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THE PARALLEL METHODS  FOR EVALUATING   

A  STOCHASTIC EQUATION 
 

 

Abstract. This paper is organised as follows: first, it is given a brief 

introduction of a simple model for European options price and next, the  parallel 

algorithms applied to this model. Considering the idea given by odd-even cyclic 

reduction, we start from an explicit scheme obtained by means of finite differences, 

and give an alternative of evaluating the approximate  values using an odd-even 

cyclic reduction which generates a logarithmic time of execution. Also, it is solved 

numerically using a parallelised domain decomposition method. The spatial 

domain is splitted among several processors, with data communicated among the 

processors using MPI. Interface conditions between domains are calculated using 

finite differences. For smaller sized  problems the communication time is much 

longer than the computation time. 

Key words: tridiagonal systems, odd-even cyclic reduction, forward Euler 

method.   
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1. Introduction 

 

In option pricing  the Black-Scholes model is based on the geometric 

Brownian motion model of asset prices: dXdtSdS σµ +=/  where µ and σ  are 

fixed values during the lifetime of the option. The result of the derivation is the 

Black-Scholes equation: 
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with the constraints: 
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where g , the terminal boundary condition, is the payoff at maturity of the option 

whose value will be given by V . We will assume that it does not pay dividends, 

and that both the risk-free rate( r ) and the underlying volatility(σ ) are constant 

during the life of the option (see [4]). Starting from analythical formulas  (1) and 

(2) we can use parallel Monte Carlo method to find an acuratte solution (see [8], 

[9]) or finite difference method and we can transform  (1) and (2) in a tridiagonal 

linear system. 

This system can be solved efficiently using sequential computers. It is 

difficult to solve it efficiently using parallel computers, because the communication 

takes a significant part of the total execution time. This, together with the fast 

progress that parallel computing has known in the last decades, has increased the 

interest and the efforts towards the development of fast and efficient algorithms of 

solving such systems (see [3], [4], [11]). Using multigrid methods (see [10]) or Fast 

Fourier  Transform (see [6], [7]) we obtain also a solution for a  linear system in an 

optimal parallel execution time.  

 

2. Parallel solution with odd-even cyclic method  

 

The recursive doubling algorithm as developed by Stone (see [5]) can be 

used to solve a tridiagonal linear system of size N  on a parallel computer with N  

processors  using ( )NO log  parallel arithmetic steps.  

Considering a mesh of equal S-steps of size δS and equal time-steps of size 

δt, with ( )21+N  points and using central differences for S  derivatives and 

backward differences for time derivatives, we get the explicit discretization of the 

Black-Scholes equation(see [2]): 
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where j indicates the moment of time. 
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Figure 1. Stencil of the explicit method for discretization Black Scholes  

equation 
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Relations (3) generate a system of equations of the following form: 

 

                                        dAx =                                                                     (4) 

 

where  A  is a (nonsymmetric) tridiagonal  matrix of order 1+N  , x  and d are 

vectors of  dimension  1+N  
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Detailing (4) we get 
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which requires a time of execution of ( )2NO . Then we get the following: 

Theorem. Using an odd-even cyclic reduction  techinque, equation (3) can be 

computed in a [ ]( )jNO 2log  time. 

Proof. Rewriting (3) for one single value i, and replacing 
j
iV using the same 

connection among values, we get: 
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or, making some computations: 
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So, for i given, value 
1+j

iV  can be computed by using the values of two 

previous moments of time. Repeating the same substitution, we finally get: 
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where the final coefficients are denoted by iω  and 
1
iω , ji ,0= . 

Using the double recursive technique (see [3]), in [ ]j2log  parallel steps, the 

values in paranthesis are computed. Finally, for Ni ,,2,1 L= , the total execution 

time is [ ]( )jNO 2log . 

On a parallel computer with Np <  processors, the version of the recursive 

doubling algorithm for solving a tridiagonal linear system (4) requires 









+ p

p

N
O log  parallel arithmetic steps (see [3]). 

 

3. Parallel solution  with   forward Euler  method 

 

3.1. Deriving sequential algorithm. Analytic solutions to the PDE (1) 

depend upon the observation that it can be transformed into the diffusion equation 

in a function u(x,τ ): 

                                        
2

2

x

uu

∂

∂
∂τ
∂

=                                                                    (6) 

with  the constraints 

                     ( ) [ ] )()0,(;,0;, xfxux f =∈+∞∞−∈ ττ                                     (7) 

 

where f , the initial boundary condition, is g  from the original formulation of the 

problem suitably transformed. Using a change of variables (8) that completely 

transforms (1) and (2) into (6) and (7):  
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 and K  is an arbitrary positive constant, 

usually chosen to be the strike price of the option. Once the problem has been 

transformed into (6) and (7), we use algebraic methods to solve it numerically.  

This involves splitting the finite time interval [ ]fτ,0  into M  equal 

subintervals of length τ∆ , resulting in a discretized time domain with  1+M  

nodes. We also split the spatial dimension into equal subintervals: N  intervals of 

length x∆ , giving rise to a spatial discretization with 1+N nodes. 

Since the spatial domain is actually infinite, we must choose 

endpoints: Lx (Left) and Rx (Right) at which ( )tSV , ) is known to an acceptable 

degree of accuracy in advance. These values become a priori side boundary 
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conditions. The result is a rectangular domain of ( )( )11 ++ MN  nodes, of which 

the nodes at 0=τ  and those at Lxx =  and Rxx =  have known u -values. The 

algorithm will step through this domain in τ, solving for the unknown u-values at 
the interior nodes at each time step, and after M  iterations will produce the u-

values at fτ , corresponding to the time at which we wish to price the option(detail 

see in [2]). The terminal boundary condition for a call option 

is: )0,max(),( KSTSV −= , under the change of variables (8), this becomes the 

initial boundary condition: 

                                               axx eexu )0,1max()0,( −=                                     (9) 

We make the assumption that the S-value corresponding to Lx  is sufficiently 

far out of the money ([4]) that the probability that it expires in the money is 0. 

Thus, the left-side boundary condition is simply: 

                                               0),( =τLxu                                                           (10) 

We make the assumption that the S-value corresponding to Rx  is sufficiently 

far in the money that the probability that it expires out of the money is 0 ([4]). It is 

easy to see that a put under this assumption struck at the same K  has value 0, and 

thus from put-call parity ([4]) the value of the call is simply that of a forward 

contract struck at K : 
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Using a change of variables (8) and with above observations (10, 11, 12 ) the 

economic model (1) and (2) is (6), (9),(10) and (11). 

We will a fully discrete method(see Figure 1). So we have to substitute all 

derivation with  finite differences.  
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We can rearrange this equation so that we get an equation for 
1+j

iu  
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The steps for finding the solution are outlined above; pseudocode is provided 

below to illustrate the method thoroughly. This pseudocode imagines that u-values 

are stored in a matrix U   with 1+N  rows, indexed from Ni ,,0 L= , 

corresponding to the spatial nodes, and 1+M  columns, indexed 

from Mj ,,0 L= , corresponding to the time nodes. Under this arrangement, we 
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use the boundary conditions above to populate the column vector at 0=i  (initial 

boundary condition) and the row vectors at 0=j  (boundary condition at Lx ) 

and Nj =  (boundary condition at Rx ). 

This seems to be naturally clear, because the value of  an option at the i th 
point at the next step of time will be  affected by the value of option of his 

neighbors and his own value of option. From the initial conditions (10) we get the 

values for ( ) axx
i eeu 0,1max0 −=  for Ni ,,2,1 L= . This is the starting point from 

which we can march the approximate solution forward step by step in time. The 

boundary conditions providing the necessary values (from (12) and (13) ) 

10 cu k = ( 0),( =τLxu ) and  21 cuN =+   ( 
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This time stepping scheme is explicit because the approximate solution 

values at any given time step depend only on values that are available from the 

previous time step. The stencil is shown in Figure 1. 

Note. The local truncation error of this scheme is ( ) ( )( )2
xOO ∆+∆τ , this 

means it is of first order in time and of second order in space. This scheme is 

simply Euler’s method applied to semi-discrete system of ODEs derived for this 

problem using finite difference spatial discretization. The stability region of this 

method is definit by 
( )
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  where 
( )2x∆

∆
=

τ
α  is Courant 

constant .  

Finally, pseudocode for sequential  implementation is: 

 

 Input data: MDMTrKS ,,,,,,,,0 ασ  

Step 1 // Computation domain and calculate relevant constant                                                         

Step 2: Boundary conditions 

              // Declare matrix U’s dimensions and populate its edges  

              // with boundary condition information 

                         for i=0 to N do     // initial boundary condition    

                            xi=xleft+i.∆x ; U(i,0)=max(exp(xi)-1, 0).exp(axi) 
                         end for 

                         for j=1 to M do  // side boundary condition  

                           U(0,j)=0;  τj=j∆τ 
                            U(N,j)=(exp(xright)-exp(-2rτj/σ

2
))exp(axright+bτj) 

                       end for 

            Step 3: //Forward Euler solution 

             for j=1 to M do 

                for i=1 to N-1 do 
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               end for //i 

            end for //j 

         // Calculate V, the value of the option at time 0 and the current spot 

       Output data:V=K.U(Nleft,M)exp(-ax0-bτf) 
 

So the time size depends on x∆ , if x∆  is small τ∆  becomes very small. 

Therefore exists various implicit methods which would be unconditional stable. 

But we will use this explicit method, as we will also parallelize this. 

3.2.Parallel  Implementation. We implemented the method in C++ with 

MPI ( see [1], [4]). The algorithm is relatively simple. We have only to calculate  

( ) ( ) Niuuuu
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+ αα  for each node.  

At the beginning, the nodes are uniformly distributed to the available processors. 

So each processor is responsible for a disjunctive set of nodes. For each node the 

value for the next step of time is calculated using the values of its neighbors and  

there must be some communication between the different processors.  We use 

Jacobi method to solve such types of systems of equations (13). A section of 

parallel program is given in Figure 4 and  the decomposition domain, calculation 

and changes of the new values among processes are shown in Figure 2.  Each 

processor  has two additional stores where the values of the neighbors will be 

saved. These values have to be updated after each step. At this equation is 

parabolic the solution converge to a stable state. So we have to include a 

convergence test. If the result  doesn’t change or it changes with only a small 

amount, the iteration will stop. In order to solve this we need some global 

communication. 
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Figure 2. Decomposition domain, calculating and changing 

the new values among processes 

 

Each processor send the norm of difference between the previous and the 

current solution to all others and sum all received norms. This will be done with 

MPI_Allreduce at each calculation step. At the end our calculation the results 

will gathered in to processor zero, and printed to stdout. 

3.3. Results. The program was tested using a Windows cluster with 12× 1.73GHz 
processors. The execution time of a parallel program for different dimensions of 

discretization matrix is given in Table 1.  First the program is run on one processor 

then on two, four, eight and finally on 12 processors. Figure 3 shows   that the 

speedup is nearly linear if the problem size is big. For smaller sized problems, the 

communication time is dominant in comparison with the computation time. That 

means that if there are too many processors involved, they spend more time to 

transfer the data to their neighbors than to calculate the next step. We also  see that 

for a problem size of 5.10
4
   working with eight processors would be optimal and 

12 would be too much. 
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Processors 

Matrix size 
 

1 

 

2 

 

4 

 

8 

 

12 

initialization 0.0385 0.4270 1.0514 2.2763 4.25521 

5.10
4
 18.646 9.852 4.742 2.920 31.237 

10
5
 37.272 19.207 12.195 5.170 14.137 

2.10
5
 73.365 37.557 21.360 12.484 11.567 

5.10
5
 183.181 92.201 50.176 26.687 20.690 

10
6
 368.410 186.145 99.790 50.327 30.868 

Table 1. Execution time to a parallel program for different dimensions  

of discretization matrix  

 
Figure 3. Parallel execution time decrease once with 

increasing the number of processors 
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int Jacobi_method(int p, int id, int my_rows, 

             double **u, double **w,double alfa) 

{double diff, global_diff;int iter=0,i,j; 
 MPI_Status status;for(;;){ 

  if(id>0) 
   MPI_Send(U[1],N,MPI_DOUBLE,id-

1,0,MPI_COMM_WORLD); 
   if(id<p-1){ MPI_Send(U[my_rows-
2],M+1,MPI_DOUBLE, 

                         id+1,0,MPI_COMM_WORLD); 
          MPI_Recv(U[my_rows-

1],M+1,MPI_DOUBLE, 

                     

id+1,0,MPI_COMM_WORLD,&status);} 
   if(id>0) MPI_Recv(U[0],M+1,MPI_DOUBLE,id-1,0, 
                             

MPI_COMM_WORLD,&status); 
   diff=0.0; beta=1-2*alfa; 
   for(i=1;i<my_rows-1;i++) for(j=1;j<=M;j++) 

    {U_new[i][j]=alfa*U[i-1][j-1]+beta*U[i][j-1] 
                +alfa*U[i+1][j-1]; 

     if(fabs(U_new[i][j]-U[i][j])>diff) 
       diff=fabs(U_new[i][j]-U[i][j]);} 
  if(diff<=EPSILON)break; 

  for(i=1;i<=my_rows-1;i++) 
   for(j=1;j<=M;j++) U[i][j]=U_new[i][j]; 

MPI_Allreduce(&diff,&global_diff,1,MPI_DOUBLE, 
               MPI_MAX, MPI_COMM_WORLD); 

  if(global_diff<=EPSILON)break; 

  iter++;} 
return iter;} 

Figure 4. A section of parallel program what implemented 

forward Euler  method for solving Black Scholes equation 
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