
Lecturer Md. SIRAJ-UD-DOULAH, PhD Candidate
 

Department of Statistics, Begum Rokeya University 

Rangpur, Bangladesh  

Assistant Professor Sohel RANA, PhD*  

Email: srana_stat@yahoo.com 

Professor Habshah MIDI, PhD
 

Department of Mathematics, Faculty of Science    

Institute for Mathematical Research  

University Putra Malaysia 

Professor A.H.M. Rahmatullah IMON, PhD 

Department of Mathematical Sciences  

Ball State University, Muncie, U.S.A. 

 
 

 

NEW ROBUST TESTS FOR THE DETECTION OF ARCH EFFECT  

 
 

 

 Abstract. ARCH model has become very popular because it enables the 

econometricians to estimate the variance of a series at a particular point of time. 

Although a number of tests are available in the literature, there is evidence that they 

fail to detect ARCH effect especially when outliers are present in the data. In this 

article, we proposed two new tests for the detection of ARCH effect of innovation 

based on simple Chi-square ( 2χ ) and Student’s -t tests and call them the Arch Test- 

Chi-square based (Arch
2χ ) and Arch Test- Student’s –t based (Arch Student’s –t), 

respectively. The performance of the proposed tests is examined by real life data as 

well as Monte Carlo simulations.  
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1. INTRODUCTION 
 

It is conventional to note that the problem of heteroscedasticity is often associated with 

cross-sectional data; whereas econometrics or time series are usually studied in the 

context of homoscedastic processes. On the other hand, autocorrelation is a common 

feature of time series data. In analyses of macroeconomic data, Engel (1982, 1983) 

found the evidence that for some kinds of data, the innovation variances in time series 
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models were less stable than usually assumed. To handle this situation, Engel’s results 

suggested that in models of inflation, large and small forecast innovations appeared to 

occur in clusters, suggesting a form of heteroscedasticity in which the variance of the 

forecast innovation depends on the size of the previous innovation. He suggested the 

autoregressive, conditionally heteroscedastic, or ARCH, model as an alternative to the 

usual time series process. More recent studies of financial markets suggest that the 

phenomenon is quite common. Different aspects of ARCH models are studied by 

many authors in the literatures. The ARCH model has proven to be useful in studying 

the volatility of inflation (Coulson and Robins 1985), the term structure of interest 

rates (Engle et al. 1985), the volatility of stock market returns (Engle et al. 1987) and 

the behaviour of foreign exchange markets (Domowitz & Hakkio 1985; Bollerslev & 

Ghysels 1996). A large body of literature (Campbell et al. 1997; Johnston & Dinardo 

1997; Enders 2008; Greene 2008; Gujarati 2010) are now available to make valid 

inferential statements in the presence of ARCH. In detecting an ARCH effect in time 

series data, it is conventional to use the Lagrange Multiplier (LM) test mainly because 

of the tradition and ease of computation. In identifying an ARCH effect by LM test we 

often observe that this test is affected by unusual observations. Imon et al. 2007 

mentioned that the existence of a set of observations, called ARCH-influential, whose 

presence or absence may cause a huge interpretative problem in understanding the 

ARCH effect of the data. They presented several examples to demonstrate the fact that 

outliers are the prime source of ARCH-influential observations in time series data. 

Moreover, they suggested Modified Breusch Pagan Goldfrey (MBPG) test for the 

detection of ARCH by robustifying the conventional Breusch Pagan Goldfrey test. As 

expected, this test is more robust than the existing ones. The main limitation of this test 

is based on the auxiliary variables which make the test procedure impractical in many 

cases. It motivates us to develop new alternative tests for the detection of ARCH effect 

in the presence of outliers. Most of the ARCH detection tests are based on the mean 

squared error. Evidence shows that the mean squared error is more sensitive to outliers 

than mean absolute deviation of error (Maronna et al. 2006). In this respect, we 

proposed the tests based on the mean absolute deviation of error are likely to be less 

sensitive to outliers.   

 

The key idea of ARCH is that the variance of u  at time t  (= 2

tσ ) depends on the size 

of the square innovation term at time ( 1−t ), that is, on 2

1tu − . To be more specific, let 

us consider the regression model: 

1 2 1t t tY Y uβ β −= + +                                                                                                     (1) 

and assume that conditional on the information available at time ( 1−t ), the innovation 

term is distributed as  
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 ( )2

0 1 1~ 0,t tu N uα α −
 +                                                                                              (2) 

Since in (2) the variance of tu  depends on the square innovation term in the previous 

time period, it is called an ARCH(1) process. But the generalize form of ARCH(p) 

process can be written as  
22

110

2)var( ptpttt uuu −− +++== ααασ L                                                               (3) 

 

Assuming an Auto Regressive (AR) process with Gaussian noise in equation (3), Fox 

(1972) at first consider outliers within time series. There are two categories of outliers 

are defined broadly: “Additive Outliers (AO)” where a single observation is affected 

and “Innovation Outliers (IO)” where an unusual observation in the generating process 

affects all later observations and the subsequent series. In this article, we suggest that 

innovations based on the ordinary least square (OLS) fit of the model should be more 

convincing and reliable in a diagnostic test for detection of the ARCH effect of the 

innovation in time series data. 

 

2. PROPOSED ARCH TESTS 
 

If X be an ( )2,σµN  variable, then the mean absolute deviation d is given by 

T

X

d

T

t

t∑
=

−
= 1

|| µ
                                                                                                      (4) 

Stuart & Odd 1987 showed that 

( )
π
σ

π
σ

222
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and  ( ) 
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
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Using (5) they also showed that  

( ) ( ) ( )
T

T
xxEdE t π

σ 12
||

2 −
=−=  as ∞→T                                                       (7) 

Let us consider the multiple linear regression model 

UXY += β                                                                                                                 (8) 

where, Y  is a ( )1×T  vector of the responses, X  is a ( )pT ×  matrix of the levels of 

the regressor variables, β  is a ( )1×p  vector of the regression coefficients, and U  is 
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a ( )1×T  vector of the random innovations. We also assume that ( )INIDU 2,0~ σ . 

Now we consider a mean deviation about mean of the innovation which is given by 

T

u

d

T

t

t∑
== 1

||

                                                                                                              (9) 

Here we ignore u  as E(u) = 0. In linear regression model, (7) can be written as 

( ) ( )
T

pT
dE

π
σ −

=
22

                                                                                              (10) 

From (9), it is easy to show that   Tdu
T

t

t =∑
=1

||  

Taking mathematical expectation on both sides and using (10), we obtain 
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Again, using (6), we obtain 
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as ∞→T . 

Now, we want to test the hypothesis: 
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                                   :0H There is no ARCH effect 

                                   01 : HH is not true 

Testing of hypothesis in general linear regression model, we use 
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Using equation (13), we obtain from (14) 
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which is our required propose
2χ test statistic for testing the ARCH effect.  

Again using equation (13), our required statistic for the propose t test obtained from 

(15) is 
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3. EXAMPLE  
 

Here, we consider a real life data. The data set consists of the monthly U.S. air 

passenger miles (in millions) for the period January 1960 to December 1977 (T=216), 

which is taken from Upender 2008. At first, we check outliers by the robust LTS 

method. This method can detect 9 outliers (case 128, 140, 152, 164, 176, 188, 200, 205 

and 212). Next we check the order of ARCH and compute Lagrange multiplier and 

modified BPG tests together with our proposed 
2χ -based and t-based tests. The 

results are shown in Table 1. Values in parenthesis for each test in the tables indicate 

the number of lag.  

 

TABLE 1 
 

ARCH test results for the monthly U.S. air passenger miles (in millions)  

data with and without Outliers 

Value of statistic  Critical value (5%)  p-value  

Test With 

Outlier 

Without 

Outlier 

 With 

Outlier 

Without 

Outlier 

 

 

With  

Outlier 

Without 

Outlier 

LM (5) 0.0992 32.7747  3.8415 11.0705  0.753 0.000 

BPG (5) 483.443 318.405  11.0705 11.0705  0.000 0.000 
2χ -based (5) 450.799 262.918  240.484 228.579  0.000 0.001 

t-based (5) 11.9594 3.0418  1.6524 1.6527  0.000 0.001 

 

From the above table we observe that when outliers are not present in the data all tests 

suggest rejecting homoscedastic innovation variance at the 5% level of significance, 

but in the presence of outliers the Lagrange Multiplier (LM) test fails to detect the 

ARCH effect. The rest of the tests (Modified Breusch Pagan Goldfery (MBPG), Chi-

Square-based and Student’s –t based tests) suggest that we should accept that the 

innovation is conditionally heteroscedastic even when outliers are present in the data.  

 

 

4. SIMULATION RESULTS 

 

From the above example we get the impression that the conventional ARCH detection 

tests may be unsuccessful in the presence of outliers but our proposed test can perform 

better irrespective of the existence of outliers. Now from our experience with an 

individual data set we want to confirm it by reporting the results of a Monte Carlo 

simulation experiment. We first simulate homoscedastic time series data from uniform 
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distribution and take one period lag on this sample to get the independent variable 1−ty . 

Next we generate innovation tu  from Gaussian distribution with mean 0 and constant 

variance. Next we compute the dependent variable ty  from the equation 

ttt uyy ++= −121 ββ                                                                                                 (18) 

for given values of 1β  and 2β . We run this simulation experiment 10,000 times for 

four different sample of sizes T = 50,100, 150 and 200 each at 5% level of significance 

and the results of the experiment  are given in Table 2. 

 

Table 2 

 

Simulation power of ARCH tests at α =0.05, under homoscedasticity 

Test Name T = 50 T = 100 T = 150 T = 200 

LM (1) 5.73 5.91 7.21 8.06 

MBPG(1) 4.25 4.68 4.74 4.61 
2χ -based (1) 1.09 0.78 0.65 0.012 

t-based (1) 1.29 0.89 0.69 0.17 

 

We observe from Table 2 that in the presence of outliers, the LM test is very poor, 

followed by the MBPG test.  The power of LM test for rejecting homoscedasticity 

when in fact it is true,  is higher than other tests. But it is interesting to note that both 

the Chi-square (
2χ )-based and t-based tests have lower powers which indicate that the 

tests successfully confirm the homoscedasticity even though outliers are present in the 

data. 

 

Next we simulate ARCH data of order 3. We generate samples from uniform 

distribution and take one period lag on this sample to obtain the independent variables. 

We generate innovation from Gaussian distribution with mean 0 and variance 
2

33

2

22

2

110 −−− +++ ttt uuu αααα  for the arbitrary chosen constants 210 ,, ααα and 3α . In 

our simulation experiment, we consider four different sample sizes T = 50, 100, 150 

and 200 each at 5% level. Each of the result based on 10,000 replications are presented 

in Table 3. 

 

From Table 3, we observe that the power of the Chi-square (
2χ )-based and t-based 

tests are very high than the rest of the tests. The Modification of Breusch Pagan 

Goldfery (MBPG) test is the next choice but Lagrange Multiplier (LM) test perform 

poorly throughout. 
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Table 3 

 

 Simulation power of ARCH tests at α =0.05, under heteroscedasticity 

Test T = 50 T = 100 T = 150 T = 200 

LM (1) 8.87 11.21 16.05 35.98 

LM (2) 10.22 16.54 27.58 46.50 

LM (3) 9.94 18.85 21.87 40.24 

MBPG(1) 94.01 94.85 94.98 94.94 

MBPG(2) 95.65 93.25 93.39 94.29 

MBPG(3) 97.01 95.58 96.54 95.68 
2χ -based (1) 98.09 99.98 100     100 

2χ -based (2) 98.87 99.99 100      100 

2χ -based (3) 98.45 99.97 100      100 

t –based (1) 99.54 99.99 100      100 

t –based (2) 99.59 99.98 100      100 

t –based (3) 99.86 99.99 100       100 

 

 

5. CONCLUSION 
 

In this article, we developed two new tests for the detection of ARCH based on the 

mean absolute deviation of errors. Empirical results show that these two tests are very 

successful in the identification of ARCH in the presence of outliers whereas the most 

popular Lagrange Multiplier (LM) test for conditional heteroscedasticity fails to do so. 

Simulation results show that these tests possess very good power under a variety of 

situations.  
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