→∞

[(𝑥∗ − 𝑥𝑛
∗)⊺𝑥∗ + (𝜇0

∗ − 𝜇0,𝑛
∗ )

⊺
𝜇0
∗ + (𝜇1

∗ − 𝜇1,𝑛
∗ )

⊺
𝜇1
∗]          

(13) 

This means that there necessarily exist subsequences 𝛿𝑘  and 𝜃𝑘(𝑘 → ∞) on which 

there exist the limits 

 

𝑥𝑘
∗ = 𝑥∗(𝜃𝑘 , 𝛿𝑘) → �̃�∗, 𝜇0,𝑘

∗ = 𝜇0
∗(𝜃𝑘, 𝛿𝑘) → �̃�0

∗

𝜇1,𝑘
∗ = 𝜇1

∗(𝜃𝑘, 𝛿𝑘) → �̃�1
∗as𝑘 → ∞

 

Suppose that there exist two limit points for two different convergent subsequences, i.e., 

there exist the limits  

 

𝑥𝑘′
∗ = 𝑥∗(𝜃𝑘′ , 𝛿𝑘′) → �̅�∗, 𝜇0,𝑘′

∗ = 𝜇0
∗(𝜃𝑘′ , 𝛿𝑘′) → �̅�0

∗

𝜇1,𝑘′
∗ = 𝜇1

∗(𝜃𝑘′ , 𝛿𝑘′) → �̅�1
∗as𝑘 → ∞

 

Then, on these subsequences we have 

 

0 ≤ (𝑥∗ − �̃�∗)⊺𝑥∗ + (𝜇0
∗ − �̃�0

∗)⊺𝜇0
∗ + (𝜇1

∗ − �̃�1
∗)⊺𝜇1

∗

0 ≤ (𝑥∗ − �̅�∗)⊺𝑥∗ + (𝜇0
∗ − �̅�0

∗)⊺𝜇0
∗ + (𝜇1

∗ − �̅�1
∗)⊺𝜇1

∗
 

From this inequalities it follows that (�̃�∗, �̃�0
∗ , �̃�1

∗) and (�̅�∗, �̅�0
∗ , �̅�1

∗) correspond to the 

minimum point of the function  

 𝑠(𝑥∗, 𝜇0
∗ , 𝜇1

∗):=
1

2
(‖𝑥∗‖2 + ‖𝜇0

∗‖2 + ‖𝜇1
∗‖2) 

defined on 𝑋∗⊗Λ∗  for all possible saddle-points of the non-regularized Lagrange 

function. But the function 𝑠(𝑥∗, 𝜇0
∗ , 𝜇1

∗) is strictly convex, and, hence, its minimum is 

unique that gives �̃�∗ = �̅�∗, �̃�0
∗ = �̅�0

∗ , �̃�0
∗ = �̅�0

∗ . The theorem is proved.  

 The following property also takes place. 

Lemma 3.3 Under the assumptions of the Theorem 3.2 there exist positive 

constants 𝐶𝜇 and 𝐶𝛿 such that  

‖𝑥𝑛
∗ − 𝑥𝑚

∗ ‖ + ‖𝜇0,𝑛
∗ − 𝜇0,𝑚

∗ ‖ + ‖𝜇1,𝑛
∗ − 𝜇1,𝑚

∗ ‖ ≤ 𝐶𝜃|𝜃𝑛 − 𝜃𝑚| + 𝐶𝛿|𝛿𝑛 − 𝛿𝑚|        (14) 
Proof. It follows also from the necessary and sufficient conditions (11) for the 

points 𝑥𝑛
∗ = 𝑥∗(𝜃𝑛, 𝛿𝑛), 𝜇0,𝑛

∗ = 𝜇0
∗(𝜃𝑛, 𝛿𝑛), 𝜇1,𝑛

∗ = 𝜇1
∗(𝜃𝑛, 𝛿𝑛) to be the extremal points 

of the function ℒ𝜃𝑛,𝛿𝑛(𝑥, 𝜇0, 𝜇1).  

Corollary 1 Given the portfolio Lagrange function represented in Eq. (2) we 

have that: 

1.  ℒ𝜃,𝛿(𝑥, 𝜇0, 𝜇1) is strictly convex on 𝑥𝑛
∗ = 𝑥∗(𝜃𝑛, 𝛿𝑛), and strictly concave on 𝜇0

∗ =
𝜇0
∗(𝜃𝑛, 𝛿𝑛), and 𝜇1

∗ = 𝜇1
∗(𝜃𝑛, 𝛿𝑛) 

2.  The Markowitz portfolio admits a unique solution. 
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4.Continuous-time Markov portfolio 

4.1.Continuous-time Markov process 

In this section we introduce the (continuous-time, discrete-state) Markov chains 

we are interested in [4,22].  

Let {𝑋(𝑡), 𝑡 ≥ 0} a stochastic process that satisfies the Markov property if, 

letting ℱ𝑋(𝜏) denote all the information pertaining to the history of 𝑋 up to time 𝜏, and 

𝜏 ≤ 𝑡𝑃(𝑋(𝑡)|ℱ𝑋(𝜏)) = 𝑃(𝑋(𝑡)|𝑋(𝜏)) we say that the process is time homogeneous if 

given 𝜏, 𝑡′ ≤ 𝑡, 𝑡 = 𝑡′ + 𝜏. In other words, this property means that any distribution in 

the future depends only on the value 𝑋(𝜏) and is independent on the past values. 

Throughout the remainder  

𝐶𝑇𝑀𝐷𝑃 = (𝑆, 𝐴, {𝐴(𝑠)}𝑠∈𝑆, 𝑄, 𝑢)                                       (15) 

stands for a continuous-time Markov decision process (CTMDP), where the state-space 

𝑆 is a finite set {𝑠1, . . . , 𝑠𝑁}, for some 𝑁 ∈ ℕ indexed by 𝑖 = 1,𝑁, and the finite action 

set 𝐴 = {𝑎1, . . . , 𝑎𝑀} is the action (or control) space for some 𝑀 ∈ ℕ indexed by 𝑘 =

1,𝑀. 

For each 𝑠 ∈ 𝑆 , 𝐴(𝑠) ⊂ 𝐴 is the nonempty set of admissible actions at 𝑠 . 

Whereas, the set 𝕂:= {(𝑠, 𝑎): 𝑠 ∈ 𝑆, 𝑎 ∈ 𝐴(𝑠)} is the class of admissible pairs, which is 

considered as a subspace of 𝑆 × 𝐴. 

The matrix 𝑄 = [𝑞𝑗|𝑖𝑘]𝑖,𝑗=1,𝑁,𝑘=1,𝑀
 denotes the transition rates which satisfy 

that 𝑞𝑗|𝑖𝑘 ≥ 0 for all 𝑠 ∈ 𝑆 and 𝑗 ≠ 𝑖. The transition rates 𝑞𝑗|𝑖𝑘 are conservative, i.e., 

∑𝑁𝑗=1 𝑞𝑗|𝑖𝑘 = 0  and stable, which means that 𝑞𝑖
∗:= sup

𝑎∈𝐴(𝑖)
𝑞𝑖(𝑎) < ∞∀𝑖 ∈ 𝑆  where 

𝑞𝑖: = −𝑞𝑖,𝑖 ≥ 0 for all 𝑠 ∈ 𝑆. 

Finally, 𝑢 ∈ ℬ(𝕂) is the (measurable) one-stage utility function. 

We denote the probability transition matrix by Π(𝑡) = [𝜋(𝑡′,𝑖,𝜏,𝑗,𝑘)]𝑖,𝑗=1,𝑁,𝑘=1,𝑀, 

𝜏 ≥ 𝑡′ such that, 𝜋(𝑡′,𝑖,𝜏,𝑗,𝑘) = 𝜋(0,𝑖,𝑡,𝑗,𝑘), 𝑡 = 𝜏 − 𝑡′∀𝑠𝑖, 𝑠𝑗 ∈ 𝑆 and where ∑𝑁𝑗=1 𝜋𝑗|𝑖𝑘 =

1, ∀𝑠𝑖 ∈ 𝑆. 

The Kolmogorov forward equations, can be written as the matrix differential 

equation: Π′(𝑡) = Π(𝑡)𝑄;Π(0) = 𝐼Π(𝑡) ∈ ℝ𝑁×𝑁 , 𝐼 ∈ ℝ𝑁×𝑁  is the identity matrix. 

This system can be solved by Π(𝑡) = Π(0)𝑒𝑄𝑡 = 𝑒𝑄𝑡: = ∑∞𝑛=0
𝑡𝑛𝑄𝑛

𝑛!
 and at the 

stationary state, the probability transition matrix is defined as  

Π∗ = lim
𝑡→∞

Π(𝑡)                                                       (16) 

 We also point out that given a state-space 𝑆, the infinitesimal generator 𝑄 completely 

determines the CTMC as it contains all the local information pertaining to the transitions 

rates 𝜆𝑖𝑗. Thus, it is sufficient to characterize a chain by simply providing a state-space, 

𝑆, and the generator 𝑄. 
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Definition 4.1.The vector 𝑝 ∈ ℝ𝑁 is called stationary distribution vector if  

 Π⊤∗𝑝 = 𝑝                                                     (17)  

 where ∑𝑁𝑖=1 𝑝𝑖 = 1 and 𝑝𝑖 = 𝑃(𝑋(𝑡) = 𝑠𝑖) this vector can be seen as the long run 

proportion of time that the process is in state 𝑠𝑖 ∈ 𝑆.  

Theorem 4.2.Let 𝑋(𝑡) be an irreducible and recurrent CTMC then the 

following statements are equivalent: 𝑄⊤𝑝 = 0 and 𝛱⊤∗𝑝 = 𝑝.  

Proof. See [22]. 

A strategy is then defined as a sequence 𝑑 = {𝑑(𝑡), 𝑡 ≥ 0}  of stochastic 

kernels 𝑑(𝑡) such that: a) for each time 𝑡 ≥ 0𝑑𝑘|𝑖(𝑡) is a probability measure on 𝐴 

such that 𝑑𝐴(𝑖)|𝑖(𝑡) = 1  and, b) for every 𝐸 ∈ ℬ(𝐴)𝑑𝐸|𝑖(𝑡)  is a Borel measurable 

function in 𝑡 ≥ 0. We denoted by 𝐷 the family of all strategies. From now on, we will 

consider only stationary strategies 𝑑𝑘|𝑖(𝑡) = 𝑑𝑘|𝑖. 

For each action the matrix 𝑄(𝑎𝑘):= [𝑞𝑗|𝑖𝑘], 𝑎𝑘 ∈ 𝐴  denotes the transition 

rates matrix for the action 𝑎𝑘 such that  

 𝑞𝑗𝑖(𝑎𝑘)]:= [𝑞𝑗|𝑖𝑘] = {
−∑𝑖≠𝑗 𝜆𝑖𝑗(𝑎𝑘), 𝑖𝑓  𝑖 = 𝑗

𝜆𝑖𝑗(𝑎𝑘), 𝑖𝑓  𝑖 ≠ 𝑗
 

while, for each strategy 𝑑 the associated transition rate matrix is defined as:  

𝑄(𝑑):= [𝑞𝑗𝑖(𝑑)] = ∑
𝑀
𝑘=1 𝑞𝑗|𝑖𝑘𝑑𝑘|𝑖                                      (18) 

such that on a stationary state distribution for all 𝑑𝑘|𝑖 and 𝑡 ≥ 0 from Eq. (16) we have 

that, Π∗(𝑑) = lim
𝑡→∞

𝑒𝑄(𝑑)𝑡, where Π∗(𝑑) is a stationary transition controlled matrix.  

 Π∗(𝑑):= [𝜋𝑗𝑖(𝑑)] = ∑
𝑀
𝑘=1 𝜋𝑗|𝑖𝑘𝑑𝑘|𝑖 

 Pondering the long-run expected average reward over the states at steady state, the 

following linear functional 𝑈(𝑑)  under the fixed strategy 𝑑𝑘|𝑖(𝑡) = 𝑑𝑘|𝑖  can be 

defined as follows  

𝑈(𝑑): = ∑𝑁𝑖=1 ∑
𝑁
𝑗=1 ∑

𝑀
𝑘=1 𝑢𝑖𝑘𝜋𝑗|𝑖𝑘𝑑𝑘|𝑖𝑝𝑖                                 (19)  

In an ergodic chain, we consider a stationary distribution and by the property in Eq. (17), 

the value function in Eq. (19), under a given optimal policy is:  

𝑈(𝑑) = ∑𝑁𝑖=1 ∑
𝑁
𝑗=1 ∑

𝑀
𝑘=1 𝑢𝑖𝑘𝜋𝑗|𝑖𝑘𝑝𝑖𝑑𝑘|𝑖 ⟶max

𝑑
                         (20)  

4.2.Feasibility of Markowitz’s portfolio 

The model presented in Eq. (20) is nonlinear. Then, if we introduce a new 

decision variable 𝑐𝑖|𝑘, called the joint strategy variable, then the problem presented 

above can be reformulated as a linear programming as follows 

 𝑈(𝑑) = ∑𝑁𝑖=1 ∑
𝑁
𝑗=1 ∑

𝑀
𝑘=1 𝑢𝑖𝑘𝜋𝑗|𝑖𝑘𝑝𝑖𝑑𝑘|𝑖 = ∑

𝑁
𝑖=1 ∑

𝑁
𝑗=1 ∑

𝑀
𝑘=1 𝑢𝑖𝑘𝜋𝑗|𝑖𝑘𝑐𝑖|𝑘 

where 𝑐𝑖|𝑘 = 𝑝𝑖𝑑𝑘|𝑖 . The variable 𝑐𝑖𝑘 belongs to the set of matrices 𝐶𝑎𝑑𝑚 and it is 

restricted by the following constraints: 
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1.  Each vector from the matrix 𝑐: = [𝑐𝑖|𝑘] represents a stationary mixed strategy that 

belongs to the simplex  

𝒮𝑁×𝑀: =

{𝑐 ∈ ℝ𝑁×𝑀: for𝑐𝑖|𝑘 ≥ 0 where∑
𝑁
𝑖=1 ∑

𝑀
𝑘=1 𝑐𝑖|𝑘 = 1}                     (21) 

 

2.  The variable 𝑐𝑖𝑘 satisfies the ergodicity constraints, i.e.:  

 𝑝𝑗(𝑑) = ∑
𝑁
𝑖=1 ∑

𝑀
𝑘=1 𝜋𝑗|𝑖𝑘𝑝𝑖𝑑𝑘|𝑖 

that in terms of 𝑐𝑖|𝑘 takes the form:  

𝑔(𝑐) = ∑𝑁𝑖=1 ∑
𝑀
𝑘=1 𝜋𝑗|𝑖𝑘𝑐𝑖|𝑘 − ∑

𝑀
𝑘=1 𝑐𝑗|𝑘 = 0                     (22)  

3.  From Eq. (18) we obtain:  

 ∑𝑁𝑖=1 𝑞𝑗|𝑖(𝑑)𝑝𝑖(𝑞) = ∑
𝑁
𝑖=1 ∑

𝑀
𝑘=1 𝑞𝑗|𝑖𝑘𝑑𝑘|𝑖𝑝𝑖 = 0 

this expression in terms of 𝑐𝑖|𝑘 takes the form:  

ℎ(𝑐) = ∑𝑁𝑖=1 ∑
𝑀
𝑘=1 𝑞𝑗|𝑖𝑘𝑐𝑖|𝑘 = 0                                  (23) 

Once the model (ergodic Markov decision process) is solved in order to recover 

the quantities of interest, we have that: 

𝑝𝑖(𝑑) = ∑

𝑀

𝑘=1

𝑐𝑖|𝑘 𝑑𝑖|𝑘 =
𝑐𝑖|𝑘

∑𝑀𝑘=1 𝑐𝑖|𝑘
 

Then, in terms of 𝑐-variables the reward function 𝑈 becomes:  

 𝑈(𝑐) = ∑𝑁𝑖=1 ∑
𝑁
𝑗=1 ∑

𝑀
𝑘=1 𝑢𝑖𝑘𝜋𝑗|𝑖𝑘𝑐𝑖|𝑘 

4.3.Markov portfolio formulation 

One may formally state Markowitz’s decision model for mean-variance 

customer portfolio as follows. We consider diversification with respect to the number of 

customers chosen in the portfolio problem. Then, 𝛼𝑖|𝑘 is the number of customers at 

state 𝑖  applying action 𝑘 , 0 ≤ 𝛼(𝑖|𝑘)(𝑛) . The utility𝑈  of a customer portfolio is 

calculated as the sum of the weighted net presenting the value 𝑢 as follows 

 𝑈(𝛼, 𝑐) = ∑𝑁𝑖=1 ∑
𝑀
𝑘=1 𝑊𝑖|𝑘𝛼𝑖|𝑘𝑐𝑖|𝑘 → max

𝛼∈𝐴𝑎𝑑𝑚𝑐∈𝐶𝑎𝑑𝑚
 

where 

 𝑊𝑖|𝑘:= ∑
𝑁
𝑗=1 𝑢𝑗|𝑖𝑘𝜋𝑗|𝑖𝑘and𝑐𝑖|𝑘:= 𝑑𝑘|𝑖𝑝𝑖 . 

The customer portfolio optimization problem attempts to maximize the mean value 

(𝑈(𝛼, 𝑐)) generated by all the customers while minimizing the variance (Var(𝑈(𝛼, 𝑐)))  

 
Var(𝛼, 𝑐):= ∑𝑁𝑖=1 ∑

𝑀
𝑘=1 [𝛼𝑖|𝑘𝑊𝑖|𝑘 − 𝑈(𝛼, 𝑐)]

2
𝑐𝑖|𝑘 =

∑𝑁𝑖=1 ∑
𝑀
𝑘=1 𝛼𝑖|𝑘

2 𝑊𝑖|𝑘
2 𝑐𝑖|𝑘 − 𝑈

2(𝛼, 𝑐)  → min
𝛼∈𝐴𝑎𝑑𝑚𝑐∈𝐶𝑎𝑑𝑚

 

For practical purposes, the resulting customer portfolio optimization problem includes a 
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model-user’s tolerance for risk, and it is represented by the following expression:  

Φ(𝛼, 𝑐):= 𝑈(𝛼, 𝑐) −
𝜉

2
Var(𝛼, 𝑐) →  max

𝛼∈𝐴𝑎𝑑𝑚
𝑐∈𝐶𝑎𝑑𝑚

                             (25)  

where  

𝐴𝑎𝑑𝑚 = {𝛼 = [𝛼𝑖|𝑘]: ∑
𝑁
𝑖=1 ∑

𝑀
𝑘=1 𝛼𝑖|𝑘 ≤ 𝛼

+, 𝛼𝑖|𝑘 ∈ [𝜀, 𝛼
+], 𝜀 > 0}      (26)  

and 
𝜉

2
 is a monetary factor that reflects the price per unit of risk. Because, the purpose is 

to obtain a higher mean value return (𝑈(𝛼, 𝑐) ) also the corresponding risk level 

Var(𝑈(𝛼, 𝑐)in creases. Here the goal is to find the values of 𝛼 and 𝑐 that maximize the 

objective function in Eq. (25) subject to the following constrains: 

∑𝑁𝑖=1 ∑
𝑀
𝑘=1 𝛼𝑖|𝑘𝑐𝑖|𝑘𝜂𝑖|𝑘 ≤ 𝑏𝑖𝑛𝑒𝑞                                         (27) 

where 𝜂𝑖|𝑘 are the resources destined for carrying out in state 𝑖 a promotion 𝑘 and the 

admissible sets are as in Eq. (21), Eq. (22) and Eq. (23). The following optimization 

properties are the key to find efficient portfolios: a) the Markowitz model in Eq. (25) is a 

quadratic optimization problem (quadratic objective function and linear constraints in 

Eq. (27), Eqs. (21)-(22)-(23) and Eq. (26)), b) the feasibility set 𝐶𝑎𝑑𝑚 is convex since it 

is the intersection of hyperplanes, c) the factor 
1

2
 of the risk-aversion parameter 𝜉 is 

chosen for notational convenience and, d) the parameter 𝑏𝑖𝑛𝑒𝑞 is endogenously given 

(the budget is chosen by the decision maker in the respective model). The mean-variance 

Markowitz portfolio given in Eq. (2) can be re-written:  
ℒ𝜃𝑛,𝛿𝑛(𝑐, 𝛼, 𝜇0, 𝜇𝑁+1, 𝜇𝑁+2, 𝜇1):=

𝜃 [∑𝑁𝑖=1 ∑
𝑀
𝑘=1 𝑊𝑖|𝑘𝛼𝑖|𝑘𝑐𝑖|𝑘 +

𝜉

2
∑𝑁𝑖=1 ∑

𝑀
𝑘=1 𝑊𝑖|𝑘𝛼𝑖|𝑘𝑐𝑖|𝑘 ⋅

∑𝑁�̂�=1 ∑
𝑀
�̂�=1 𝑊�̂�|�̂�𝛼𝑖|�̂�𝑐�̂�|�̂� −

𝜉

2
∑𝑁𝑖=1 ∑

𝑀
𝑘=1 𝑊𝑖|𝑘

2 𝛼𝑖|𝑘
2 𝑐𝑖|𝑘] +

∑𝑁𝑗=1 𝜇0,𝑗[(∑
𝑁
𝑖=1 ∑

𝑀
𝑘=1 𝜋𝑗|𝑖𝑘𝑐𝑖|𝑘 − ∑

𝑀
𝑘=1 𝑐𝑗|𝑘) − 𝑏𝑒𝑞,𝑗] −

𝜇𝑁+1(∑
𝑁
𝑖=1 ∑

𝑀
𝑘=1 𝑐𝑖|𝑘 − 𝑏𝑒𝑞,𝑁+1) −

∑𝑁𝑗=1 𝜇𝑁+2,𝑗[(∑
𝑁
𝑖=1 ∑

𝑀
𝑘=1 𝑞𝑗|𝑖𝑘𝑐𝑖|𝑘) − 𝑏𝑒𝑞,𝑁+1+𝑗]

+𝜇1(∑
𝑁
𝑖=1 ∑

𝑀
𝑘=1 𝛼𝑖|𝑘𝑐𝑖|𝑘𝜂𝑖|𝑘 − 𝑏𝑖𝑛𝑒𝑞) −

𝛿

2
(‖𝑐‖2 + ‖𝛼‖2 − ‖𝜇0‖

2 −‖𝜇1‖
2 − 𝜇𝑁+1

2 − 𝜇𝑁+2
2 )

                             (28)

  

 

5. Computing the Markov portfolio 

Let us denote 

 ℒ𝜃𝑛,𝛿𝑛 = −ℒ𝜃𝑛,𝛿𝑛(𝑐𝑛, 𝛼𝑛, 𝜇0,𝑛, 𝜇𝑁+1,𝑛, 𝜇𝑁+2,𝑛, 𝜇1,𝑛) 
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Then, we have that  

𝑐𝑛+1 = [𝑐𝑛 − 𝛾𝑐,𝑛
𝜕

𝜕𝑐
ℒ𝜃𝑛,𝛿𝑛]+

𝛼𝑛+1 = [𝛼𝑛 − 𝛾𝛼,𝑛
𝜕

𝜕𝛼
ℒ𝜃𝑛,𝛿𝑛]+

𝜇0,𝑛+1 = 𝜇0,𝑛 + 𝛾𝜇0,𝑛
𝜕

𝜕𝜇0
ℒ𝜃𝑛,𝛿𝑛

𝜇𝑁+1,𝑛+1 = 𝜇𝑁+1,𝑛 + 𝛾𝜇𝑁+1,𝑛
𝜕

𝜕𝜇𝑁+1
ℒ𝜃𝑛,𝛿𝑛

𝜇𝑁+2,𝑛+1 = 𝜇𝑁+2,𝑛 + 𝛾𝜇𝑁+1,𝑛
𝜕

𝜕𝜇𝑁+2
ℒ𝜃𝑛,𝛿𝑛

𝜇1,𝑛+1 = [𝜇1,𝑛 + 𝛾𝜇1,𝑛
𝜕

𝜕𝜇1
ℒ𝜃𝑛,𝛿𝑛]

+

                              (29) 

where the operator [⋅]+ acts from ℝ𝑛 into ℝ𝑛 as follows: 

[𝑧]+ = ([𝑧1]+, . . . , [𝑧𝑛]+), [𝑧𝑖]+:= {
𝑧𝑖 if 𝑧𝑖 ≥ 0
0 if 𝑧𝑖 < 0

                      (30)  

Theorem 5.1 (on the convergence of the method) If for some positive 

sequences {𝜀𝑛} 

∑∞𝑛=0 𝛾𝑛𝛿𝑛 = ∞,
|𝜃𝑛−𝜃𝑛−1|

2+|𝛿𝑛−𝛿𝑛−1|
2

𝜀𝑛𝛿𝑛
→
𝑛→∞

0

𝜀𝑛

𝛾𝑛𝛿𝑛
 and 

𝛾𝑛

𝛿𝑛
are small enough

                             (31) 

then 

𝐺𝑛:= ‖𝑐 − 𝑐𝑛
∗‖2 + ‖𝛼 − 𝛼𝑛

∗‖2 + ‖𝜇0 − 𝜇0,𝑛
∗ ‖

2
+

‖𝜇𝑁+1 − 𝜇𝑁+1,𝑛
∗ ‖

2
+ ‖𝜇𝑁+2 − 𝜇𝑁+2,𝑛

∗ ‖
2
+ ‖𝜇1 − 𝜇1,𝑛

∗ ‖
2
→
𝑛→∞

0

          (32)  

 

Proof. Let us denote  

 ℒ𝜃𝑛,𝛿𝑛 = ℒ𝜃𝑛,𝛿𝑛(𝑐𝑛, 𝛼𝑛, 𝜇0,𝑛, 𝜇𝑁+1,𝑛, 𝜇𝑁+2,𝑛, 𝜇1,𝑛) 

In view of Eq. (29) it follows  

𝐺𝑛+1 ≤ ‖𝑐𝑛 − 𝛾𝑛
𝜕

𝜕𝑐
ℒ𝜃𝑛,𝛿𝑛 − 𝑐𝑛+1

∗ ‖
2

+ ‖𝛼𝑛 − 𝛾𝛼,𝑛
𝜕

𝜕𝛼
ℒ𝜃𝑛,𝛿𝑛 − 𝛼𝑛+1

∗ ‖
2

+

‖𝜇0,𝑛 + 𝛾𝑛
𝜕

𝜕𝜇0
ℒ𝜃𝑛,𝛿𝑛 − 𝜇0,𝑛+1

∗ ‖
2

+ ‖𝜇𝑁+1,𝑛 + 𝛾𝜇𝑁+1,𝑛
𝜕

𝜕𝜇𝑁+1
ℒ𝜃𝑛,𝛿𝑛 − 𝜇𝑁+1,𝑛‖

2

+

‖𝜇𝑁+2,𝑛 + 𝛾𝜇𝑁+1,𝑛
𝜕

𝜕𝜇𝑁+2
ℒ𝜃𝑛,𝛿𝑛 − 𝜇𝑁+2,𝑛‖

2

+ ‖𝜇1,𝑛 + 𝛾𝑛
𝜕

𝜕𝜇1
ℒ𝜃𝑛,𝛿𝑛 − 𝜇1,𝑛+1

∗ ‖
2

 

For strongly convex (concave) functions, the following inequalities hold. 
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(𝑐𝑛 − 𝑐𝑛
∗)⊺

𝜕

𝜕𝑐
ℒ𝜃𝑛,𝛿𝑛 ≥ 𝛿𝑛 (1 +

𝜃𝑛

𝛿𝑛
𝜆𝑐
−) ‖𝑐 − 𝑐𝑛

∗‖2

𝛿𝑛(1 − 𝜖)‖𝑐 − 𝑐𝑛
∗‖2, |

𝜃𝑛

𝛿𝑛
𝜆𝑐
−| ≤ 𝜖

(𝛼𝑛 − 𝛼𝑛
∗ )⊺

𝜕

𝜕𝛼
ℒ𝜃𝑛,𝛿𝑛 ≥ 𝛿𝑛 (1 +

𝜃𝑛

𝛿𝑛
𝜆𝛼
−)‖𝛼 − 𝛼𝑛

∗‖2

𝛿𝑛(1 − 𝜖)‖𝛼 − 𝛼𝑛
∗‖2, |

𝜃𝑛

𝛿𝑛
𝜆𝛼
−| ≤ 𝜖

(𝜇0,𝑛 − 𝜇0,𝑛
∗ )

⊺ 𝜕

𝜕𝜇0
ℒ𝜃𝑛,𝛿𝑛 ≤ −𝛿𝑛‖𝜇0,𝑛 − 𝜇0,𝑛

∗ ‖
2

(𝜇𝑁+1,𝑛 − 𝜇𝑁+1,𝑛
∗ )

⊺ 𝜕

𝜕𝜇𝑁+1
ℒ𝜃𝑛,𝛿𝑛 ≤ −𝛿𝑛‖𝜇𝑁+1,𝑛 − 𝜇𝑁+1,𝑛

∗ ‖
2

(𝜇𝑁+2,𝑛 − 𝜇𝑁+2,𝑛
∗ )

⊺ 𝜕

𝜕𝜇𝑁+2
ℒ𝜃𝑛,𝛿𝑛 ≤ −𝛿𝑛‖𝜇𝑁+2,𝑛 − 𝜇𝑁+2,𝑛

∗ ‖
2

(𝜇1,𝑛 − 𝜇1,𝑛
∗ )

⊺ 𝜕

𝜕𝜇1
ℒ𝜃𝑛,𝛿𝑛 ≤ −𝛿𝑛‖𝜇1,𝑛 − 𝜇1,𝑛

∗ ‖
2

 

By the Λ-inequality 2(𝑎, 𝑏) ≤ (𝑎, Λ𝑎) + (𝑏, Λ−1𝑏) valid for any vectors 𝑎, 𝑏 and any 

matrix Λ > 0, we get for Λ = 𝜀𝑛𝐼 the following estimate 

 

2(𝑐𝑛 − 𝑐𝑛
∗)⊺(𝑐𝑛

∗ − 𝑐𝑛+1
∗ ) + 2(𝛼𝑛 − 𝛼𝑛

∗ )⊺(𝛼𝑛
∗ − 𝛼𝑛+1

∗ ) + 2(𝜇0 − 𝜇0,𝑛
∗ )

⊺
(𝜇0,𝑛

∗ − 𝜇0,𝑛+1
∗ ) +

2(𝜇𝑁+1 − 𝜇𝑁+1,𝑛
∗ )

⊺
(𝜇𝑁+1,𝑛

∗ − 𝜇𝑁+1,𝑛+1
∗ ) + 2(𝜇𝑁+2 − 𝜇𝑁+2,𝑛

∗ )
⊺
(𝜇𝑁+2,𝑛

∗ − 𝜇𝑁+2,𝑛+1
∗ ) +

2(𝜇1 − 𝜇1,𝑛
∗ )

⊺
(𝜇1,𝑛

∗ − 𝜇1,𝑛+1
∗ ) ≤ 𝜀𝑛𝐺𝑛 + 2𝜀𝑛

−1(𝐶𝜃
2|𝜃𝑛 − 𝜃𝑚|

2 + 𝐶𝛿
2|𝛿𝑛 − 𝛿𝑚|

2)

 

If a nonnegative {𝑢𝑛} sequence satisfies the recurrent inequality 

 
𝑢𝑛+1 ≤ 𝑢𝑛(1 − 𝜁𝑛) + 𝛽𝑛

0 < 𝜁𝑛 ≤ 1,∑
∞
𝑛=0 𝜁𝑛 = ∞,

𝛽𝑛

𝜁𝑛
→
𝑛→∞

𝑝
 

then 𝑢𝑛 →
𝑛→∞

𝑝. Defining 

 
𝜁𝑛:= 2𝛾𝑛𝛿𝑛(1 − 𝜖) (1 −

1

1−𝜖

𝜀𝑛

𝛿𝑛
−

1

2(1−𝜖)

𝜀𝑛

𝛾𝑛𝛿𝑛
−

(1+𝐿)

2(1−𝜖)

𝛾𝑛

𝛿𝑛
)

𝛽𝑛:= 𝐶𝛾𝑛𝜀𝑛
−1(|𝜃𝑛 − 𝜃𝑛+1|

2 + |𝛿𝑛 − 𝛿𝑛+1|
2)

 

and applying the conditions in Eq. (31) of this theorem for 𝑝 = 0 we obtain the desired 

result. The theorem is proven.  

To satisfy the convergence conditions in Eq. (31) let us select the parameters 

𝛾𝑛, 𝛿𝑛, 𝜀𝑛 of the algorithm in Eq. (29) as small positive constants and  
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𝜃𝑛 =
𝜃0

1+ln(𝑛+1)
, 𝜃0 > 0                                                (33) 

The condition 
𝜃𝑛

𝛿𝑛
↓ 0 also holds. Notice that in this case the rate of convergence 𝐺𝑛 to 

zero will have the same order as the term 

 |𝜃𝑛 − 𝜃𝑛−1|
2 ∼

𝜃0
2

𝑛2(ln𝑛)4
(1 + 𝑜(1)) 

 

6.Numerical example 

Let us now illustrate the practical implications of the theoretical issues 

discussed above. We consider the problem of maximizing the portfolio given by 𝑓(𝑥) =

𝐸(𝑥) −
𝜉

2
𝑉𝑎𝑟(𝑥) → max

𝑐∈𝐶𝑎𝑑𝑚
. We assume that the number of states is 𝑁 = 6 and the 

number of actions is 𝑀 = 3 . Fixing 𝜃0 = 1 × 10
−9 , 𝛿0 = 1 × 10

−8 , 𝛾𝑐0 = 2.6 ×
10−9 , 𝛾𝛼0 = 0.99 , 𝛾𝑢0 = [0.01; . . . ; 0.01] , 𝛾𝜇𝑁+1,0 = 0.005 , 𝛾𝜇𝑁+1,0 =

[0.01; . . . ; 0.01], 𝛾𝜇1,𝑛 = 1 × 10
−5, 𝑏𝑖𝑛𝑒𝑞 = 100, 𝜉 = 0.05 and 

𝜂𝑖|𝑘 =

[
 
 
 
 
 
3.0240 1.4599 1.8620
1.9963 2.1583 0.9906
2.6344 7.7400 2.4484
2.0840 4.9203 1.6975
3.2843 0.8358 4.7582
3.1399 0.5311 4.6017]

 
 
 
 
 

 

 The resulting optimal portfolio (see Figure 1 and Figure 2 ) generated by the recurrent 

method is given by  

 

𝛼𝑖|𝑘
∗ =

[
 
 
 
 
 
100.0020 100.0025 100.0026
100.0026 100.0027 100.0029
82.9756 88.1662 93.1698
100.0022 100.0026 100.0024
100.0028 100.0029 100.0025
88.6045 92.4799 86.0521 ]

 
 
 
 
 

𝑑𝑖|𝑘
∗ =

[
 
 
 
 
 
0.3256 0.3300 0.3444
0.4108 0.2786 0.3106
0.3248 0.3231 0.3521
0.4059 0.2680 0.3261
0.3183 0.3419 0.3398
0.4151 0.2355 0.3494]

 
 
 
 
 

 

The satisfaction of the constraints (𝐴𝑒𝑞 − 𝑏𝑒𝑞) is shown in Figure 3. 
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Figure 1: Portfolio - strategies c. Figure 2: Customers 𝜶. 

 

 

 

Figure 3: The norm of (𝑨𝒆𝒒 − 𝒃𝒆𝒒) 

constraints. 

 

 

6.Conclusion and future work 

This paper proposes a customer portfolio optimal selection, restricted to 

continuous-time Markov chains. The method employed a Lagrange optimization 

approach for solving the regularization problem that ensured the strong convexity of the 

objective function and the existence of a unique solution of the portfolio. The 

regularization approach simplifies the computation of the unique solution of the original 

portfolio optimization problem. We proved that the solution of the original portfolio 

converges to a unique solution with the minimal weighted norm. We introduced a 

recurrent procedure based on the projection-gradient method and proved the 

convergence of the method. A numerical example has been offered, to validate the 

effectiveness of our approach. 
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