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       Abstract . The assumption of linearity is implicitly accepted in the process 

which generates a time series condition submitted to a ARIMA. That is why, in this 

paper, we shall discuss the research of long memory in the processes: the 

fractional ARIMA models, denoted as ARFIMA, where d and D, the degree of 

differentiation of the filters is not integer. After presenting the characteristics of 

the ARFIMA process, we shall discuss the long-memory tests (statistics rescaled 

Range Lo and R/S* Moody and Wu). Finally three examples and tests on a white 

noise process, a random walk model and the stock index of Paris Stock Exchange 

(CAC40) will illustrate the method. 

     Key-words: long-memory test, non stationary processes, ARIMA process, 

ARFIAM process.  
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1. The ARFIMA process  
The ARMA processes are processes of short memory in the sense where the 

shock at a given moment is not sustainable and does not affect the future evolution 

of time series. Infinite memory processes such as DS (Difference Stationary) 

processes have an opposite behaviour: the effect of a shock is permanent and 

affects all future values of the time series (R. Bourbonnais, M. Terraza, 2010). 

This dichotomy is inadequate to account for long-term phenomena as shown by the 

works of Hurst (1956) in the field of hydrology. 

The long memory process, but not infinite, is an intermediary case, in that the 

effect of a shock has lasting consequences for future values of the time series, but 

it will find its "natural" equilibrium level (Mignon V. 1997). This type of 

behaviour has been formalized by Mandelbrot and Wallis (1968) and Mandelbrot 

and Van Ness (1968) starting from fractional Brownian motions and from 

fractional Gaussian noises. From these studies Granger and Joyeux (1980) and 

Hoskins (1981) define the fractional ARIMA process as ARFIMA. More recently 
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these processes have been extended to seasonal cases (Ray 1993, Porter-Hudak 

1990) and are noted as SARFIMA process. 

1.1. Definitions  

Let us remember that a real process xt from Wold : ∑
∞

=
−=

0j

jtjt ax ψ  with ψ0 = 

1, ψj ∈ R and at is i.i.d.(0, 
2

aσ ) is stationary under the condition that ∑
∞

=0

2

j

jψ < ∞. 

The stationary process xt is a long memory if ∑
∞

=0j

jψ = ∞.  

Let us consider a process centred on xt , t = 1, …, n. We say that xt is a 

stationary integrated process, noted ARFIMA (p, d, q) if it is written: 

tqt

d

p aBxBB )()1)(( θφ =−   with: 

• )(Bpφ  and )(Bqθ  are respectively polynomial operators in B of parties AR(p) 

and MA(q) of the process, 

• at is i.i.d.(0, 
2

aσ ),  

• d ∈ R. 

 

(1 – B)
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 is called fractional difference operator and is written starting from the 
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=π   j = 0, 1, and Γ  is the Eulerian function.  

Be it the process ARFIMA (0, d, 0) : tt

d axB =− )1(  also called process FI(d).  

It is this process that contains the long-term components, the party ARMA 

brings together the short-term components. 

 

• When d < ½ , the process is stationary and it has an infinite moving average 

representation. 
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• When d > –½, the process is invert and has infinite autoregressive 

representation:  

==− tt
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The asymptotic value of the coefficients ψj et π j : 
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 decrease with a hyperbolic rhythm at a rate which is lower than 

the exponential rate of the process ARMA. The FAC has the same type of 

behaviour which allows to characterize the process FI(d).  

 

• Finally if (Hoskins 1981): 

 0 < d < ½, the process FI(d), is a long-memory process 

 d < 0, the process FI(d) is an anti–persistent process, 

 – ½ < d < 0, the process FI(d) is not of long-memory, but it does not have the 

behaviour of ARMA. This intermediate case called anti-persistent by Mandelbrot 

corresponds to alternations of increases and decreases in the process. This 

behaviour is also called the "Joseph effect" by reference to the Bible. 

The process FI(d), thus stationary is invert for  – ½ < d < ½. 
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1.2. Long-memory tests  

a) The "Rescaled Range" statistics 
1
  

The statistics R/S was introduced in 1951 in a study related to the debits of the 

Nile by the hydrologist Harold Edwin Hurst. His purpose is to find the intensity of 

an aperiodic cyclical component in a time series considered one of the aspect of 

the long-term dependence (long memory) developed by Mandelbrot. 

Be it xt   a time series producing a stationary random process with t = 1, …, n 

and 

∑
=

=
t

u

ut xx
1

*
 the cumulated time series. The statistics R/S noted Qn is the 

extent Rn of partial sums of standard deviations of the series from its mean divided 

by its standard deviation Sn: 
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The first term of the numerator is the maximum k of partial sums of the k in 

standard deviation of xj from its average. This term (max) is always positive or 

zero. By definition the second term (in min) is always negative or null. Therefore 

Rn is always positive or null. 

The statistics nQ
~

is always non-negative.  

The statistics H of Hurst applied to a time series xt is based on the division of 

time into intervals of length d, for given d we obtain (T + 1) sections of time. The 

statistics H- is calculated on each section (Mandelbrot) using the previous method 

of Hurst taking into account the gap operated on the time scale. In this case: 
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 used in order to 

calculate Rn. 

The standard deviation is then 

written: 
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We can calculate Rn/Sn  for each of (T + 1) section of d length but also their 

arithmetic average. We can also demonstrate (Mandelbrot–Wallis) that the 

                                                 
1
 We may consult for this paragraph Mignon (1997). 
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intensity of the long-term dependence is given by the coefficient H situated 

between zero and one in the relationship: 

H

d
n

n

n cd
S

R
Q

∞→
≈= . Be it log(Rn/Sn) = log c + H log d, 

 H is the estimator of OLS (Ordinary Least Square) in this relation. 

In real life, we build M fictionary samples and we choose M arbitrary starting 

points of the time series. This starting point is given by : : 1
)1(
+

−
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t  and the 

length of the j
 
sample is: 

M

jM
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)1( −−
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The linear adjustment of the cloud2 obtained leads to the estimation of the 

exponent Hurst. 

 The r² of the cloud depends on the initial difference obtained. We remember 

(Hernard, Moullard, Strauss–Khan, 1978, 1979) for H the one which gives the 

maximum r² maximum for an initial difference d.     

The interpretation of the H values is the following:  

If 0 < H < ½ ⇒ anti-persistent process, 

If H = ½ ⇒ a simply random process or ARMA process. There is a long term 

dependence absence. 

If ½ < H < 1 ⇒long-term process, the dependence is even stronger as H tends 

towards 1. 

 

b) The statistics of Lo 

The statistic of the exponent Hurst can not be tested because it is too sensitive 

to the short term dependence. Lo (1991) shows that the analysis proposed by 

Mandelbrot can be concluded towards the presence of long memory, while the 

time series has only a short-term dependence. Indeed, in this case, the exponent 

Hurst by analysing R/S is biased upward. Lo proposes a new modified statistics 

R/S noted: 
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This statistics is different from the previous one Qn by its denominator, which 

takes into account not only the variances of individual terms but also the auto-

covariance weighted accordingly to differences of q as related to:  

                                                 
2
 For which the first points are removed (transitory phase). 
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Andrews–Lo (1991) proposed the following rule for q:  

q = [kn] = whole party of kn   
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the autocorrelation coefficient of order 1 and in this case 
n

j
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j
−=1ω .  

Lo proves that under the hypothesis H0 :  xt ⇒ i.i.d.(0, 
2

xσ ) and for n which 

tends towards the infinity, the asymptotic distribution of nQ
~

 converges step by 

step towards V : VQ
n

n →
~1

 where V is the rank of a Brownian bridge, a process 

with independent Gaussian increases constrained to unity and for which H = ½.  

The distribution of the random variable V is given by Kennedy (1976) and 

Siddiqui (1976): ( )∑
∞

=

−−+=
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4121)(
k

vk

V evkvF  

The critical values of this symmetrical distribution the most commonly used 

are: 
P(V<ν) 0.005 0.025 0.05 0.1 0.2 0.3 0.4 0.5 0.543 0.6 0.7 0.8 0.9 0.95 0.975 0.995 

ν 0.721 0.809 0.861 0.927 1.018 1.09 1.157 1.223 2/π  1.294 1.374 1.473 1.620 1.747 1.862 2.098 

 

The calculation of H is done as above and Lo analyzes the behaviour of nQ
~

 

under alternative long-term dependency. He then shows that:    
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Under the hypothesis of H0, there is a short memory in the time series 

( [ ]1;5,0∈H ). For an acceptance threshold at 5% H0 is accepted if 

[ ]862,1;809,0∈v . 

He concludes that: “For the values of H between 0,5 and 1 the acceptance 

threshold of long memory at 10% is ν > 1,620. For the values of H between 0,5 

and 1 the acceptance threshold of the anti-persistent hypothesis at 10% is ν > 

0,861.” 

We can verify that there is a relation between the values d and the ARFIMA 

processes and H of the exponent Hurst (d = H – 0,5). 
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c) The statistics R/S* modified by Moody and Wu (1996) 

The statistics Lo fix some flaws of the R/S traditional statistics of Hurst when 

the number of observations is too low. 

Moody and Wu show on the application of exchange rates:  

• There is an error in estimating the extent of R related to short-term 

dependencies in the series. The value of the traditional R/S statistics led to 

accepting the existence of a long-term component absent in the generating process. 

When the number of observations is important, the statistics of Lo corrects this 

error. 

• For a small number of observations, the statistics of Lo and the exponent 

Hurst are poorly estimated. 

• For a number of important observations, the right line corresponding to the 

Lo statistic is independent of q: the traditional statistics and those of Lo have the 

same exponent Hurst. 

Moody and Wu suggest introducing a different denominator S* in the statistics:  
2/1
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2σ  is the estimation of the variance.  

1
1

+
−=

q

j
(q)

j
ω  are weights such as q < 1 so that the denominator of the 

statistics be positive. For q = 0 the statistics of Moody and of Wu lead neither to 

the traditional statistics nor to that of Lo. 

Applications: simulation and calculation of the statistics of Hurst, Lo and 

of Moody and Wu for a white noise, for a random walk model and for 

CAC40 (index stock exchange Paris). 

1.3.  Application for a white noise of 1 000 observations. 

We have simulated a white noise of 1 000 observations included between 

(–100) and (+100) and we have calculated the statistics of Hurst, Lo and of 

Moody and Wu. 
 

For the statistics of Hurst we have in mind: an initial gap of 20, 10 

samples and a threshold point of 200, which allows to interpolate H on the 

thirty most significant values, be it 36% observations. 
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Results 

Threshold point 50 100 200 230 

H 0.203 0.302 0.481 0.503 

R² 0.629 0.761 0.863 0.853 

 

For the statistics of Lo we have 3 samples and the interpolation is realised on 

25% estimations. 

 

Results 

Threshold point 50 110 150 210 

H 0.241 0.384 0.428 0.503 

R² 0.679 0.883 0.897 0.871 

ν 0.893 1.03 1.11 1.07 

 

 

Whatever the method, the most reliable values of H are those for which R² 

tends to one. This is the case for the gap between 200 and 300 (Hurst) and 150 and 

210 (Lo). We note that H tends to 0.5 in accordance with the theory. 

 

For values of H tending towards 0.5, the variable ν must be between 0.861 and 

1.620 to accept the hypothesis of zero memory: this is the case with this exercise. 

Hurst's method evaluates the memory around about 200 times the periodicity, 

whereas that of Lo estimates it at just 150. 

 

 

Simulation results (Tests of Lo and Moody–Wu) 

 

White noise (n = 1000) : exponent Hurst and statistics R/S modified (Lo) 

q 0 2 4 6 8 

H 0.484 0.426 0.403 0.364 0.341 

V 1.042 1.027 1.012 1.007 0.999 

 

 

White noise (n = 1000): exponent Hurst and statistics R/S modified (Moody–

Wu) 

q 0 2 4 6 8 

H 0.489 0.447 0.440 0.422 0.418 

V 1.041 1.025 1.00 1.004 0.995 
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Random walk (n = 1000): exponent Hurst and statistics R/S modified (Lo) 

q 0 2 4 6 8 

H –0.028 –0.032 –0.063 –0.087 –0.111 

V 11.8 7.82 6.06 5.13 4.53 

 

 Random walk (n = 1000): exponent Hurst and statistics R/S modified 

(Moody–Wu) 

q 0 2 4 6 8 

H 0.023 –0.020 –0.044 –0.062 –0.08 

V 13.51 7.79 6.03 5.09 4.50 

1.4. Application to a random walk of 1 000 observations. 

We have simulated a random market xt = x1 + ∑
=

1000

1i

ia  with  at ⇒ i.i.d.(0, 1) and 

x1 = 1 on 1 000 observations and we calculated the statistics of Hurst and of Lo. 

 

For the statistics of Hurst we have chosen an initial difference of 25 and of 10 

samples. For interpolation, we used gaps superiors at 120 or 72 estimations on 220 

(32%). 

 

Results 

Threshold point 50 70 110 200 

H 0.683 0.817 0.889 0.903 

R² 0.914 0.975 0.986 0.970 

 

The calculation of the statistics of Lo is done under the same conditions but 

with a unique sample:  

Results 

Threshold point 50 100 150 210 

H 0.789 0.885 0.903 0.892 

R² 0.978 0.993 0.989 0.986 

ν 6.92 7.52 7.62 7.57 

 

The most reliable value of H by the method of Hurst is 0.889, which can 

therefore conclude towards the presence of a long memory. The one given by Lo is 

made for a gap between 100 and 150, which is about H = 0.9.The value ν is 

superior to 1.620 and it confirms the structure of long-term dependency. 

These calculations obtained from a non-stationary series show the 

misunderstanding that can be made with these tests. 
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1.5. The statistics of Hurst and of Lo on the data of CAC40 known for 1109 

days 

Finally, on a series of CAC40 (index of Paris Stock Exchange), we have used 

the method GPH and the maximum of likelihood in order to estimate the order d of 

the generating process FI(d) of the raw time series and of first differences. 

The generating process of CAC40 contains a unitary root. Statistics H of Hurst 

calculated on the raw series are of around 0.9 for a threshold point between 50 and 

60 and have a value equivalent to a gap as by comparing to the statistics of Lo (ν = 

7.14 superior to 1.62). 

We could infer the existence of a positive dependence between 40 and 70 

values. In fact when the generating process is stationary by the transition to first 

differences, the statistics of Hurst and Lo are respectively of 0.46 and of 0.45 and 

the value of the coefficient ν is of 1.294 less than 1.620. We can then conclude 

that there is no long-term dependency in the CAC40 series in first differences and 

that the results issued from the raw series are not consistent with the assumptions 

of applying tests. 

The calculations are made with the software Gauss and TSM under Gauss. The 

results are the following:  

 

Estimated GPH 

 Raw 

series 

Differential 

series 

Standard deviation  

(Differential series) 

No window  1.130 –0.096 0.161 

Rectangular 1.079 –0.166 0.178 

Bartlett 1.048 –0.126 0.103 

Daniell 1.043 –0.126 0.126 

Tukey 1.060 –0.139 0.112 

Parzen 1.0602 –0.123 0.092 

Bartlett–

Priestley 

1.067 –0.151 0.138 

 

Estimation by maximum likelihood 

series in level 

Number of observations = 1109 

Number of estimated parameters: 2 

Value of the likelihood function = –5 202.185 
Parameter Estimation Standard deviation t–statistics Prob. 

d 1.155  0.019   62.28  0.000 

Sigma 26.413  0.0561   47.10  0.000 
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Series in first differences 

Number of observations = 1108 

Number of estimated parameters: 2 

Value of the likelihood function = –4 950.552 

Parameter Estimation Standard deviation t–statistics Prob. 

d 0.034  0.029   1.199  0.231 

Sigma 21.097  0.448   47.08  0.000 

 

These results show that the time series has a unit root, as with or without 

window, the GPH estimator is close to 1 as well as the one of the maximum 

likelihood. 

When the time series is differentiated in order to become stationary, according 

to the theory, the hypothesis H0 of nullity of the coefficient of fractional 

integration is accepted in both cases: 

• estimation GPH 







<

−
96.1

errorStd

d gph

. 

• maximum de likelihood (cf. the critical probabilities). 

Finally, the relationship H = - 0.5 (H = Hurst statistic), can help us to verify 

that it leads to a result contradictory to the raw series (d ≈ 0.4 by the relation and d 

≈ 1 by calculation). For the differentiated series, we obtain d ≈ -0.037 from H of 

Hurst and H ≈ 0.05 by the statistics of Lo. These results are according to the 

estimations. 
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