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Abstract.This paper provides a solution to the customer portfolio for a given fixed
desired expected rate of return under constraints based. We restrict the solution to a class of
finite, ergodic, controllable continuous-time, finite-state Markov chains. We propose a
regularized Lagrange method for the portfolio representation that ensures the strong
convexity of the objective function and the existence of a unique solution of the portfolio. The
solution is obtained by using the standard Lagrange method introducing the positive
parameters 6 and &, and the Lagrange vector-multipliers u, and p,for the equality and
inequality constraints, respectively, and forming the Lagrangian. We prove that if the ratio

% tends to zero, then the solution of the original portfolio converges to a unique solution

n
with the minimal weighted norm. We introduce a recurrent procedure based on the
projection-gradient method for finding the extremal points of the portfolio. In addition, we
prove the convergence of the method. A numerical example validates the effectiveness of the
regularized portfolio Lagrange method.
Keywords: Mean-variance portfolio selection; Tikhonov regularization; Lagrange;
Continuous-time Markov chains; Applications in finance.
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1.Introduction

1.1.Brief review

The mean-variance model was first proposed by Markowitz [16], its aim is to

minimize the risk of the investment, expressed by the variance of the terminal wealth,
with a given level of expected return for portfolio construction in a single period. The
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mean-variance approach has become the foundation of modern finance theory and has
inspired numerous extensions and applications. A relevant property of the model is that
it makes possible for an investor to seek highest expected return after determining the
acceptable risk level (measured by the variance of the expected return). A factor that
dominates the movement of a stock is the trend of the market. To reflect the market
trend, it is necessary to allow the key parameters to respond to the general market
movements.

Motivated by the importance of Markov-chain solutions for solving
Markowitz’s portfolio [7, 10, 13, 14], there have been also continuing efforts in
extending portfolio selection to continuous-time Markov models. Zhou and Yin [25]
developed the continuous-time version of Markowitz’s mean-variance portfolio
selection with regime switching and derived the efficient portfolio and efficient frontier
explicitly. Yin and Zhou [23] suggested a random regime switching delineated by a
finite-state Markov chain, based on a discrete-time Markov modulated portfolio
selection model where the connections between discrete-time models and their
continuous-time counterpart are revealed. They proved that the process of interest yields
a switching diffusion limit using weak convergence methods and devised the portfolio
selection strategies for the original problem and demonstrate their asymptotic
optimality. BauerleandRieder [1] solved the problem using stochastic control methods
utility maximization in a continuous-time-model with switching drift and volatility. Sass
and Haussmann [20] consider only a switching drift which yields a setting with partial
information where they derive explicit strategies using martingale arguments and
Malliavin calculus. Taksar and Zeng [21] look at the discretized model and discuss
relation to the continuous-time results. Brodiea et al. [2] presented a portfolio selection
as a constrained least-squares regression problem considering a penalty approach.
DeMiguel et al. [14,15] considered different portfolio algorithms including both a linear
and a quadratic penalty regularization parameter. Putschogland Sass[17] extended the
approach of [39] considering in addition convex constraints (as no-short-selling). Fan et
al. [11] justified the use of a linear regularization parameter to identify sparse and stable
portfolios validating the empirical results given in [15]. Sanchez et al. [19] presented an
iterated method for solving a mean-variance customer portfolio optimization problem
for Markov chains employing Tikhonov’s regularization method to ensure the
convergence of the objective-function to a single optimal portfolio solution. On the
same lines, Sanchez et al. [18] suggested a recurrent reinforcement learning approach
that adjusts the Markov chains policies according to a preprocessing and an actor-critic
architecture for computing the mean-variance customer portfolio. It is important to note
that in this paper we present a completely different method for computing the
mean-variance customer portfolio a new approach for regularization. Clempner and
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Poznyak [5] considered a penalty-regularized expected utility and investigates the
applicability of the method for computing the mean-variance Markowitz customer
portfolio optimization problem. Zhang et al. [24] developed a method that combines the
l, and 1, norm penalties as well as the nonnegativity constraints to compute the simple
portfolio model. For other applications of regularization methods for portfolio selection
see [3, 12].

1.2. Main results

Although several models have been used in a wide variety of situations, they
have certain limitations. The fundamental problem is in the fact that the concave
functional of the portfolio is not strongly concave and the evaluation of the portfolio
optimization problem determines several admissible portfolio solutions. To address
these shortcomings, this paper presents the following contributions:
e Suggests a solution based on a continuous-time finite-state customer portfolio.
e Proposes an [, regularized Lagrange method for the portfolio representation.
e Provides a poly-linear programming problem formulation of the problem
e  Shows that there exists a positive regularization parameter § for which the Hessian

matrix is strictly positive definite.

e Proves that if the ratio z—" 1 0 then, the solution of the original portfolio converges

to a unique solution with the minimal weighted norm.
¢ Introduces a recurrent procedure based on the projection-gradient method.
e Shows the convergence to a unique portfolio.

1.3.0rganization of the paper

The reminder of the paper is organized as follows. The next Section presents the
formulation of the problem. Section 3 describes the regularization method for
Markowitz’s portfolio presenting the Theorems that describes the dependence of the
saddle-point of the regularized portfolio Lagrange function on the regularizing
parameters &,6 and analyses its asymptotic behavior. A continuous-time Markov
portfolio approach is suggested in Section 4. Section 5 computes the Markov portfolio
presenting the convergence of the method. A numerical example is presented in Section
6. Section 7 concludes the paper.

2.Regularized portfolio problem formulation
The goal is to find a unique admissible portfolio x € X,4,, (among all the
admissible portfolios) whose expected terminal wealth is E(x) so that the risk
measured by the variance of the terminal wealth
Var(x):= E[x — Ex]?
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is minimized. Finding such a portfolio x € X,4,, where

f(x)=—-E(x)+ %Var(x) - xgl{in

adm

is referred to as the mean-variance portfolio selection problem where g can be any
positive number. Specifically, we have the following poly-linear programming problem

re-formulation

N N N
f(x) = Z Cj Xj, +a; 2 G,z Xj1 %)
J1=1 J1=1 jz=1

N N

N
T Z Z Ci1,jorjsXia Xjp Xjg Tv o
N N N
An-1 Z Z ‘e 2 le»--»jN—lxjf .. xjN—1 +

aj ={0;1}(j = 1,...,N) are binary variables

Xadm: = {.x (S RN:X = 0, Vox = bo € RMO,le < b1 € RMl}
is a bounded set

> (1)

Notice that this portfolio problem may have non-unique solution and det(VjV,) = 0.
The problem (1) is called feasible if there is at least one portfolio satisfying all the
constraints. An optimal portfolio to the above problem is called an efficient portfolio
corresponding to x € X 4.,,. Define by X* € X4, the set of all solutions of the
problem (1). The set of all the efficient points x € X* is called the efficient frontier.
Following [6], let us consider the Markowitz Regularized Portfolio Lagrange

function (RPLF)

Log,s(x, tho, t1): = Of (x) + o (Vox — bo) + gy (Vix — by) +

1)
= Ul = llpol1 = Nl ll®)

(2)

where the parameters 6, § are positive and the Lagrange vector-multipliers p, € RM1
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are non-negative and the components of p, € RMo may have any sign. Obviously, the
optimization problem

Los(ttio i) > min max ®)
X€EXadmHol12z0

has a unique saddle-point on x since the optimized RPLF (2) is strongly convex ([35]) if
the parameters 6 and & > 0 provide the condition
2

ﬁﬁe,a(% Ho, .u'l) >0,Vx € Xgqm © RY
and is strongly concave on the Lagrange multipliers pg, u; for any 6§ > 0. In view of
these properties RLF has the unique saddle point (x*(8), ug(6,8), ui(6,8)) for which
the following inequalities hold: for any ug, u; with nonnegative components and any
x € R"
Los(x,u5(6,8),141(6,8)) = Lg,s(x*(8), 1150, 8),41(6,8)) = Lo 5(x*(8), o, 1) (5)
As for the non-regularized function £y o (x, po, 1), it may have several (not necessarily
unique) saddle points (x*, up, 1) € X* @ A™.

Given the Markowitz Regularized Portfolio Lagrange function represented in
Eqg. (2). If the parameter 6 and the regularizing parameter § tends to zero by a

particular manner (0 < 6,, | O,z—" !l Owhenn — ), then we may expect that x*(6, §)

and pg(8,6), ui(6,6), which are the solutions of the min-max portfolio optimization
problem (3) tend to the set X* @ A* of all saddle points of the original portfolio
optimization problem (1), that is,

p{x*(6,8),10(6,6),11(60,6); X" ®

A"} 0% 0 (6)

where p{a; X* ® A*} is the Hausdorff distance defined as
. * *\ . % 2
plax* @At = min la—z"
In the next Section we will define exactly how the parameters 6 and & should
tend to zero to provide the property (6).

3.Uniqueness of the Markowitz portfolio
The next theorems describe the dependence of the saddle-point x*(6,§) and
Uo(6,6),ui(6,8) of the RPLF on the regularizing parameters §, 6.

Theorem 3.1 Let the portfolio be defined as

)
Lo,s(x, o, 1)1 = f (%) + ug(Vox — bo) + i (V1x — by) + 5 (Il = No 1 = Nua 1)
Then, there exists a positive parameter § for which the Hessian matrix H:=
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2

0x0xT

Ly 5(x, 1o, up) is strictly positive definite.

2
Proof. First, let us prove that the Hessian matrix H: = #Lw(x, Uo, Uq) 1S

strictly positive definite for all x € RN and for some positive 8 and §, satisfying a
special relation, namely, H > 0. We have

2 02 0
o LGt ) = 05— () + Olysy = 8 (14527 ) Iy > 0¥8 > 0127
62
Wi= i A (5 ()

fulfilling the property H > 0 if § > 6|A~|. This means that RLF (2) is strongly convex
on x and, hence, has a unique minimal point defined below as x*.

Theorem 3.2 Given the Portfolio Lagrange function represented in Eq. (2). Let
us assume that
1. the bounded set X* of all solutions of the original portfolio optimization problem
(1) is not empty and the Slater’s condition holds, that is, there exists a point x € X,4m
such that

Vix < by @)
2. The parameters 8 and § are time-varying, i.e.,

0=60,6=8,n=012...)

such that

0<6,1 O,g—” | Owhenn — oo 8)

Then
Xpn:=x"(0,, 6n) 2 x*
to(On, 6n) = ug' 9)
n—-oo
THC SIS
where x™ € X* and (ug", ui*) € A*, define the solution of the original problem (1)

with a unique minimal norm, i.e.,
e 112+ e 11 + a2 < 112 + g 12 + el

(10)
for allx* € X*, (ug, 1) € A*
Proof.
In view of the properties
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(VfF(), 0 —0) < fO) — f(x)
(VF(), x—=») = f) — fO)

valid for any convex function f(x) and any x,y, for RPLF at any admissible points x,
to, M1 and xp = x"(0p, 6,), #B,n = po (6, 61), .ui,n = p1 (6, 6,) we have

d 0
<x - xi,aﬁen,an(x' Modh)) - (Mo - MS,n'a—%Len,an(x' MOﬁHl)) -

d
(.U1 - “1'"'_6,1 Len,5n(x' M0;M1)> = Lgn'(gn(x, .Uo,n'lh,n) - an
1

)

5
LosCenbtortis) + =0+ (Il = X112 + [lko = o ll” + [ln = i

which by the saddle-point condition (5) implies
0
O (x — xi;)‘af(x) + (x —x3) Voo + Vipg + 8px] +

N N
(o = o) (Bn = Vox + bo) + (11 — uin) (6 —Vax +by) = (12)

% (e =12+ o — s I+ s — )
Selecting in (12) x:=x* € X* (x* is one of admissible solutions such that
Vox* = by and Vix* < b;) and pg = ug, p1 = p; in view of the complementary
slackness conditions
(u1);(Vix™ = by); = (.u;,n)l-(le; —by); =0

we obtain
O (" — )" %f(x*) + O = ) VoRy + Vi + Spx ] +
(15 — 5.0) bty = Vox™ + bo) + (15 — i ) (Sulti — Vix™ + by) 2
2 (e = il + s ) =0
Simplifying the last inequality, we have
0" — X3~ FG) + 8" = )"+ 80t s ) b +

* * T *
(15 = uin) 6aui 20
Dividing both sides of this inequality by &,, and taking z—” - 0 we get
n n—o

"+

* *
U1 — Uin
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: * * * * * T * * * T *
0< limsup |(x* — )% + (5 — t5,0) 15 + (113 — i) 1ii]
n—oo
(13)
This means that there necessarily exist subsequences §, and 6, (k — o) on which
there exist the limits
X = x" (O, O) = X*, po e = 1o (O, Ox) — g

tix = 1Ok, 6) = fijask -
Suppose that there exist two limit points for two different convergent subsequences, i.e.,
there exist the limits

Xpr = X701, 8pr) = X7, g o = U5 (O, 8pr) > g

Myt = H1(0yr, 6;r) > [rjask > o
Then, on these subsequences we have
0<(x" = %)™+ (ug — o) o + (w1 — A1) 11

0 < (" —x)'x" + (ug — i) o + (i — 11)wig

From this inequalities it follows that (X*, fig, ;) and (x*, i1g, ;) correspond to the
minimum point of the function

s(x*, po, p1): = %(IIX*II2 +llusll? + e lli®)

defined on X* @ A* for all possible saddle-points of the non-regularized Lagrange
function. But the function s(x*, ug, u3) is strictly convex, and, hence, its minimum is
unique that gives X* = x*, iy = fip, g = fp- The theorem is proved.

The following property also takes place.

Lemma 3.3 Under the assumptions of the Theorem 3.2 there exist positive
constants C, and Cs such that
”xr*l - xr*n” + ”#an - Ms,m” + ||'u;n - .u;,m” < CGlgn - eml + C8|5n - 5m|

Proof. It follows also from the necessary and sufficient conditions (11) for the
points x, = x*(6p,0n), Uon = Ho(On, On), Uiy = 1i(6y, 8,) to be the extremal points
of the function Ly s (x, o, t41).

Corollary 1 Given the portfolio Lagrange function represented in Eq. (2) we
have that:
1. Lgs(x, po, 1p) is strictly convex on x,, = x*(6,,8,), and strictly concave on pg =
to(On, 6,), and pg = ui(On, 6,)
2. The Markowitz portfolio admits a unique solution.
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4.Continuous-time Markov portfolio

4.1.Continuous-time Markov process

In this section we introduce the (continuous-time, discrete-state) Markov chains
we are interested in [4,22].

Let {X(t),t = 0} a stochastic process that satisfies the Markov property if,
letting Fy(r) denote all the information pertaining to the history of X up to time 7, and
T < tP(X(D|Fx(r)) = PX()|X(7)) we say that the process is time homogeneous if
given 7,t' <t, t = t' + 7. In other words, this property means that any distribution in
the future depends only on the value X(t) and is independent on the past values.

Throughout the remainder

CTMDP = (S, A,{A(S)}ses, Q, 1) (15)
stands for a continuous-time Markov decision process (CTMDP), where the state-space
S isafinite set {s;,...,sy}, forsome N € N indexed by i = 1, N, and the finite action
set A ={a4,...,ay} is the action (or control) space for some M € N indexed by k =
1, M.

For each s € S, A(s) € A is the nonempty set of admissible actions at s.
Whereas, the set K: = {(s,a):s € S,a € A(s)} is the class of admissible pairs, which is
considered as a subspace of S x A.

The matrix Q = [q f|ik]i,j=1,_N,k=1,_M denotes the transition rates which satisfy

that q;j;x = 0 forall s €S and j # i. The transition rates qj;, are conservative, i.e.,

Y1 qjjix = 0 and stable, which means that g;:= sup g;(a) < Vi €S where
a€cA(i)

qi:=—q;; =0 forall s€S.

Finally, u € B(K) is the (measurable) one-stage utility function.

We denote the probability transition matrix by II(¢) = [7(¢1,iz,j,k0)];, J=TN k=T
T = t' such that, T[(tl,l',‘r,j,k) = T[(O,i,t,j,k)' t=1— t'Vsi,sj € S and where 2?’:1 ik =
1, VSL' € S.

The Kolmogorov forward equations, can be written as the matrix differential
equation: IT'(t) = I(t)Q; I1(0) = ITI(t) € RM*N | [ € RV*N is the identity matrix.
This system can be solved by TII(t) = 1(0)e? = e?: =Y, % and at the
stationary state, the probability transition matrix is defined as

= tlim I1(t) (16)

We also point out that given a state-space S, the infinitesimal generator Q completely
determines the CTMC as it contains all the local information pertaining to the transitions
rates 4;;. Thus, it is sufficient to characterize a chain by simply providing a state-space,

S, and the generator Q.
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Definition 4.1.The vector p € RY is called stationary distribution vector if
np=p 7)
where ¥, p; =1 and p; = P(X(t) = s;) this vector can be seen as the long run
proportion of time that the process is in state s; € S.

Theorem 4.2.Let X(t) be an irreducible and recurrent CTMC then the
following statements are equivalent: Q"p = 0 and IT"™*p = p.

Proof. See [22].

A strategy is then defined as a sequence d = {d(t),t = 0} of stochastic
kernels d(t) such that: a) for each time t > 0d;(t) is a probability measure on A
such that d4(;);(t) =1 and, b) for every E € B(A)dg;(t) is a Borel measurable
function in t = 0. We denoted by D the family of all strategies. From now on, we will
consider only stationary strategies dy;(t) = dy;-

For each action the matrix Q(ax):= [q;jik], ax € A denotes the transition
rates matrix for the action a; such that

— Di=j Aij(a), if i=j
while, for each strategy d the associated transition rate matrix is defined as:
Q(d): = [q;:(dD)] = Tk=1 4jjixd; (18)

such that on a stationary state distribution for all d; and ¢t = 0 from Eq. (16) we have
that, I1"(d) = lim eQ(@Dt \where IT*(d) is a stationary transition controlled matrix.
*(d): = [m;;(d)] = Xk=1 71y
Pondering the long-run expected average reward over the states at steady state, the
following linear functional U(d) under the fixed strategy dy;(t) = dy; can be
defined as follows
Ud):= XN, X1 Yo wiemjidyipi (19)
In an ergodic chain, we consider a stationary distribution and by the property in Eq. (17),
the value function in Eq. (19), under a given optimal policy is:
U(d) =X X1 Yieq wemjucpidigi — max (20)
4.2 Feasibility of Markowitz’s portfolio
The model presented in Eq. (20) is nonlinear. Then, if we introduce a new
decision variable ¢;, called the joint strategy variable, then the problem presented
above can be reformulated as a linear programming as follows
U(d) = XILy X0 Ty waemjjiepidigi = Lily Yi=1 k=1 UikTTjikcCifk
where ¢; ), = p;dy);- The variable c;, belongs to the set of matrices Cqqm and it is
restricted by the following constraints:
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1. Each vector from the matrix c: = [c; ] represents a stationary mixed strategy that
belongs to the simplex
SNXM: —

{c € RVM:forcyp, = 0 where XL, i, ¢ = 1} (21)

2. The variable c;;, satisfies the ergodicity constraints, i.e.:
pi(d) = X, Yoy mpidygi

that in terms of ¢, takes the form:

9(c) =Xy YHoy mikCipe — Xher Gk = 0 (22)
3. From Eq. (18) we obtain:

Y1 45 @Dpi(@) = XiLy Tt qjjkdigipi = 0

this expression in terms of ¢;, takes the form:

h(c) = XLy Yheq 4jjikCipe = 0 (23)

Once the model (ergodic Markov decision process) is solved in order to recover

the quantities of interest, we have that:
M

pi(d) = Z Cilk dijk = <5
] k=1 Cilk
Then, in terms of c-variables the reward function U becomes:
U(c) =X X1 Thoq wemjjincipk

4.3.Markov portfolio formulation

One may formally state Markowitz’s decision model for mean-variance
customer portfolio as follows. We consider diversification with respect to the number of
customers chosen in the portfolio problem. Then, a; is the number of customers at
state i applying action k, 0 < a(;x)(n). The utilityU of a customer portfolio is
calculated as the sum of the weighted net presenting the value u as follows

_ VN wM
U(a,c) = Xiz1 Xk=1 Wik @ik Cijx = max
a€AqamC€Cadm

Cilk

where
Wi = 201 w0 eandcye: = diip;-
The customer portfolio optimization problem attempts to maximize the mean value
(U(a, c)) generated by all the customers while minimizing the variance (Var(U(a, c)))
2
Var(a,c):= YL, Ty [aipeWine — U@, o)) e =

N VM 2 2 2 :
i=1 2k=1 e WijkCie —U*(a,¢) - » f;llrclec ,
aam aam

For practical purposes, the resulting customer portfolio optimization problem includes a
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model-user’s tolerance for risk, and it is represented by the following expression:

= ¢
®d(a,c):=U(a,c) 2Var(a, c) - Lax (25)
C€Cqam
where
Agam = {a = [l YLy Yk A = a+:0li|k €[eat]e> 0} (26)

and % is a monetary factor that reflects the price per unit of risk. Because, the purpose is

to obtain a higher mean value return (U(a,c)) also the corresponding risk level
Var(U(a, c)in creases. Here the goal is to find the values of a and ¢ that maximize the
objective function in Eq. (25) subject to the following constrains:

YLy ks aiwCipreipe < bineg (27)
where 7, are the resources destined for carrying out in state i a promotion k and the
admissible sets are as in Eq. (21), Eq. (22) and Eq. (23). The following optimization
properties are the key to find efficient portfolios: a) the Markowitz model in Eq. (25) isa
guadratic optimization problem (quadratic objective function and linear constraints in
Eq. (27), Egs. (21)-(22)-(23) and Eq. (26)), b) the feasibility set C, 4, iS convex since it
is the intersection of hyperplanes, ¢) the factor % of the risk-aversion parameter ¢ is

chosen for notational convenience and, d) the parameter b;., is endogenously given
(the budget is chosen by the decision maker in the respective model). The mean-variance
Markowitz portfolio given in Eq. (2) can be re-written:

ﬁen,an (¢, a, o, Un+1, MN 42, H1): =

0 [Zliv=1 Yiem1 W@ i + %Z’Ll Yie=1 Wi@irCi -
My XRe ) WakarCur — %Zlivﬂ Yit=1 Wi|2k“i2|kci|k] +

21 to[(Zila Bikr mjjuccipe — Zier Gie) — beq,] =

MN+1(Z§V=1 Z%:l Cilk — beq,N+1) -

Z?’=1 MN+2,j[(Z§V=1 Z%I:l CIj|ikCi|k) - beq,N+1+j]

+uq (TN Zh=1 iCirMijk — bineq) —

g(llcll2 +llell® = Nuoll® =lluall* = i1 — Hii+2)

5. Computing the Markov portfolio
Let us denote

Len,an = _LGn,Sn (Cn' Ay Hons UN+1,n0 UN+2,n0 .ul,n)
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Then, we have that

_ a

Ch+1 = |Cn —Yen aLBnﬁn +
_ a

Apnt+1 = % — Yan aLBn,Sn +

a
Hon+1 = Hom + Vg p a—ﬁen,sn
’ Ko 29)
P (
UN+1n+1 = Un+1n T Yintin Ftines Len,sn

_ 0
UN+2n+1 = UN+2n + YuNH_n OUN+2 Len,an

a
Pin+1 = [.ul,n + Yiin G_MLQ""S"L

where the operator [-], acts from R™ into R" as follows:
z; if 2,20
[Z]+ = ([Zl]+) Ry [Zn]+)' [Zi]+: = {Ol if Z; <0 (30)
Theorem 5.1 (on the convergence of the method) If for some positive
sequences {&,}
o |67 =6n—11°+|8n—8n—1/
Zn:o Vn6n = 0o, 15n5n L njoo 0

(1)

£n Yn

and

are small enough
Ynbn Sn &

then
Gi=llc = calI? + Il — apll? + |lo — il +
(32)
2 2 Y
||ﬂN+1 - ﬂ7v+1,n|| + ”IJN+2 - ﬂ7v+2,n|| + ”Iil - ll1,n|| - 0

n—oo

Proof. Let us denote
LGn,Sn = LGn,Sn (Cn' Any Ko UN+1,n0 UN+2,10 #1,11)

In view of Eq. (29) it follows
9 2 9 2

Gn+1 < |(lch —¥n %Len,an - C‘:L+1 + ||an — Yan £Len,an - a:z+1
For strongly convex (concave) functions, the following inequalities hold.

_|_

2
+

2
+ ||.uN+1,n T Vuniin Ey Lo, 5, — UN+1,n

0
Kon T Yn a—yoﬁen,an — Hon+1
2 2
+

d d
H#N+z,n + Yunsin mﬁenﬁn —HUNn+2,n Uin + Vn a_,ulLen"Sn — Hin+1
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(cn =€) 5= Lo,.5, = O (1+ 22: ) lle = call?
8u(1 = Ollc — call?, |25 | <

(n = @) 55 Lo, 5, 2 S (1+3247) lla — a2

5,(1 — &)lla — ayll?,

6y, |
2A-l <
3 gl <€

(ton — MOn) 3 Londn < < =8, |tom — |’

(Un+1n — .uN+1,n) mﬁenﬁn < —8ul|tntan — ﬂ7v+1,n||2
(MN+2,n - M;‘V+2,n)T%N+2L9n,6n < _6n||:uN+2,n - ﬂ7\1+2,n”2

. 112
(b1 = #in) 52 3 Loy < ~Snlltan — uial|
By the A-inequality 2(a,b) < (a, Aa) + (b, A=1b) valid for any vectors a, b and any
matrix A > 0, we get for A = g,I the following estimate

Z(Cn - Cr*l)T(Cr*l - C:L+1) + 2(an - a;)T(a; - 0(:1_‘_1) + 2(:“0 - #S,n)T(.uan - HS,n+1) +
2(#N+1 - IlN+1,n) (.uN+1,n - .UN+1,n+1) + 2(#N+2 - :uN+2,n) (.uN+2,n - #N+2,n+1) +

* T * * -
2(#1 - .ul,n) (:ul,n - .u1,n+1) < ‘SnGn + 2€n1(C5|9n - 9m|2 + C§|5n - 5m|2)
If a nonnegative {u,} sequence satisfies the recurrent inequality
Un+1 < un(l - (n) + ﬁn
Bn

0<@ =13y gln=07" = p

{ n—oo
then u,, — p. Defining
n—-oo
L _ 1&g 1 sn_(1+L)y_n
$ni=2¥nbn(1—€) ( 1-€6, 2(1-€)yp8n, 2(1-€) Sn)

) o .an CYngﬁl(Ign__ 9n+1|2+|6n_6n+1|2) ] ]
and applying the conditions in Eqg. (31) of this theorem for p = 0 we obtain the desired
result. The theorem is proven.

To satisfy the convergence conditions in Eq. (31) let us select the parameters

Yn, On, €, OF the algorithm in Eq. (29) as small positive constants and
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__ b
O = 1+ln(n+1)'90 >0 (33)
The condition g—” 1 0 also holds. Notice that in this case the rate of convergence G,, to

zero will have the same order as the term
62
|9n - 9n—1|2 ~ W:ﬂl)‘l(l + 0(1))

6.Numerical example
Let us now illustrate the practical implications of the theoretical issues
discussed above. We consider the problem of maximizing the portfolio given by f(x) =
E(x) — %Var(x) - hax . We assume that the number of states is N = 6 and the
C

adm

number of actions is M = 3. Fixing 6, =1x107%, §, =1x 1078, y,, = 2.6 X
107° . ¥40 =099 , ¥y =1[001;...;0.01] , y,,,,, = 0.005 ,
[0.01;...;0.01], ¥, , = 1 X 1075, bjpeq = 100, § = 0.05 and
3.0240 1.4599 1.8620
[1.9963 2.1583 0.9906
_|2.6344 7.7400 2.4484|
Mk = 120840 4.9203 1.6975|
l3.2843 0.8358 4.7582J|

. i - 131399 0.5311  4.6017
The resulting optimal portfolio (see Figure 1 and Figure 2 ) generated by the recurrent

method is given by

yHN+1,0 -

100.0020 100.0025 100.0026 0.3256 0.3300 0.3444
100.0026 100.0027 100.0029] [0.4108 0.2786 0.3106]
o _|829756 88.1662 93.1698 | . _[0.3248 03231 0.3521]
tk 71100.0022 100.0026 100.0024| “U* 7 [0.4059 0.2680 0.3261
100.0028 100.0029 100.0025 0.3183 0.3419 0.3398

188.6045 92.4799  86.0521 _ 0.4151 0.2355 0.3494
The satisfaction of the constraints (A, — b.q) is shown in Figure 3.
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102 Value of a

-y -~ -alln
e Bl \S wen

—-- ) — a1

= o

o(1.2) 96 \\ a(1,2)

= S .

C —cl4,2) N ——a42)
0.05 A 1 | esa 92 \ - aE
(6.2 a62)
(1,3} 80 ™ a(1,3)

. 9
0.045 - AN 1 c2,3) a(23)
\ N o(3,3) 88 a(3.3)
N e c43) a(4,3)

\

J— 86 ——-a(53)

0041 * 1 o(6,3) a63)

0.035 - s 82
0 1000 2000 3000 4000 5000 o 1000 2000 3000 4000 5000

Figure 1: Portfolio - strategies c. Figure 2: Customers «a.

Nomm of Constraints

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time (seconds)

Figure 3: The norm of (A.q — beq)
constraints.

6.Conclusion and future work

This paper proposes a customer portfolio optimal selection, restricted to
continuous-time Markov chains. The method employed a Lagrange optimization
approach for solving the regularization problem that ensured the strong convexity of the
objective function and the existence of a unique solution of the portfolio. The
regularization approach simplifies the computation of the unique solution of the original
portfolio optimization problem. We proved that the solution of the original portfolio
converges to a unique solution with the minimal weighted norm. We introduced a
recurrent procedure based on the projection-gradient method and proved the
convergence of the method. A numerical example has been offered, to validate the
effectiveness of our approach.
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