
Professor Ion SMEUREANU, PhD

Department of Economic Informatics

The Bucharest Academy of Economic Studies

Dumitru FANACHE, PhD

Department of mathematics

“Valahia” University, Targoviste

THE PARALLEL METHODS FOR EVALUATING

A STOCHASTIC EQUATION

Abstract. This paper is organised as follows: first, it is given a brief

introduction of a simple model for European options price and next, the parallel

algorithms applied to this model. Considering the idea given by odd-even cyclic

reduction, we start from an explicit scheme obtained by means of finite differences,

and give an alternative of evaluating the approximate values using an odd-even

cyclic reduction which generates a logarithmic time of execution. Also, it is solved

numerically using a parallelised domain decomposition method. The spatial

domain is splitted among several processors, with data communicated among the

processors using MPI. Interface conditions between domains are calculated using

finite differences. For smaller sized problems the communication time is much

longer than the computation time.

Key words: tridiagonal systems, odd-even cyclic reduction, forward Euler

method.

JEL Classification: C 200.

1. Introduction

In option pricing the Black-Scholes model is based on the geometric

Brownian motion model of asset prices: dXdtSdS σµ +=/ where µ and σ are

fixed values during the lifetime of the option. The result of the derivation is the

Black-Scholes equation:

 0....
2

1
2

2
22 =−

∂
∂

−
∂

∂
+

∂
∂

Vr
S

V
Sr

S

V
S

t

V
σ (1)

with the constraints:

 [) [])(),(;,0;,0 SgTSVTtS =∈+∞∈ (2)

Ion Smeureanu, Dumitru Fanache

__

where g , the terminal boundary condition, is the payoff at maturity of the option

whose value will be given by V . We will assume that it does not pay dividends,

and that both the risk-free rate(r) and the underlying volatility(σ) are constant

during the life of the option (see [4]). Starting from analythical formulas (1) and

(2) we can use parallel Monte Carlo method to find an acuratte solution (see [8],

[9]) or finite difference method and we can transform (1) and (2) in a tridiagonal

linear system.

This system can be solved efficiently using sequential computers. It is

difficult to solve it efficiently using parallel computers, because the communication

takes a significant part of the total execution time. This, together with the fast

progress that parallel computing has known in the last decades, has increased the

interest and the efforts towards the development of fast and efficient algorithms of

solving such systems (see [3], [4], [11]). Using multigrid methods (see [10]) or Fast

Fourier Transform (see [6], [7]) we obtain also a solution for a linear system in an

optimal parallel execution time.

2. Parallel solution with odd-even cyclic method

The recursive doubling algorithm as developed by Stone (see [5]) can be

used to solve a tridiagonal linear system of size N on a parallel computer with N

processors using ()NO log parallel arithmetic steps.

Considering a mesh of equal S-steps of size δS and equal time-steps of size

δt, with ()21+N points and using central differences for S derivatives and

backward differences for time derivatives, we get the explicit discretization of the

Black-Scholes equation(see [2]):

NiVVcVbVa

VVcVb

j
i

j
ii

j
ii

j
ii

jjj

,,2,1,
1

11

01000

L==++

=+
+

+−

 (3)

where j indicates the moment of time.

()()
()

()() tiSric

trib

tiSria

i

i

i

δσ

δσ

δσ

..
2

1

;..1

;..
2

1

0
22

22

0
22

−+−=

++=

−−−=

Figure 1. Stencil of the explicit method for discretization Black Scholes

equation

j

j-1

j+1

i-1 i i+1

The Parallel Methods for Evaluating a Stochastic Equation

__

Relations (3) generate a system of equations of the following form:

 dAx = (4)

where A is a (nonsymmetric) tridiagonal matrix of order 1+N , x and d are

vectors of dimension 1+N

() ()
() ()11

1
1

1
1

0110

110110

,,,,,,,,

,,,,,,,,

++
−

++
−

−−

==

==

j
N

j
N

jjT
NN

j
N

j
N

jjT
N

VVVVddddd

VVVVxxxxx N

LL

LL

Detailing (4) we get























=























⋅























+

+
−

+

+

−−
1

1
1

1
1

1
0

1

1

0

1

2

111

00

00

00

0

00

j
N

j
N

j

j

j
N

j
N

j

j

NN

N

V

V

V

V

V

V

V

V

ba

c

a

cba

cb

MM

L

OOMM

OO

L

L

 (5)

which requires a time of execution of ()2NO . Then we get the following:

Theorem. Using an odd-even cyclic reduction techinque, equation (3) can be

computed in a []()jNO 2log time.

Proof. Rewriting (3) for one single value i, and replacing
j
iV using the same

connection among values, we get:

() 1
1

1
1

11
11

+
+

−
+

−−
−− =++++ j

i
j
ii

j
ii

j
ii

j
iii

j
ii VVcVcVbVabVa

or, making some computations:

() () 1
1

1
1

121
11

+
+

−
+

−−
−− =++++ j

i
j
i

j
iii

j
ii

j
ii

j
ii VVVbcVbVbVa

So, for i given, value
1+j

iV can be computed by using the values of two

previous moments of time. Repeating the same substitution, we finally get:

() ()

() 10
1

1
0

1
1

1
11

1

00
10

1
111

+
−

−
−−−

−
−

−−−

=+++

+++++

j
ii

j
ij

j
iji

i
j

ii
j
ij

j
iji

VVVVc

VbVVVa

ωωω

ωωω

L

L

Ion Smeureanu, Dumitru Fanache

__

where the final coefficients are denoted by iω and
1
iω , ji ,0= .

Using the double recursive technique (see [3]), in []j2log parallel steps, the

values in paranthesis are computed. Finally, for Ni ,,2,1 L= , the total execution

time is []()jNO 2log .

On a parallel computer with Np < processors, the version of the recursive

doubling algorithm for solving a tridiagonal linear system (4) requires









+ p

p

N
O log parallel arithmetic steps (see [3]).

3. Parallel solution with forward Euler method

3.1. Deriving sequential algorithm. Analytic solutions to the PDE (1)

depend upon the observation that it can be transformed into the diffusion equation

in a function u(x,τ):

2

2

x

uu

∂

∂
∂τ
∂

= (6)

with the constraints

 () [])()0,(;,0;, xfxux f =∈+∞∞−∈ ττ (7)

where f , the initial boundary condition, is g from the original formulation of the

problem suitably transformed. Using a change of variables (8) that completely

transforms (1) and (2) into (6) and (7):

 ττ
σ

τ baxe
K

tSV
xutT

K

S
x +=−=







=
),(

),();(
2

;ln
2

 (8)

where:
2

22

2

2
;2 a

r
b

r

a +=
−

=
σσ

σ

 and K is an arbitrary positive constant,

usually chosen to be the strike price of the option. Once the problem has been

transformed into (6) and (7), we use algebraic methods to solve it numerically.

This involves splitting the finite time interval []fτ,0 into M equal

subintervals of length τ∆ , resulting in a discretized time domain with 1+M

nodes. We also split the spatial dimension into equal subintervals: N intervals of

length x∆ , giving rise to a spatial discretization with 1+N nodes.

Since the spatial domain is actually infinite, we must choose

endpoints: Lx (Left) and Rx (Right) at which ()tSV ,) is known to an acceptable

degree of accuracy in advance. These values become a priori side boundary

The Parallel Methods for Evaluating a Stochastic Equation

__

conditions. The result is a rectangular domain of ()()11 ++ MN nodes, of which

the nodes at 0=τ and those at Lxx = and Rxx = have known u -values. The

algorithm will step through this domain in τ, solving for the unknown u-values at
the interior nodes at each time step, and after M iterations will produce the u-

values at fτ , corresponding to the time at which we wish to price the option(detail

see in [2]). The terminal boundary condition for a call option

is:)0,max(),(KSTSV −= , under the change of variables (8), this becomes the

initial boundary condition:

 axx eexu)0,1max()0,(−= (9)

We make the assumption that the S-value corresponding to Lx is sufficiently

far out of the money ([4]) that the probability that it expires in the money is 0.

Thus, the left-side boundary condition is simply:

 0),(=τLxu (10)

We make the assumption that the S-value corresponding to Rx is sufficiently

far in the money that the probability that it expires out of the money is 0 ([4]). It is

easy to see that a put under this assumption struck at the same K has value 0, and

thus from put-call parity ([4]) the value of the call is simply that of a forward

contract struck at K :

 



















−=

+
−

τσ

τ

τ
bax

r

x

R
RR eeexu

2

2

),((11)

Using a change of variables (8) and with above observations (10, 11, 12) the

economic model (1) and (2) is (6), (9),(10) and (11).

We will a fully discrete method(see Figure 1). So we have to substitute all

derivation with finite differences.

()

Ni
x

uuuuu
j
i

j
i

j
i

j
i

j
i ,,2,1

2

2

11
1

L=
∆

+−
=

∆

− −+
+

τ
 (12)

We can rearrange this equation so that we get an equation for
1+j

iu

 () () Niuuuu
j
i

j
i

j
i

j
i ,,2,121 11

1
L=++−= +−

+ αα (13)

The steps for finding the solution are outlined above; pseudocode is provided

below to illustrate the method thoroughly. This pseudocode imagines that u-values

are stored in a matrix U with 1+N rows, indexed from Ni ,,0 L= ,

corresponding to the spatial nodes, and 1+M columns, indexed

from Mj ,,0 L= , corresponding to the time nodes. Under this arrangement, we

Ion Smeureanu, Dumitru Fanache

__

use the boundary conditions above to populate the column vector at 0=i (initial

boundary condition) and the row vectors at 0=j (boundary condition at Lx)

and Nj = (boundary condition at Rx).

This seems to be naturally clear, because the value of an option at the i th
point at the next step of time will be affected by the value of option of his

neighbors and his own value of option. From the initial conditions (10) we get the

values for () axx
i eeu 0,1max0 −= for Ni ,,2,1 L= . This is the starting point from

which we can march the approximate solution forward step by step in time. The

boundary conditions providing the necessary values (from (12) and (13))

10 cu k = (0),(=τLxu) and 21 cuN =+ (



















−=

+
−

τσ

τ

τ
bax

r

x

R
RR eeexu

2

2

),().

This time stepping scheme is explicit because the approximate solution

values at any given time step depend only on values that are available from the

previous time step. The stencil is shown in Figure 1.

Note. The local truncation error of this scheme is () ()()2
xOO ∆+∆τ , this

means it is of first order in time and of second order in space. This scheme is

simply Euler’s method applied to semi-discrete system of ODEs derived for this

problem using finite difference spatial discretization. The stability region of this

method is definit by
()









≤

∆
≤∆

2

1
or

2

2

ατ
x

 where
()2x∆

∆
=

τ
α is Courant

constant .

Finally, pseudocode for sequential implementation is:

 Input data: MDMTrKS ,,,,,,,,0 ασ

Step 1 // Computation domain and calculate relevant constant

Step 2: Boundary conditions

 // Declare matrix U’s dimensions and populate its edges

 // with boundary condition information

 for i=0 to N do // initial boundary condition

 xi=xleft+i.∆x ; U(i,0)=max(exp(xi)-1, 0).exp(axi)
 end for

 for j=1 to M do // side boundary condition

 U(0,j)=0; τj=j∆τ
 U(N,j)=(exp(xright)-exp(-2rτj/σ

2
))exp(axright+bτj)

 end for

 Step 3: //Forward Euler solution

 for j=1 to M do

 for i=1 to N-1 do

The Parallel Methods for Evaluating a Stochastic Equation

__

 () ()j
i

j
i

j
i

j
i uuuu 11

1
21 +−

+ ++−= αα

 end for //i

 end for //j

 // Calculate V, the value of the option at time 0 and the current spot

 Output data:V=K.U(Nleft,M)exp(-ax0-bτf)

So the time size depends on x∆ , if x∆ is small τ∆ becomes very small.

Therefore exists various implicit methods which would be unconditional stable.

But we will use this explicit method, as we will also parallelize this.

3.2.Parallel Implementation. We implemented the method in C++ with

MPI (see [1], [4]). The algorithm is relatively simple. We have only to calculate

() () Niuuuu
j
i

j
i

j
i

j
i ,,2,121 11

1
L=++−= +−

+ αα for each node.

At the beginning, the nodes are uniformly distributed to the available processors.

So each processor is responsible for a disjunctive set of nodes. For each node the

value for the next step of time is calculated using the values of its neighbors and

there must be some communication between the different processors. We use

Jacobi method to solve such types of systems of equations (13). A section of

parallel program is given in Figure 4 and the decomposition domain, calculation

and changes of the new values among processes are shown in Figure 2. Each

processor has two additional stores where the values of the neighbors will be

saved. These values have to be updated after each step. At this equation is

parabolic the solution converge to a stable state. So we have to include a

convergence test. If the result doesn’t change or it changes with only a small

amount, the iteration will stop. In order to solve this we need some global

communication.

Ion Smeureanu, Dumitru Fanache

__

Figure 2. Decomposition domain, calculating and changing

the new values among processes

Each processor send the norm of difference between the previous and the

current solution to all others and sum all received norms. This will be done with

MPI_Allreduce at each calculation step. At the end our calculation the results

will gathered in to processor zero, and printed to stdout.

3.3. Results. The program was tested using a Windows cluster with 12× 1.73GHz
processors. The execution time of a parallel program for different dimensions of

discretization matrix is given in Table 1. First the program is run on one processor

then on two, four, eight and finally on 12 processors. Figure 3 shows that the

speedup is nearly linear if the problem size is big. For smaller sized problems, the

communication time is dominant in comparison with the computation time. That

means that if there are too many processors involved, they spend more time to

transfer the data to their neighbors than to calculate the next step. We also see that

for a problem size of 5.10
4
 working with eight processors would be optimal and

12 would be too much.

U0

U1

…………

Umy-rows-2

Umy_rows-1

time

MPI_Send(U1,M,…,id-1,...)

MPI_Send(Umy_rows-2,M,…,id+1,…)

id

id-1

id+1

U0

U1

…………

Umy-rows-2

Umy_rows-1

U0

U1

…………

Umy-rows-2

Umy_rows-1

MPI_Recv(Umy_rows-1, M,…,id+1,…)

M+1 elements of row

boundary of domain

MPI_Recv(U0, M,...,id-1,…)

current processor

The Parallel Methods for Evaluating a Stochastic Equation

__

Processors

Matrix size

1

2

4

8

12

initialization 0.0385 0.4270 1.0514 2.2763 4.25521

5.10
4
 18.646 9.852 4.742 2.920 31.237

10
5
 37.272 19.207 12.195 5.170 14.137

2.10
5
 73.365 37.557 21.360 12.484 11.567

5.10
5
 183.181 92.201 50.176 26.687 20.690

10
6
 368.410 186.145 99.790 50.327 30.868

Table 1. Execution time to a parallel program for different dimensions

of discretization matrix

Figure 3. Parallel execution time decrease once with

increasing the number of processors

Ion Smeureanu, Dumitru Fanache

__
int Jacobi_method(int p, int id, int my_rows,

 double **u, double **w,double alfa)

{double diff, global_diff;int iter=0,i,j;
 MPI_Status status;for(;;){

 if(id>0)
 MPI_Send(U[1],N,MPI_DOUBLE,id-

1,0,MPI_COMM_WORLD);
 if(id<p-1){ MPI_Send(U[my_rows-
2],M+1,MPI_DOUBLE,

 id+1,0,MPI_COMM_WORLD);
 MPI_Recv(U[my_rows-

1],M+1,MPI_DOUBLE,

id+1,0,MPI_COMM_WORLD,&status);}
 if(id>0) MPI_Recv(U[0],M+1,MPI_DOUBLE,id-1,0,

MPI_COMM_WORLD,&status);
 diff=0.0; beta=1-2*alfa;
 for(i=1;i<my_rows-1;i++) for(j=1;j<=M;j++)

 {U_new[i][j]=alfa*U[i-1][j-1]+beta*U[i][j-1]
 +alfa*U[i+1][j-1];

 if(fabs(U_new[i][j]-U[i][j])>diff)
 diff=fabs(U_new[i][j]-U[i][j]);}
 if(diff<=EPSILON)break;

 for(i=1;i<=my_rows-1;i++)
 for(j=1;j<=M;j++) U[i][j]=U_new[i][j];

MPI_Allreduce(&diff,&global_diff,1,MPI_DOUBLE,
 MPI_MAX, MPI_COMM_WORLD);

 if(global_diff<=EPSILON)break;

 iter++;}
return iter;}

Figure 4. A section of parallel program what implemented

forward Euler method for solving Black Scholes equation

REFERENCES

[1] Michael J. Quinn (2004), Parallel Programming in C with MPI and

OpenMP, McGraw-Hill;

[2] Ion Smeureanu, Dumitru Fanache (2008), The Cyclic Odd-Even Reduction

Method Applied in Mathematical Finance, Journal of Economics Informatics

3(47), ISSN 1842-8088 pp. 115-119;

[3]Omer Egecioglu, Cetin K. Koc, Alan J. Laub (1988), A Recursive Doubling

Algorithm for Solution of Tridiagonal Systems on Hypercube Multiprocessors,

The Third Conference on Hypercube Concurrent Computers and Aplications,

California Institute of Technology, Pasadena, California, January 19-20;

The Parallel Methods for Evaluating a Stochastic Equation

__

[4] Koc M.B. Boztsun, I. Boztsun D. (2003), On Numerical Solution of Black-

Scholes Equation, International Workshop on Mesh Free Methods;

[5] Harold Stone (1975), Parallel Tridiagonal Equation Solvers, ACM

Transactions on Mathematical Software,V.1 N.4 pg.289-307, Dec.;

[6] Sajib Barua (2004), Fast Fourier Transform for Option Pricing, Improved

Mathematical Modeling and Design of an Efficient Parallel Algorithm,

Winnipeg, Manitoba, Canada;

[7] A. Cerny (2004), Introduction to Fast Fourier Transform in Finance,

Imperial College London, Tanaka Business School,)(a.cerny@imperial.ac.uk);

[8] Bouchard, Bruno (2006), Méthodes de Monte Carlo en Finance, Notes de

cours, Université Paris VI LPMA, et CREST, May;

[9] Glasserman, P (2003), Monte Carlo Methods in Financial Engineering,

Springer, Berlin;

[10] Darae Jeong, Junseok Kim (2007), An Accurate and Efficient Numerical

Method for the Black Scholes Equation, Department of Mathematics, Korea

University;

[11] Gerit van Wyk (2007), Numerical Methods for Valuing Financial Options,

Durham University, April.

