
Loredana MOCEAN, PhD

Monica CIACA, PhD

Business Information Systems Department

“Babes – Bolyai” University, Cluj – Napoca

Halim Khelalfa, PhD

University of Wollongong , Dubai

A FORMAL MODEL FOR IMPLEMENTATION OF OR

PARALLELISM

Abstract. OR parallelism can be exploited when a relationship is defined

by more than a clause and a calling subgoal may be unified by more than a

procedure header. In such a case, the bodies of the clauses involved may be

executed in parallel, giving raise to an OR parallel execution. So OR parallelism

becomes an efficient method for exploiting alternative solutions in parallel.

In section 1 we concentrated the main problems and limitations which appear in

OR parallelism implementation, presenting also the most important result (due to

Gupta and Jayaraman) obtained until now with respect to this aspect: the

impossibility of simultaneously fulfilling the three criteria which define the

implementation of an ideal OR parallel system.

In section 2 we presented the main memory management mechanisms involved in a

classical sequential implementation of the Prolog language.

The analysis and characterization of the OR parallel execution models from

section 3 are mainly performed relatively to the types of binding environments

(centralized or distributed). We present and analyze also models based on multi-

agents systems and methods based on stack operations.

Section 4 represents the main original contribution of this paper, building a formal

model for OR parallelism implementation and making an analysis of its complexity.

The results obtained here formally validate the limitation reported by Gupta and

Jayaraman, being also of a significant practical utility regarding possible

improvements for OR parallel implementations.

In section 5 we present a classification based on the three criteria, characterizing a

set of implementations proposed in the literature or being in use at this time.

Keywords. Models, Implementation, OR, Parallelism, Lemma, Theorem.

JEL Classification:

1. Introduction

Problems related with OR parallelism implementation.

A major problem in exploiting OR parallelism is that it does not expose a constant

time complexity. It depends on variable access time, node creation time and on the

time needed by a processor for starting the execution of a new branch. For building

Loredana Mocean, Monica Ciaca, Halim Khelalfa

an ideal OR parallel system, it is necessary to accomplish all of the following three

criteria [13]:

◊ Constant time environment creation;

◊ Constant time variable access and binding;

◊ Constant time context switch.

Gupta and Jayaraman [13] showed that these three criteria cannot be

simultaneously fulfilled. In other words, non constant time costs can not be avoided

when managing binding environments. However, they can be reduced by designing

an efficient scheduler.

2. Memory management in sequential Prolog.
Memory management in the case of OR parallelism is approached here

comparatively with the classical methodology from sequential languages. For this

reason we analyzed first the memory management solutions for economic

processes, provided by the sequential Prolog language.

The (sequential) Prolog interpreter uses the following stacks for representing the

current state of the resolution of economic process (see figure 1):

1. the Environment stack for managing the current state of the resolution of

economic process;

2. the Variables stack for keeping the variables bindings;

3. the Trail stack which allows backtracking by managing variables unbinding.

 Environment Stack

 Figure 1. The management of stacks in economic processes, provided by

sequential Prolog

(1)

X=val 1

X

Var

Stack

Trail

Var

Stack
Trail

Var

Stack

(2)

(3)

 (4) (5)
X

X

Val 2

X=val. 2

Val 1

Trail

Decision point

A Formal Model for Implementation of OR Parallelism

__

3. OR parallel models.

3.1. OR parallel models based on centralized binding environments.

The basic idea in such an approach is to build a virtual stack for every process

which will share as much information as possible with the other stacks and to

duplicate the values only for the variables which uniquely binds in every process.

The binding schemes for this type of models obey the following rules:

- variables bindings are kept locally in individual clauses;

- goal unification with the header of a clause often requires access to previously

bound variables;

- unification between two free variables is accomplished by binding one variable

to the reference of the other.

In the next paragraph we present some important models.

a.) The directory tree model.

This scheme was developed by Ciepielewski and Haridi [6]. In this model every

branch of the OR tree has an associated process. The process binding environment

is composed by contexts. At every clause invocation a new context is created.

Every process has a separate binding environment, but some of the contexts may be

used also by some other branches (see figure 2).

For efficiently accessing its environment, a process uses directories. A directory of

a process is a vector of contexts references. The environment of a process consists

though from the contexts to which points its directory. The n-th location from the

directory contains a pointer to the n-th context of the process.

Figure 2. The directory tree model

Decision point

Process 2
Process 1

X: undef

Y: undef

X: undef

Y: undef

X: undef

Y: undef

X: val

Y: val

Dir process 2 Dir process 1

Variables stack

Process 2 env. Process 1 env.

Context

Dir process 1

Context

Dir process 2

Loredana Mocean, Monica Ciaca, Halim Khelalfa

context

unbound

bound
directory

1

context directory

1

Data structures involved in this model are shown in figure 3.

 i

 i

Figure 3. Data structures involved in the directory tree model

b). The hashing windows model.

This scheme was proposed by Borgwardt [5]. In this model separate binding

environments are managed by means of certain hash windows. Every node from

the OR tree has its own hash window where its conditional bindings are stored. A

hash function is applied for every variable address for determining the address of

the beginning of the list (cathegory) in which that conditional binding will be

stored. Unconditional bindings will not be stored in hash windows, but directly into

the tree nodes.

A Formal Model for Implementation of OR Parallelism

__

Hash

window 3

Figure 4. Hashing windows technique

c). The time stamping model.

This temporal scheme was developed by Tinker and Lindstrom [24]. It uses time

stamps to identify the correct bindings for an environment.

3.2. OR parallel models based on distributed environments.

In OR parallel models based on distributed environments, the number of the

binding environments visible for a process is limited to one or two, which makes

dereferencing operations much simpler than in the case of centralized

environments. However, the independence of the binding environments is obtained

with the supplementary cost of some binding and copying operations. Distributed

models differ from one another in the way the independence of the binding

environments is achieved.

The existing models from this category are:

a). the EPILOG model

b). the data-driven OR parallel system [15]

c). the variable importation scheme [20]

d). the closed environments scheme

e). the DIALOG model

f). the forward stack model and the binding arrays model.

3.3. Models based on multi-agent systems.

The previous paragraphs describe OR model based on centralized and distributed

Decision point

Economic Process 1 Economic Process 3

Economic Process 2

Hash

window 2

Hash

window 1

Loredana Mocean, Monica Ciaca, Halim Khelalfa

binding environment. Some models represents a compromise between two of them,

they divide the notion of execution stage in a local stage and global stage, which

contain details about task scheduling and blobal binding environments, information

shared by all the processors.

Two important models of this category are:

a.) The SRI model.

B). The MUSE (MUltiple SEquential Prolog engines) model.

4. Methods based on stacks operations.

This paragraph presents techinuque of using of the stacks in PR model paralellism.

a). The copying of stacks method.

This scheme assumes that every agent has its own instances (copies) of the stacks

and it does not access the stacks of the other agents. Sharing of activities is

obtained by copying the corresponding parts of the stack from one agent’s memory

location to another (see figure 5).

b). Sharing of stacks.

c). Recomputing of stacks.

Figure 5. The result of the stack copying operation

5. A formal model for the implementation of OR parallelism.

The only ones who tried until now to develop a formal model for OR parallelism

were Gupta and Jayaraman [12].The authors do not approach also a complexity

analysis for the defined operations, even if in our opinion their model is adequate

for such a analysis.

P

PD Env Trail Heap

P’s local space

PD Env Trail Heap

Q’s local space

Private

Shared

Shared

space

A Formal Model for Implementation of OR Parallelism

__

Starting from the model and the results mentioned above, in section 5.1. we

develop our own formal model for the OR parallelism implementation. Inspired

by the Gupta-Jayaraman model, our model is substantially modified for keeping

only the necessary elements which allow a complexity analysis.

Using this formal model, we obtained an important result presented in our theorem

and which extends the results of [12]. The obtained complexity limit of Ω(log N)

formally proves the impossibility of obtaining an OR parallel implementation with

constant time per operation.

The practical importance of this result is that independently of the operational

semantics of the logic programming language and independently of the

optimizations tried or the chosen implementation scheme, we can not avoid the

limitations imposed by the obtained complexity value. By means of our result, we

can give to the parallel logic system developers clear directions regarding the

possible improvements of the performances of the implemented systems.

5.1. The formal model. Notations and terminology.

Definition. A nondeterministic program is a set of procedural definitions, each of

the form header; body, where header has the form id(pars), the same id procedure

being able to appear in the header of many different procedural definitions. The

syntactic category pars represents a (possible empty) list of some formal

parameters.

o N denotes the set of the nodes in the OR search tree;

o V denotes the set of all variables;

o T denotes the set (domains) of terms or values;

o P denotes the set of processors;

o M denotes the set of memory locations in the multiprocessor system;

o Ƅ(S) is the powerset of S and |S| is the cardinal of S.

Definition. An OR search tree for a given nondeterministic program and for a

given query is a tree, every node having an associated continuation and a local

environment, such that:

1) for the root node the query is its associated continuation and the set of

variables appearing in the query form its local environment;

2) every node n ≠ root is created after choosing a different procedural definition

for executing the first call from the body of n‘s parent node and:

a) the continuation of node n consists from the statements which compose the

body of the chosen procedure definition followed by the statements after

the first call from n’s parent (the statements are assumed to be interpreted

in the framework corresponding to n).

b) the local environment, l(n), corresponding to n is the set of all variables

present in the procedure definition, where l:N→ Ƅ(V).

Loredana Mocean, Monica Ciaca, Halim Khelalfa

Definition. The partial relationship “<<<<=”. For two nodes n1 and n2 of an OR

search tree, we write n1 <= n2 iff n1 and n2 are on the same path starting from the

root and either n1 = n2, either n1 is closer to the root than n2. In the latter case we

write n1<n2.

Definition. The global environment, g(n), of a node n from an OR search tree is

the union of the variable sets from all the local environments encountered on the

path from the root node to the n node. That is g(n) = {v| (∃x) x ≤ n and v Є l(x)}.

Definition. Access node, binding node. For every variable v from the local

environment of a node n:

1) It exists a subset Ž of the tree nodes, subset called the set of the access nodes

for v, in which every access node m has the property that m≥n (all the nodes

below the current node are access nodes for variable v).

2) It exists a subset of access nodes called the set of the binding nodes for v,

which may be described by using a partial function bind:V→N, with the

property that bind(X)=u if the binding operation for variable X accesible at the

current node happened at node u. Regarding the single assignment property,

function b obbeys the requirement: if exists a node m such that b(v)=m, then

b(v) is undefined for all nodes y<m and b(v)=m for every y≥m.

The set of binding nodes for v is the set NL = {m| b(v) = m}.

Lemma. Uniqueness property of the node bindings. If a variable v has two

distinct binding nodes n1 and n2, then n1≮ n2 and n2≯n1, that is n1 and n2 are not on

the same path starting from the root.

Definition. A complete OR search tree is a tree in which:

1. for every leaf node l, the continuation of l is either empty (terminal node

ending with success), either the first call from its continuation can not be

processed due to a nondefined procedure (leaf node with failure);

2. for every non-leaf node n, we have in the OR search tree a child node for every

procedure definition which may be used for running the first call from n’s

continuation.

Definition. Variable access. A variable access operation implies determining the

eventual binding node of that variable. We define for this purpose the function

access:V x N → N , with access(X,u) = v iff v = bind(X) and v≤ u.

5.2. A complexity analysis for OR parallelism implementation.

By the generic term of variable management we subsumed two distinct operations:

A Formal Model for Implementation of OR Parallelism

__

variable binding and variable accesssing. The bind operation does not imply

special complexity overhead, because it performs an association operation at the

level of the current node, being though a constant time operation and its

complexity may be considered O(1). The main subject of our analysis will be the

access operation. In its definition two nodes of the OR parallel tree are involved:

the current node and the eventual binding node that has to be identified. Intuitively,

it becomes evident the fact that this searching process can not be independent of

the size of the search tree. In the proof of our theorem we present also the formal

arguments of such an assertion.

Theorem. Variables management in an OR parallel implementation is a problem of

complexity Ω(log N).

Demonstration.

The apel Access(X,u) ask from the level of u node the determination eventually of

binding node of variable X (for take from there the asking value for X variable).

In a sequential system must go through the current branch from node to node until

the evenly meet of binding node. As [12] it is established a complexity O(n) for

this process (the problem of finding an element in a set). The question asked is if

in a parallel system this disability cannot be overtake and access operation is taking

course in constant time.

In a parallel process exists the possibility of simultaneous access of the nodes. In

particularly, the number of these nodes depends on the architectural model

considered. For keep the degree of generality of our analysis we will not fix a

architectural particular model, but we will consider that in our model exists a finite

and enough number of processors.

The reason of this statement is that we want that the limitation we will identify not

become from the absence of architectural model, but be inherent of mechanism of

implementation of OR parallelism.

At the level of précised architectural model, access operation is taking course at

worst in f(N) time units (steps) where N is the number of nodes of the tree and

function f is the one that we propose to determine as result of derivation of a limit

of complexity (in ideal case we wish to be constant).

For every program, the factor of ramification of the OR parallel tree, is superior

limited by a constant. The considering only of the binary trees in the next sentences

don’t affects the degree of generality of our demonstration.

The number of the nodes of complete deep binary tree k is N=2
k+1

– 1. Suppose that

the maximum parallelization degree is reached (what we already proposed in our

model – sufficient processors, but in finite numbers – so that at each apparition of a

new task not to wait the release of computing resources).

In this conditions, the accessing capacity in a binary tree for an access operation is

CA= 2
f(N)+1

– 1 nodes in those f(N) steps.

Observation. In the particularly case in which at each step we advance exactly a

level of a tree, we have CA=N, so, capacity of accessing coincides the number of

Loredana Mocean, Monica Ciaca, Halim Khelalfa

the nodes of the tree, and those f(N) steps coincides with the deep of the tree, so

f(N) = k.

The case f(N) < k expresses the situation in which the sequential processing it will

be more performing that parallel one, so are of interest for our analysis remain the

case of f(N) ≥ k.

6. A classification of OR parallel execution models.

We used the three Gupta-Jayaraman criteria as a basis for classifying the different

OR parallel execution models. In figure 6. we can identify the criteria satisfied by

the different methods present in the literature.

 CrTC

 true false

 CoTC CoTC

 true false true false

 AVC AVC AVC AVC

 true false true false true false true false

Class 1 Class 3 Class 5 Class 7

No method Binding Arrays Directory Tree.

 Class 2 Class 4 Class 6 Class 8

 Hashing Time Stamping Variable

 Windows Method Importation

CrTC = Constant time task creation

 CoTC = Costant time task switching

 AVC = Constant time variable access

Figure 6. A classification of the OR parallel execution models

A Formal Model for Implementation of OR Parallelism

__

7. Conclusions

In this chapter we performed a presentation, a classification and an analysis of the

most important OR parallel execution models.

The results obtained by Gupta and Jayaraman were used as a starting point for

developing our own formal model for the problem of OR parallelism

implementation and for a classification of the OR parallel execution models. In the

literature, their presentation is made almost exclusively in a descriptive manner.

The efficiency of the models is also explained or implied more on an intuitive

basis than on strong mathematical reasoning. That is why we considered of a

capital importance the proposal of a mathematical model to theoretically validate

the informal and experimental results reported until now.

We tried that by means of our original contributions of this chapter – the formal

model proposed in 5.1 and the complexity analysis performed in section 5.2 – to

initiate a coherent framework for the development, presentation and analysis of the

parallel logic systems, focused to help in obtaining more sound results and with a

higher degree of generality.

REFERENCES

[1]F.E.Allen (1969), Program optimization, in Annual Review in Automatic

Programming 5, International Tracts in Computer Science and Technology and

their Applications, vol.13, Pergamon Press, Oxford, England, pp.239-307;

[2]R. Bahgat (1993),Pandora: Non-Deterministic Parallel Logic Programming,

PhD Thesis, Department of Computing, Imperial College of Science and

Technology, Feb. 1991, Published by World Scientific Publishing Co.;

[3]J. Barklund (1990), Parallel Unification, PhD Thesis, Uppsala University;

[4]U. Baron, J.C. de Kergommeaux et al. (1988), The Parallel ECRC Prolog

System PEPSys: An Overview and Evaluation of Results, in Proceedings of the

International Conf. on Fifth Generation Computer Systems, Tokyo, pp. 841-850;

[5]P. Borgwardt (1984), Parallel Prolog using Stack Segments on Shared

Memory Multiprocessors, Proceedings of the International Symposium on Logic

Programming, Atlantic City, NJ, pp 2-11;

[6]A. Ciepielewski, S. Haridi (1983),A Formal Model for OR-Parallel Execution

 of Logic Programs, IFIP 83, North Holland, P.C. Mason (ed.), pp.299-305;

[7]J.S. Conery (1983),The AND/OR Process Model for Parallel Interpretation of

Logic Programs, PhD. Dissertation, Univ. California, Irvine;

[8]J.S. Conery (1987), Parallel Execution of Logic Programs,Kluwer, Dordrecht;

[9]V. Santos Costa, David H.D. Warren and Rong Yang (1991),Andorra-I: A

Parallel Prolog System that Transparently Exploits both and- and or-Parallelism,

in Proceedings of the Third ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, ACM Press, April 1991, pp. 83-93;

[10]I. Foster and S. Tuecke (1993), Parallel Programming with PCN. Argonne

National Laboratory, January;

[11]D. Gelernter (1985),Generative communication in Linda. ACM Transactions

Loredana Mocean, Monica Ciaca, Halim Khelalfa

on Programming Language Systems, 7(1), 1985, pp.80-112;

[12]G. Gupta, B. Jayaraman (1993), Analysis of OR-Parallel Execution

Models, ACM Transactions on Programming Languages, 15(4) pp.659-

680, Sept.;

[13]G. Gupta (1993), M. Hermenegildo and V. Santos Costa – And-Or Parallel

Prolog: A Recomputation Based Approach, New Generation Computing, 11 (3-4)

pp.297-323;

[14]G. Gupta (1994), Multiprocessor Execution of Logic Porgrams, Kluwer

Academic Publishers, Norwell;

[15]Z. Halim (1986), A Data-driven Machine for OR-Parallel Evaluation of

Logic Programs, New Generation Comput. , pp.5-33;

[16]L. V. Kale (1987) , Parallel Execution of Logic Programs: the REDUCE-OR

Process Model, in Fourth International Conference on Logic Programming, pages

616-632. Melbourne, Australia, May;

[17]P.H.J.Kelly (1989), Functional Programming for Loosely-coupled

Multiprocessors MIT Press;

[18]R.M.Karp, R.E.Miller and S.Winograd (1967), The Organization of

Computations for Uniform Recurrence Equations, in Journal of the ACM, 14(3),

pp.563-590, July;

[19]L. Lamport (1974), The Parallel Execution of DO Loops, in

Communications of the ACM, 17(2), pp. 83-93;

[20]G. Lindstrom (1984), OR-Parallelism on Applicative Architecture, Proc. 2
nd

International Logic Programming Conf, pp.159-170, July;

[21]Y.Muraoka (1971), Parallelism Exposure and Exploitation in Programs,

Ph.D. Thesis, Tech.Rep. 71-424, University of Illinois at Urbana-Champaign;

[22]V.S. Sunderam (1990), PVM: A Framework for Parallel Distributed

Computing, in Concurrency: Practice & Experience, 2(4), pp.315-339;

[23]Sverker Janson ; Seif Haridi (1990), Programming Paradigms of the

Andorra Kernel Language, Technical Report PEPMA Project, Sweden, Nov.;

[24]P. Tinker (1988),Performance of an OR-parallel Logic Programming

 System, International Journal of Parallel Programming, 17, pp.59-92;

[25] P.C. Treleaven (1990), Parallel Computers: Object-oriented, Functional,

Logic. J. Wiley & Sons;

[26]Alexandru Vancea(1999) , Paralelizarea automată a programelor, Teză de

doctorat, "Babeş-Bolyai" University Cluj-Napoca;

[27]Monica (Ciaca) Vancea, Alexandru Vancea (2001), An Analysis of Models

for Parallel Logic Programming, in Research Seminars, Preprint No. 1, pp. 21-32;

[28]Monica Vancea(2004), Tehnici de implementare în limbaje de programare

logică paralelă, Presa Universitară Clujeană;

[29]D. H. D. Warren (1983), An Abstract Prolog Instruction Set. Technical

Report 309, Artificial Intelligence Center, SRI International, 1983.

