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SOME APPROXIMATIONS USED IN THE RISK PROCESS OF 

INSURANCE COMPANY 

 

 
Abstract: In an insurance company, the risk process estimation and the 

estimation of the ruin probability are important concerns for an actuary: for 

researchers, at the theoretical level, and for the management of the company, as these 

influence the insurer strategy. We consider the evolution on an extended period of time 

of an insurer surplus process. In this paper, we present some processes of estimating of 

the ruin probability. We discuss the approximations of ruin probability with respect to 

the parameters of the individual claim distribution, with the load factor of premiums 

and with the intensity parameter of the number of claims process. We analyze the 

model where the premiums are computed on the basis of the mean value principle. We 

give numerical illustration. 
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1. INTRODUCTION 
 

The mathematical model of an insurance risk business is composed of the following 

objects: 

a) A sequence { }
1,2,3,i i

X
= K

 of independent and identically distributed random 

variables (i.i.d.r.v.), having the common distribution function F. iX  is the cost of the  

i
-th
 individual claim. 

b) A stochastic process ( ){ }; 0N N t t= ≥ . N is the number of claims paid by the 

company in the time interval [ ]0, t . The counting process N and the sequence { }iX  

are independent objects. 
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The total amount of claims paid by the company in the time interval [ ]0, t  is 

( )

1

( )
N t

i

i

D t X
=

= ∑  ( ( ){ }; 0D t t ≥  being the claim process). The risk process 

( ){ }; 0Y Y t t= ≥  is defined by ( ) ( )Y t c t D t= ⋅ − , where c is a positive real constant 

number corresponding to the average premium income per unit of time. We shall 

consider that the process N is a homogeneous Poisson process with intensity λ  and 

that we will use the mean value principle in order to compute the net premiums, thus 

1(1 )c mθ λ= + ⋅ ⋅ , where θ  is the relative safety loading and 1m  is the expected value 

of the individual claim or the expected cost of a claim. We denote 

, 1, 2,3,k
k im E X k = =  K . We shall denote by r – initial capital, ( )C t  - the capital 

of the company at moment t, hence ( )0r C=  and ( ) ( )C t r Y t= + . We define the 

ruin as being the situation when the capital of the company takes a negative value. The 

ruin moment  τ  is defined as  ( ){ }inf 0 0t C tτ = ≥ < . 

 Let ( ) ( ) ( )
0

1r xh r e dF x

∞
⋅= −∫  and ( ) ( ) 11g mθ θ λ= + ⋅ ⋅ .  

We denote by ( ),n r θΨ  the ruin probability up to moment n and by ( ),r θΨ  the ruin 

probability on an infinite time horizon, so 

( ) ( ) ( )( ), 0 ,n r P n C r g cθ τ θΨ = < = = , 

( ) ( ) ( )( ), 0 ,r P C r g cθ τ θΨ = < ∞ = =  and ( ) ( ), lim ,n
n

r rθ θ
→∞

Ψ = Ψ . 

The adjustment coefficient (or Lundberg exponent) R is the positive solution of the 

equation  ( ) 0h r c rλ ⋅ − ⋅ = . 

A well-known result is that: if the adjustment coefficient R exists, the ruin probability 

is        ( ) ( )( ) ( )
1

, ,                                                 1
R SR rr e E e

τθ
−

⋅− ⋅  Ψ = ⋅    

where ( ) ( ( ) ))S Cτ τ τ= − < ∞  represents the severity of the loss at the moment of 

ruin. 

In case the individual claim follows an exponential distribution, ( ) , 0iX Exp α α∈ >  

then  

                               ( )
( )

( ) ( ),                                   2
r

g
r e

g

λ
α

θλ
θ

α θ

 
− − ⋅ 
 Ψ = ⋅

⋅
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The integrated tail distribution is ( ) ( )( )
1 0

1
1

z

IF z F x dx
m

= ⋅ −∫ . It is known the 

Beekman’s convolution (or Pollaczek-Khinchine) formula: 

                           ( ) ( ) ( )
0

1
,                               3

1 1

n
n
I

n

r F r
θ

θ
θ θ

∞
∗

=

 Ψ = ⋅ ⋅ + + 
∑ %  

where ( ) ( )1I IF r F r= −% . If F is the cumulative distribution function for a 

exponential distributed loss, then .IF F=  

2.  SOME APPROXIMATIONS OF RUIN PROBABILITY 

  

De Vylder (1978) proposed the following approximation, which is based on 

the idea to replace the risk process Y by a risk process Y%  with exponential distributed 

claims such that ( ) ( ) , 1, 2,3.k kE Y t E Y t k   = =   
%  The risk process Y%  is 

determined by the parameters ( ), ,λ θ α% %
% . Since ln lnz r i θ= + ⋅ , where 

iz r e θ⋅= ⋅ , 

we have 

 
( ) ( )

2 3
3

1 2 3ln 0
2 3!

i Y t
E e t i m m i m

ν ν ν
ν θ λ λ λ ν⋅ ⋅    = ⋅ ⋅ ⋅ ⋅ ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅ +    

 and we get 

3
1

2

1

3

m
m

mα
= =

⋅
%

%

, 1 3

2
2

2

3

m m

m
θ θ

⋅
= ⋅ ⋅%   and  

3
2

2
3

9
.

2

m

m
λ λ= ⋅ ⋅%   Thus, we obtain the 

approximation ( ) ( ) ( )1
1

, ,              4
1

r

DVr r e

θ α
θθ θ

θ

⋅
− ⋅

+Ψ ≈ Ψ = ⋅
+

%
%

%

%

%

  

             ( ) ( )
1 2

2
2 1 3

6
2

3 22

2
2 1 3

3
,                              5

3 2

m m r

m m m
DV

m
r e

m m m

θ

θθ
θ

⋅ ⋅ ⋅ ⋅
−

⋅ + ⋅ ⋅ ⋅⋅
Ψ = ⋅

⋅ + ⋅ ⋅ ⋅
 

If ( ): , 0, 1i
i i

i i I i I

n
X p p

p
∈ ⊂ ∈

> =∑
N

, we introduce 

2

1 2

, ,i i i i
i i

n p n p
b a

m m

⋅ ⋅
= =  

( )' : ,i

i i I

n
X

a
∈

 ( )": i

i i I

n
X

b
∈

 and we obtain ( )
( )
( )1

'1 2
' , ,

3 3 "

E X
m E X

E X
θ θ= ⋅ = ⋅ ⋅%

%  

( ) ( )
( )

"9

2 '

E X E X

E X
λ λ

⋅
= ⋅ ⋅%    and  
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     ( )
( )

( ) ( )
( ) ( ) ( )

6

3 " 2 '3 "
,                         6

3 " 2 '

r

E X E X

DV

E X
r e

E X E X

θ
θθ

θ

⋅ ⋅
−

⋅ + ⋅ ⋅⋅
Ψ = ⋅

⋅ + ⋅ ⋅
 

The most famous approximation is the Cramer-Lundberg approximation: 

                 ( ) ( )
( )

( )1, ,                                7
'

R r
CL

m
r r e

h R c

θ λ
θ θ

λ
− ⋅⋅ ⋅

Ψ ≈ Ψ = ⋅
⋅ −

 

Let SE be the class of subexponential distribution, i.e. F SE∈  if 
( )

( )

2

lim 2
x

F x

F x

∗

→∞
=

%

%

. It 

is shown by Embrechts and Veroverbeke (1982), that, if IF SE∈ , then  

                         ( ) ( ) ( )1
,                                                           8

1
Ir F rθ

θ
Ψ = ⋅

+
%  

  We showed that if IF SE∈  then  

                                 
( )

( ) ( )
( )1

1

,
lim                                         9

1r
I

r m

F r g m

θ λ
θ λ→∞

Ψ ⋅
=

− − ⋅
 

Another well known result is ( )lim , R r

r
r e Cθ ⋅

→∞
Ψ ⋅ = , where 

( )

1

0

R x

m
C

R x e F x dx

θ
∞

⋅

⋅
=

⋅ ⋅ ⋅∫ %

 is Cramer constant and R is Lundberg exponent. 

For small θ  we have 1 1

2 2

2
m m

R
m m

θ θ⋅ < < ⋅ , so that we may have 1

2

3

2

m
R

m
θ≈ ⋅ . 

Let ( ) ( ) ( )( )
0 0

inf inf 0 .
t t

H r P Y t r Y t
≥ ≥

= − ≤ − >  

We have ( ) ( )( )1
, 1

1
r H rθ

θ
Ψ = ⋅ −

+
, 

( ) 2

1

1

2
H

m

m

θ
µ

θ
+ ⋅

=
⋅ ⋅

 and 

( ) ( )2 22 3

1 2 1

1 12

2 3 2
H

m mm

m m m

θ θ
σ

θ θ
+ ⋅ − 

= + ⋅ ⋅ ⋅ ⋅ 
, where Hµ  and 

2
Hσ  are the mean and the 

variance corresponding to H. The idea of Beekman-Bowers approximation is to replace 

( )H r  with a Γ -distribution function ( )G r , such that the two first moments of H 

and G should match. It this way, it is obtained the approximation formula 
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             ( ) ( )
( ) ( )

( )1
BB

1
, ,                         10

1

a x

br

r r x e dx
a

θ θ
θ

∞
− −Ψ ≈ Ψ = ⋅

+ ⋅Γ ∫  

where 
( )
( )

2
2

2 2
2 1 3 2

3 1

3 4 3

m
a

m m m m

θ

θ

+ ⋅
=

+ −
  and  

( )
1 2

2 2
2 1 3 2

6

3 4 3

m m
b

m m m m

θ

θ
=

+ −
. 

In the case of exponentially distributed claims we have 1,a =  
1

b
αθ

θ
=

+
 and 

( ) ( )1
BB

1
, ,

1

r

r e r

αθ
θθ θ

θ

−
+Ψ = ⋅ = Ψ

+
. 

  The simplest approximation, which only depends on some moments of F, seems to be 

the diffusion approximation: 

                             ( ) ( ) ( )
1

2

2

D, ,                                        11

m
r

mr r e
θ

θ θ
− ⋅ ⋅ ⋅

Ψ ≈ Ψ =  

As the Lundberg exponent R is small for small values of θ  we have 

( ) ( )2 32
1

2

m
h R m R R o R= ⋅ + ⋅ +   which leads to ( )21

2

2
m

R o
m

θ θ= ⋅ +   and 

( )
( ) ( )

( )21

2

2
1

CL 2

1
,

' 1

m
r o

mR rm
r e e

h R c o

θ θθ λ
θ

λ θ

− ⋅ ⋅ +
− ⋅⋅ ⋅

Ψ = ⋅ = ⋅
⋅ − +

. 

Thus the diffusion approximation may be regarded as a simplified Cramer-Lundberg 

approximation. Since the diffusion approximation is not very accurate, Grandell (2000) 

proposed to use for ( )h r  three moments. Thus ( )
2 2

31 31

3
2 2

4
2 ,

3

m mm
R o

m m

θ
θ θ= ⋅ − +  

( ) ( )
2

21 2

2
2 1 3

3

' 3 2

m m
o

h R c m m m

θ λ
θ

λ θ

⋅ ⋅
= +

⋅ − +
                 and  

                 ( ) ( )

2 2
1 1 3

3
2 2

4
22

32
G 2

2 1 3

3
,                          12

3 2

m m m
r

m mm
r e

m m m

θ
θ

θ
θ

 
− ⋅ − ⋅  
 Ψ = ⋅

+
 

Since ( )
2 2

21 31 1 2

3 2
2 2 2 1 3

4 6
2

3 3 2

m mm m m
o

m m m m m

θ θ
θ θ

θ
⋅ − = +

+
 the De Vylder approximation 

may be regarded as a simplified Grandell approximation. 

   Another approximation is obtained using Renyi’s theorem about the p-thinning of the 

point process. Thus  
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                                ( ) ( ) ( )
1

2

2

1
R

1
,                                           13

1

m r

m
r e

θ
θθ

θ

−
⋅ +Ψ = ⋅

+
 

Kalashnikov (1997) showed that ( ) ( )
( )
1 3

R 2
2

4
sup , ,

3 1r

m m
r r

m

θ
θ θ

θ
Ψ −Ψ ≤

+
 

for all 0.θ >  

3.   NUMERICAL RESULTS AND CONCLUSIONS 

  

In this section, our purpose is to compare the different approximations listed 

above, through a numerical example. We have to deal with the absolute error (δ ) and 

the relative error (ε ). Thus, for approximation AΨ  of Ψ  we have 

( ) ( ) ( )A A, , ,r r rδ θ θ θ= Ψ −Ψ   and  ( )
( )
( )

A
A

,
, .

,

r
r

r

δ θ
ε θ

θ
=

Ψ
 In order to compare 

an approximation AΨ  with another approximation BΨ , we will use 

( ) ( ) ( )AB A B, , ,r r rδ θ θ θ= Ψ −Ψ  and ( )
( )
( )

AB
AB

A

,
, .

,

r
r

r

δ θ
ε θ

θ
=

Ψ
 

Let ( )1 5
:
0.875 0.125

X  be a discrete random variable describing a claim (a loss) 

which takes the value of 1 monetary unit a high probability, and a relatively large value 

of 5 monetary units (in the case of a natural disaster, for example) with a relatively low 

probability. In the following, we list the approximations of ruin probability, ARP (see 

table 1-4). For graphic illustration (see figure 1-4) we compute 
6MARP 10 ARP= ⋅ , 

which is shown in figures. 
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Table 1 

ARP for 0.2θ =  

r     DVΨ     BBΨ     RΨ      DΨ  

 1 0.732078 0.733542 0.735414 0.860708 

 5 0.445179 0.444494 0.446051 0.472367 

10 0.239060 0.238377 0.238754 0.223130 

20 0.068937 0.068845 0.068480 0.049787 

30 0.019879 0.019917 0.019598 0.011109 

40 0.005732 0.005767 0.005615 0.002479 

50 0.001653 0.001670 0.001609 0.000553 

                                                                                                      
 

 

 
 

Figure 1 
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Table 2 

ARP for 0.3θ =  

r     DVΨ     BBΨ     RΨ      DΨ  

 1 0.643143 0.644393 0.646979 0.798516 

 5 0.323441 0.322402 0.323761 0.324652 

10 0.136979 0.136533 0.136268 0.105399 

20 0.024568 0.024610 0.024140 0.011109 

30 0.004406 0.004447 0.004276 0.001171 

40 0.000790 0.000805 0.000758 0.000123 

50 0.000142 0.000146 0.000134 0.000013 

  
 

 

                                                                                                           

  
 

Figure 2 
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Table 3 

ARP for 0.5θ =  

r     DVΨ     BBΨ     RΨ      DΨ  

 1 0.515174 0.516071 0.519201 0.687289 

 5 0.191486 0.190638 0.191003 0.153355 

10 0.055573 0.055507 0.054723 0.023518 

20 0.004681 0.004740 0.004492 0.000553 

30 0.000394 0.000407 0.000369 0.000013 

40 0.000033 0.000035 0.000030 0.3 610−⋅  

50 0.000003 0.000003 0.000002 0.7 810−⋅  

  
 

 

                                                                     

 
 

Figure 3 
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Table 4 

ARP for 0.8θ =  

r     DVΨ     BBΨ     RΨ      DΨ  

 1 0.394417 0.394444 0.398073 0.548812 

 5 0.105883 0.105335 0.104931 0.049787 

10 0.020461 0.020516 0.019819 0.002479 

20 0.000764 0.000789 0.000707 0.000006 

30 0.000029 0.000030 0.000025 0.15 710−⋅  

40 0.000001 0.000001 0.9 610−⋅  0.38 1010−⋅  

50 0.4 710−⋅  0.5 710−⋅  0.3 710−⋅  0.9 1310−⋅  

  
 

 

 

 
 

                                                                                        

Figure 4 
 

As we illustrate relative error (see tables 5-6) we compute 
5

,MERR1 10 DV BBε= ⋅ , 

5

,MERR2 10 DV Rε= ⋅  and 
5

,MERR3 10 DV Dε= ⋅  which are shown in figures 5-6. 
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                                                     Table 5 

DV,ε •  for 0.3θ =  

r 
DV,BBε  DV,Rε  DV,Dε  

1 0.00194 0.00596 0.24158 

5 0.00321 0.00099 0.00374 

10 0.00326 0.00519 0.23055 

20 0.00171 0.01742 0.54783 

30 0.00931 0.02951 0.73423 

40 0.01899 0.04051 0.84430 

50 0.02817 0.05634 0.90845 

   
                                                             

  
 

Figure 5 
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                                                     Table 6 

DV,ε •  for 0.5θ =  

r     DV,BBε     DV,Rε     DV,Dε  

 1 0.00174 0.00782 0.33409 

 5 0.00443 0.00252 0.19913 

10 0.00119 0.01529 0.57681 

20 0.01260 0.04038 0.88186 

30 0.03299 0.06345 0.96700 

40 0.06061 0.09090 0.99091 

50 0.03682 0.17200 0.99767 

  
 

 

 

 
 

Figure 6 
 

We consider that the approximations DVΨ , BBΨ  and RΨ  are better. They are maxim 

absolute errors up to 0.0015 for 0.2θ = , up to 0.0013 for 0.3θ = , up to 0.0009 for 

0.5θ =  and maxim relative errors up to 2.7% for 0.2θ = , up to 5.5% for 0.3θ =  

etc. We observe that the relative errors increase when initial capital increases while the 
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ruin probability decreases. The diffusion approximation is not very accurate because its 

relative errors are very high, up to 99% if 0.5θ = . For the repartition of claim, which 

we used there are no exact ruin probabilities available. 
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