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ECONOMIC DESIGN OF X-BAR CONTROL CHART WITH 

VARIABLE SAMPLE SIZE AND SAMPLING INTERVAL UNDER 

NON-NORMALITY ASSUMPTION: A GENETIC ALGORITHM 

 

Abstract. While the main assumption of an economic model of a variable 

sample size and sampling interval (VSSI) X-Bar control chart is normality, some 

process data may not follow a normal distribution. In this paper, a model for an 

economic design of the VSSI X-Bar chart under non-normality of the process data is 

first developed. Then a parameter-tuned genetic algorithm is proposed to solve the 

model and compare its performances in terms of the expected loss per hour to the ones 

of a fixed sample size and sampling interval X-Bar control charts that works under the 

normality assumption. Finally, a numerical example is given to illustrate the 

applications of the proposed methodology and to perform a sensitivity analysis on the 

model input parameters (i.e. the cost and the process parameter).      

Keywords: Economic design, Non-normality, Variable sample size and  

sampling interval, Markov chain; Genetic algorithm. 

 

JEL Classification: C06 

1. Introduction and Literature Review 
Statistical quality control is an efficient tool to improve product quality while 

saving production cost. Since Shewhart presented the first control chart to monitor the 
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process mean, several control chart techniques have been developed and widely 

employed as a primary tool in statistical process control environments. The main 

application of a control chart is to detect assignable causes in order to take necessary 

corrective actions ahead of manufacturing a large number of nonconforming products.  

In the designing process of a control chart, three parameters are involved; 

sample size, sampling interval, and control limit coefficient. Furthermore, economic 

and/or statistical designs are the two common practices in this regard. In a statistical 

design, the design parameters are determined based on the statistical performances of 

the chart, which are measured either in terms of type-I and II errors or in terms of 

average run lengths (ARL) and average time to signal (ATS). Besides, in an economic 

design, the design parameters are selected based on minimizing a cost model or a loss 

function. 

The X control charts with variable sample size (VSS), variable sampling 

interval (VSI), variable sample size and sampling interval (VSSI), and variable 

parameters (VP) have all been shown faster than the basic form of the 

Shewhart X chart in detecting process changes. The interested reader is referred to Cui 

and Reynolds [15], Park and Reynolds [23], Reynolds et al. [26], Runger and 

Pignatiello [29], Prabhu et al. [24], Reynolds [27,28], Costa [9,10,11,12,13], Zimmer 

et al. [33,34], and Bai and Lee [2]. 

Montgomery [22] and Woodall [31] proposed economic designs of X control 

chart; both of which are based on the Duncan's cost model [18]. In the first design, the 

expected cost is minimized, and in the second approach, it is assumed the process 

continues while a search for an assignable cause is carried on. Chiu [6] proposed 

another popular model in which the process is stopped during the search for assignable 

cause. Costa & Rahim [14] considered the economic design of VP X chart using a 

Markov chain approach. Besides, Chen [5] proposed the economic design of VSI 
2T chart using a hybrid Markov chain and genetic algorithm approach. 

All the mentioned researches are based on the assumption that the process data 

come from a normal distribution. However, this may not be true in many 

manufacturing processes. If the measurements (process data) follow a non-normal 

distribution, the statistic used in the X chart follows a normal distribution, only when 

the sample size is large enough (based on the central limit theorem). Nonetheless, there 

are many situations in practice where the chart is employed when sample sizes are 

small, restricting the use of the chart.  

Burr [3] introduced the Burr distribution that has been used to model various 

non-normal distributions since then. Zimmer & Burr [35] offered the statistical design 

of VSI X chart under the non-normality assumption. Yourstone and Zimmer [32] used 

the Burr distribution to represent different non-normal distributions. Recently Lin and 

Chou [20,21] have developed a statistical design of the VSSI X chart and VP X chart 

based on non-normality assumption, respectively. Moreover, for an economic design 
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of the VSI X chart, Bai and Lee [1] used Chiu's [6] model. Further, Chen [4] applied 

the developed model of Bai and Lee [1] for economic design of VSI X  chart under 

the non-normality assumption of the process data using the Burr distribution.  

This research is an extension of the researches performed by Costa & Rahim 

[14] and Chen [4,5], in which an economic design of VSSI X chart is proposed 

assuming non-normal data. We employ the Burr distribution to estimate the 

distribution of the sample means. A cost model is derived using the Markov chain 

method and a parameter-tuned (using Taguchi method) genetic algorithm is used to 

determine the optimal design parameters. 

The organization of the rest of the paper is as follows. Sections 2 and 3 contain 

brief backgrounds on the VSSI X  control chart and a specific application of the Burr 

distribution to model non-normality, respectively. The assumptions with the 

development of the economic model are given in section 4. A solution method based 

on genetic algorithm is proposed in section 5. A numerical example and a sensitivity 

analysis of the solution procedure for VSSI X chart are presented in section 6, and 

finally the comparison results are discussed in section 7. 

 

2. A brief background on the VSSI X control chart 

 The variable sample size and sampling interval X control charts with 

symmetric and asymmetric control limits are described in the following two 

subsections. 

 

2.1 The VSSI X  charts with symmetric limits 

The basic idea of the variable sample size and sampling interval Shewhart 

control charts in monitoring the process mean was presented by Prabhu et al. [24,25], 

Costa [10], and Das et al. [16]. In applying the procedure to a normal process with an 

in-control mean and standard deviation of 0µ  and σ , the VSSI X chart chooses two 

sample size variables 1 2(  and )n n  and two fixed sampling intervals 1 2(  and )h h . In 

this method, 1 0 2 1 0 2 ,  n n n h h h< < > > , 0n is the average sample size; usually set 4 

or 5, and 0h is the fixed sampling interval; regularly set 1. The VSSI X chart applies 

the action and the warning limits to divide the chart into three regions; central, 

warning, and action. 

In the design process of the VSSI X chart one first needs to determine the 

action and the warning limit coefficients k and w , respectively. Then, the lower and 

the upper action and warning limits are set using equations (1) and (2), 

correspondingly. 
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0 0      and        ;   1, 2i i

i i

UCL k LCL k i
n n

σ σ
µ µ= + = − =   (1) 

0 0
      and        ;   1,2

i i

i i

UWL w LWL w i
n n

σ σ
µ µ= + = − =    (2) 

Where 
iUCL and 

iLCL are defined as the upper and lower action limits and 

iUWL and 
iLWL are the upper and the lower warning limits, respectively.  

In the application of the VSSI X  control charts with symmetric limits, if the 

sample point is located in the central region, the pair 1 1(  and )n h is used for the next 

sampling. If the sample point is plotted in the warning region, the 2 2(  and )n h  pair 

will be employed. The chart signals when a sample point falls in the action region. 

 

2.2 The VSSI X  charts with asymmetric limits 

Yourstone and Zimmer [32] offered a procedure for designing VSSI X control 

charts with asymmetric limits, where the distribution of the sample means is not 

normal. The asymmetric action and warning limits are given in equations (3) and (4), 

respectively. 

0 1 0 2      and        ;    1,2i i i i

i i

UCL k LCL k i
n n

σ σ
µ µ= + = − =   (3) 

0 1 0 2      and        ;    1, 2i i i i

i i

UWL w LWL w i
n n

σ σ
µ µ= + = − =   (4) 

Where 
1 10  i iw k< < and 

2 20 i iw k< < . Hence, the symmetric VSSI X chart is a 

special case of the asymmetric in which 
2 1  ,i ik k k= =  and 

2 1    ,  1, 2i iw w w i= = = . 

 

3. The Burr distribution 
Burr [3] presented a simple distribution function that was capable of modeling 

various types of continuous distributions. The probability density function of the two-

parameter Burr distribution is as follows. 

( )
( )

1

   ;   0
1

c

k
c

cky
f y y

y

−

= >
+

       (5) 

With a cumulative distribution function of 
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( ) ( )
1

1            y 0
1

0                              y <0

k
cyF y

 − ≥
+= 


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      (6) 

or simply ( )
{ }( )
1

1

1 0,
k

c
F y

Max y

= −
+

, where c and k are greater than one.  

Considering different combinations of c and k , this distribution can cover an 

extensive range of skewness and kurtosis coefficients of variform probability density 

functions (e.g., Normal, Gamma, Beta, etc.). For instance for c=4.8621 and k=6.3412 

the Burr distribution approximates the normal distribution [32]. Further, the first four 

moments of the empirical distribution are used to determine c and k . 

Burr [3] tabulated the first two moments and the coefficients of skewness and 

kurtosis for the family of the Burr distribution. These tables allow users to establish a 

standardized transformation between the variable of the Burr distribution ( )Y and any 

random variable ( )X when they have similar coefficients of skewness and kurtosis. 

The standardized transformation between Y and X is defined as follows. 

X

X X Y M

S S

− −
=         (7) 

where S and M are the sample mean and standard deviation of the Burr distribution, 

and  and XX S are the sample mean and standard deviation of the data set (random 

variable). Furthermore, according to Dodge and Rousson [17], the coefficients of 

skewness 3( ( ))Xα and kurtosis 4( ( ))Xα for  X are: 

( ) ( )3 4
3 4

3
       and    3X X

nn

α α
α α

−
= = +      (8) 

Where 
3α and 

4α are the coefficients of skewness and kurtosis estimated by 

population. Using the value of ( ) ( )3 4  and  X Xα α and the tables available in Burr 

[3], it is possible to calculate k ,c ,S , and M for the distribution with the value near 

to ( ) ( )3 4  and  X Xα α by interpolation. 

 

4. Developing the cost model 

 The optimal design parameters of the proposed VSSI  X control chart under 

non-normality of the process data are determined by minimizing a cost model or a loss 

function. However, before developing the cost model, the assumptions are first 

defined.  
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4.1. Model assumptions 
 The assumptions involved in the development process of the proposed VSSI 

 X chart are: 

1. The sampling interval h  and the sample size n  range between their 

maximum and minimum values. Moreover, 1 2 1 20  and 0.01.n n h h< ≤ ≥ >  

2. The process starts in an in-control state with an on-target mean of 0µ µ=  and 

goes to an out-of-control state to an off-target mean of 1 0 ,  0,µ µ δσ δ= + >  

at some random time.  

3. Since the exponential distribution is often used for modeling certain intervals 
of time, it is assumed the time until the first assignable cause follows an 

exponential distribution with parameter 0λ > . This assumption is essential to 

develop the Markov chain cost model in section 4.2.. 

4. After the shift, the process mean will remain off-target until the assignable 
cause is eliminated. 

5. During the search for an assignable cause, the process remains shut-down. 
 

4.2. Developing a Markov chain cost model 

One of the statistical properties of a control chart is measured in terms of the 

speed of detecting mean shifts. When the interval between samples is constant, this 

speed can be measured by ARL. However, when the interval is variable, it has to be 

measured by an adjusted average time to signal ( )AATS that is defined as the mean of 

the time required from the actual process mean shift to the time the chart signals. 

Defining the average time cycle ( )ATC to be the mean of the time from the beginning 

of the production to the first signal after the process shift, we have: 

1AATS ATC λ= −         (9) 

Because of the memoryless property of the exponential distribution, one may estimate 

ATC by a Markov chain model as follows. 

To develop the Markov chain model, consider the pictorial representation of a typical 

production cycle that is depicted in Figure (1) [4]. Moreover, at each sampling point, 

one of the four following transition states can happen: 

1. The process is in-control and the sample is small. 
2. The process is in-control and the sample is large. 
3. The process is out-of-control and the sample is small. 
4. The process is out-of-control and the sample is large. 

Table (1) shows different positions of the ith sample point, the state of the process in 

i+1
st
 sampling point, and the corresponding states of the Markov chain model. 

When the sample point is plotted in the action region, the control chart signals. 

In this case, if the new state is either 1 or 2, the signal will be a false alarm. Otherwise, 
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if the new state is either 3 or 4, the signal will be a correct alarm. The absorbing state, 

the fifth state, will be obtained when the correct alarm is signaled. 

 

  
Figure (1): A typical production cycle 

Table (1): The states of the Markov chain 

i
th
 sample (i+1) st sample 

Sample point  

position 
Process status 

State of the  

Markov chain 

Warning On-target 2 

Warning Off-target 4 

Central On-target 1 

Central Off-target 3 

�On-target (in-control) mean 0µµ =  

�Off-target (out-of-control) mean δσµµ += 0  

 

The transition probability matrix of the Markov chain model is defined as: 

11 12 13 14

21 22 23 24

33 34 35

43 44 45

         0

        0

0     0        

0     0        

0     0    0    0       1

p p p p

p p p p

P p p p

p p p

 
 
 
 =
 
 
 
 

 

Where 
ijP denotes the transition probability that i is the prior state and j is the new 

state. Then, based on the initial properties of Markov chains we have [8]: 

( )-1'
 -  ATC b I Q t=         (10) 

Cycle 

Start 

Last sample before 

process mean shift 

Cycle 

ends 

Process mean 

shift 

First sample 

after process 

mean shift 

 

Assignable 

cause 

repaired 

Assignable 

cause 

detected 

Out-of-control 

detected 

(T1) in control period + 

(T3) Searching period 
due to false alarm 

(T2) out- of-control 

period 

(AATS) 

(T4) Time for 

identifying and 

correcting assignable 

cause 
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Where ( )'

11 12 13 14b , , ,p p p p= is the vector of initial probabilities, I is the identity 

matrix of order 4, Q is the transition matrix with eliminated elements corresponding to 

the absorbing state, and ( )'

1 2 1 2t , , ,h h h h=  is the vector of the sampling intervals. The 

derivations of the transition probabilities for an asymmetrical limits VSSI X  chart are 

given in the appendix. 

 

4.3. The loss function 

A process cycle involves in-control, out-of-control, detecting the assignable 

cause, and repair periods [14]. As a result, the average length of a production cycle is 

obtained as follows. 

( ) ( )0 1E T ATC t E FA t= + +        (11) 

Where 
0t  is the average amount of time to search for the assignable cause when the 

process is in-control and 
1t  is the average time of detecting and correcting the 

assignable cause. Moreover, ( )E FA  is the average number of false alarms at each 

production cycle that is obtained by: 

( ) ( ) 1'E FA b I Q α
−

= −        (12) 

Where ( ) [ ] [ ]'

1 2 1 2, ,0,0  ;   Pr Pr           1, 2i i iZ K Z K iα α α α= = > + < ∀ = , in which 

Z follows a standard normal distribution. 

For the average net profit of the production cycle, we have: 

0 1 0 1

1 1
( ) ( ) ( )E C V V ATC C E FA C sE M

λ λ
   = + − − − −   
   

   (13) 

Where: 

0V  is the profit earned per hour when the process is in-control 

1V  is the profit earned per hour when the process is out-of-control 

0C  is the average cost based on false warnings 

1C  is the average cost of detecting and removing the assignable cause 

s  is the inspection cost of an item 

( )E M  is the average number of inspected items per cycle and is obtained by: 

( ) ( ) ( )1' '

1 2 1 2,    where   , , ,E M b I Q m m n n n n
−

= − =     (14) 

Hence, using equations (11) and (13), the loss function ( )E L is derived as follows. 

( ) 0

( )

( )

E C
E L V

E T
= −         (15) 
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The loss function given in equation (15) is a function of the process 

parameters
 

( )0 1, , ,t t λ δ , the cost parameters ( )0 1 0 1, , , ,s C C V V , and the design 

parameters ( ) ( )1 1 11 12 11 12 2 2 21 22 21 22, , , , ,  , , , , , ,n h w w k k n h w w k k . The economic design of the 

VSSI X control chart is obtained by minimizing ( )E L over the design parameters 

given specific values of the other parameters. In other words, one needs to solve the 

following mixed-integer non-linear minimization model: 

( ) 0

( )
 

( )

E C
Min E L V

E T
= −  

s.t.:          (16) 

1 2

1 2

1 2

1 1 2 2

,   

0

0.01

0    0       1, 2i i i i

n n Z

n n

h h

w k and w k i

+∈

< ≤

≥ ≥

≤ ≤ ≤ ≤ ∀ =

 

 In the next section, a solution procedure along with an example is given to 

demonstrate the application of the proposed methodology. 

 

5. An example and a solution procedure 
The model in (16) is a mixed-integer non-linear optimization model and an 

exact solution procedure is an inefficient and time-consuming method to solve it. 

Therefore, a heuristic search algorithm is required to solve the model. Historically, 

among the search algorithms, the genetic algorithm (GA) has been successful in 

solving similar models [7].  

To illustrate the solution procedure, a numerical example is given in section 

5.1 for which a GA is proposed in section 5.2 to search for the optimal solution of the 

economic design of the VSSI X  control chart. Besides the chromosomes that contain 

different values of the chart design parameters, i.e., ( )1 1 11 12 11 12, , , , ,n h w w k k  and 

( )2 2 21 22 21 22, , , , ,n h w w k k , four GA parameters have to be first specified. They are 

the crossover rate ( )CR , the mutation rate ( )MR , number of generation ( )GN , and 

the population size ( )PS that usually the quality of the solution acquired from GAs 

depends on these four parameters [5]. Orthogonal-array experiments described in 

section 5.3 are used to determine the tuned values of these parameters. 

 

5.1. The numerical example 

To explain the proposed GA solution procedure, let 5,s =  
0 500,C =  

1 500C = , 
0 500,V =  

1 50,V =  
0 5,t =  

1 1,t =  and 01.0=λ . Further, suppose a data 
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set is collected from the process with the sample statistics as sample mean 50.42X = , 

sample standard deviation 68.5=xS , sample skewness coefficient 4322.13 =α , and 

sample kurtosis coefficient 3558.44 =α . We use 3α  and 4α  to fit the Burr distribution 

with 2c =  and 4k = . From the Table in Burr [3], the mean and the standard 

deviation of the Burr random variable Y with 2c =  and 4k = are 0.4909M =  and 
0.3039S = , respectively. 

 

5.2. The proposed GA 
Genetic algorithms are global search optimization techniques that have been 

inspired by the processes of natural selections in biological system [19]. The basic 

characteristics of the genetic algorithms that cause them to be different from other 

search algorithms are: 

1. They consider many points, rather than a single point, in the search space 
concurrently. This will reduce the chance of trapping in the local optimum 

point. 

2. They work directly with strings of characters representing the solution set, not 
the solutions themselves. 

3. They apply probabilistic rules instead of deterministic rules to guide their 
search. 

The initial setting of a GA involves encoding, fitness function, selection 

mechanism, crossover operation, mutation, and culling. Accordingly, the steps 

involved in the proposed GA that are partially taken from Chen [4] are: 

1. Randomly generate an initial solution set (population) of PS individuals and 

assess each solution (individual) by a fitness function. An individual is shown 

as a numerical string. 

2. If the termination condition is not satisfied, repeatedly do the following: 
a. Select parents from the population for crossover. 

b. Generate offspring. 

c. Mutate some of the members. 

d. Merge mutants and offspring into population. 

e. Cull some members of the population. 

3. Stop and return the best fitting solution. 

In what follows, the details of the proposed GA are briefly described. 

  

5.2.1 Initial population 
A chromosome of the proposed GA involves 12 genes, each gene a 

representative of a decision variable of the model. Figure (2) shows a typical 

chromosome. 

Generally, evolutionary algorithms generate the initial population at random. 

Accordingly, in the initial population of the proposed GA, the number of feasible 
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chromosomes that are generated using Uniform pseudo random numbers is equal to 

PS . 

 

22k 22w 12k 12w 21k 21w 11k 11w 2h 1h 2n 1n 

 

Figure (2): A typical chromosome 

5.2.2 Chromosome evaluation 

In the one hand, the loss function given in equation (15) is used to evaluate the 

performance of a chromosome in terms of its loss value. In a minimization problem, 

the fittest chromosomes are the ones with the minimum loss values The loss is a 

function of the process parameters, ( )δλ,,, 10 tt , the cost 

parameters, ( )1010 ,,,, VVCCs , and the design parameters, ( )1 1 11 12 11 12, , , , ,n h w w k k  and 

( )2 2 21 22 21 22, , , , ,n h w w k k . On the other hand, the fitness function transforms the 

chromosomes' loss values to their fitness values using a transformation function. Some 

of the transformation functions that are usually employed in the literature are rank, top, 

and proportional functions. In the third transformation function that is employed in this 

research and is the most applied method, the fitness of a chromosome is proportional 

to its loss divided by the total losses of the chromosomes in the population. In other 

words, denoting ( )iF x the fitness value of chromosome i , ( )if x  its  loss value, 

N the number of chromosomes in a population, and 
1

( )
N

i

i

f x
=
∑ the total loss of all 

chromosomes, the fitness function is given by 
1

( ) ( ) ( )
N

i i i

i

F x f x f x
=

∝ ∑ . This 

relation guarantees that every chromosome of a population has a probability (that is 

proportional to its fitness) of being selected as a parent in the new generated 

population. However, sometimes when the differences between chromosomes are 

considerable, this function leads to fast convergence. We will restrict the number of 

children of parents to one to avoid fast convergence. 

 

5.2.3 Chromosome selection 

After evaluation, the chromosomes are sorted based on their fitness value, 

from lowest to highest. The first copy size− highest ranked chromosomes are then 

directly copied to the next generation (elitism).  

The selection operator determines the parents to set up the next generation. 

The chromosomes with the highest fitness have high a higher chance of being selected. 

The tournament selection strategy is adopted in this research. For a parent in this 

strategy, n players are first selected randomly and then the best individual out of the 
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n players is selected to be the second parent. The tournament size ( n or sub-group) 

must be at least two. This size influences the selective pressure, i.e. more individuals in 

the sub-groups increase the chance of selecting better individuals. 

 

5.2.4 Crossover 

Several crossover operators such as partial-mapped crossover (PMX), order 

crossover (OX), position based crossover (PBX), and order-based crossover (OBX) 

have been proposed in the literature. These operators can be viewed as an extension of 

two-point or multipoint crossovers of binary strings representation. In the proposed 

GA, we employed the tow-point crossover operator as well. In other words, based on 

the roulette- wheel selection procedure, a number of 2( )( )CR PS  parents for 

construction of the next generation are first selected. In this regard, the fittest 

chromosomes have a better chance of being selected. Then, for each parent two cross-

points are chosen randomly and the section between them is exchanged between the 

two parents. Figure (3) depicts an example of this operation. 

 

 
 

Figure (3): An example of the crossover operation 
 

5.2.5 Mutation operation 

After the crossover operation, a number equal to ( )( )MR PS parents are 

mutated using the most popular (a uniform mutation) operator. This operator acts in 

two stages. In the first stage, the operator determines the position of the mutation and 

in the second stage it replaces the value of the determined position with another value 

at random. 

 

5.2.6 Stopping 

When the GA algorithm repeats GN times, the chromosome with the lowest 

fitness value is reported as the solution of the problem. 

It should be mentioned that, the proposed genetic algorithm of this research is 

programmed in Matlab 7.0.4 environment and is executed on a Pentium 4 2.8 MHz 
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personal computer. Moreover, the basic structure of the proposed genetic algorithm is 

presented in Figure (4). 

 

5.3. Determining the values of the GA parameters 
The quality of the final solution gained by a GA algorithm depends on four 

parameters: the population size ( )PS , the crossover rate ( )CR , the mutation 

rate ( )MR , and the number of generation ( )GN . Orthogonal array experiments are 

performed in this section to tune these parameters [7]. In these experiments, three 

levels of each parameter are defined as shown in Table (2). 

 

Table (2): The GA parameter levels 

 

Parameters Level 1 Level 2 Level 3 

PS  50 75 100 

CR  0.5 0.6 0.7 

MR  0.1 0.15 0.25 

GN  20,000 40,000 60,000 

 

The L9 orthogonal array was used to assign the four control parameters [30]. 

In the experiment of the L9 orthogonal array, there are entirely nine arrays (or 9 

different level combinations of the four parameters). For each array, three cost values 

( ( )E L ) denoted by
 1 2 3,  ,  and y y y , are obtained by different runs of the proposed 

GA. The responses are given in Table (3). Since the "smaller-the-better" of the 

expected loss is desired, the suitable signal-to-noise ratio ( )SN for assessment of the 

experimental results is given by [30]: 

2

1

1
10.log

no

i

i

SN y
no =

 
= −  

 
∑        (17) 

Where no is the total number of ( )E L evaluations in each array. Moreover, the 

signal-to-noise ratios of the three levels of the control parameters are given in Table 

(4). The results in Table (4) show the best combination of the parameter levels are 

100,  PS = 0.5,  CR = 0.1,  MR = and 60,000.GN =   

In the next section, the performance of the proposed methodology in designing 

a VSSI X control chart is compared to the one of a fixed sample size and sampling 

interval (FSSI) X scheme in terms of the expected loss function. 
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Figure (4): Structure of the algorithmic process 
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Table (3): Experimental layout of the L9 orthogonal array and the results 
 

Array PS  CR  MR  GN  1y  2y  3y  SN  

1 1 1 1 1 31.7875 32.7846 32.0538 -30.1602 

2 1 2 2 2 33.2731 32.7040 32.0091 -30.2820 

3 1 3 3 3 32.6601 32.5078 32.7626 -30.2760 

4 2 1 2 3 31.4807 30.9842 31.8487 -29.9496 

5 2 2 3 1 35.9639 36.1853 34.5044 -31.0190 

6 2 3 1 2 32.3651 32.7712 32.6166 -30.2603 

7 3 1 3 2 32.1808 33.4928 32.8641 -30.3308 

8 3 2 1 3 30.9674 31.8311 31.5630 -29.9540 

9 3 3 2 1 32.9486 33.1535 33.5145 -30.4244 

               

 

Table (4): S/N of the control parameters 

 

Levels PS  CR  MR  GN  

Level 1 -90.718131 -90.440582 -90.374517 -91.603611 

Level 2 -91.228892 -91.255001 -90.656000 -90.873023 

Level 3 -90.709248 -90.960688 -91.625755 -90.179637 

 

6. A comparison study 

The expected loss function of the FSSI X scheme can be easily obtained by 

setting 1 2 ,  h h= 1 2 ,  n n= and 0w = ; implying the transition probabilities of 

11 21 0p p= = and 13 23 33 43 0p p p p= = = = . Thirteen different sets of cost and 

process parameters are taken from Chen [5] and are given in Table (5). As it was 

mentioned in 5.1 section, for a non-normal process the parameters of the Burr 
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distribution are chosen 2c =  and 4k = . In order to calculate ijP  and ultimately 

computing ,AATS ( )E FA , and ( )E L , we first find the skewness and kurtosis 

coefficient ( ^

3 X
α , ^

4 X
α ) corresponding to 2c =  and 4k = from the Burr [3] Table II. 

Then, we compute −
X3

α  and −
X4

α  using equation (8). Next, we obtain 

, , ,  and c k M S corresponding to −
X3

α , −
X4

α  using the Burr Table II and III and 

interpolation. Using these values in each of the probability states of the Markov chain, 

we calculate ijP s. Finally, inserting ijP s in equations (9), (12), and (15), the values of 

AATS , ( )E L , and ( )E FA are calculated, respectively. 

 

Table (5): The cost and the process parameter sets 
 

Set # s  0C  
1C  0V  

1V  0t  
1t  λ  δ  

1 5 500 500 500 50 5 1 0.01 1 

2 10 500 500 500 50 5 1 0.01 1 

3 5 250 500 500 50 5 1 0.01 1 

4 5 500 50 500 50 5 1 0.01 1 

5 5 500 500 250 50 5 1 0.01 1 

6 5 500 500 500 100 5 1 0.01 1 

7 5 500 500 500 0 5 1 0.01 1 

8 5 500 500 500 50 2.5 1 0.01 1 

9 5 500 500 500 50 5 10 0.01 1 

10 5 500 500 500 50 5 1 0.05 1 

11 5 500 500 500 50 5 1 0.01 1.5 

12 5 500 500 500 50 5 1 0.01 0.5 

13 5 500 500 500 50 5 1 0.01 2 

 

For the thirteen sets of the cost and the process parameters, the optimum 

designs of the FSSI X and VSSI X schemes along with their corresponding 

( ),  E L ( ),  E FA and AATS  are given in Table (6). The percent reductions of the 

expected loss obtained by the VSSI scheme rather than using the FSSI scheme are 

given in the last column of this table as well. 

A careful investigation of the results in Table (6) reveals the following: 

 



Table (6): The optimum design of FSSI and VSSI X-Bar charts under non-normality (Burr distribution ( 2c = , 4k = )) 

FSSI   VSSI 
 

 

 

NO. 

 

 

 

n

 

 

 

h  11k   21k   12k   22k  
 

( )LE
 

 )(FAE  AATS  

 

1n    2n   1h   2h  

 

 

11w

 

 

11k  

 

 

21w

 

 

21k  

 

 

12w

 

 

12k  

 

 

22w  

 

 

22k  

  

( )LE
 

 )(FAE   AATS  % 

1 16 6.190 2.961 2.961 4.629 4.629 42.101 0.111 3.920 4 12 3.60 0.02 1.01 4.98 1.45 3.52 3.19 4.33 2.873 3.221 31.655 0.0356 2.3724 24.811 

2 13 8.039 2.645 2.645 4.575 4.575 52.169 0.174 5.256 4 9 6.51 0.05 0.94 4.96 1.07 3.07 4.16 4.8 3.658 4.723 40.348 0.0433 4.2082 22.660 

3 16 6.193 2.941 2.941 4.600 4.600 41.830 0.117 3.882 5 10 3.95 0.03 1.29 4.88 1.08 3.38 4.86 4.99 2.849 2.872 31.773 0.0338 2.6657 24.044 

4 17 6.367 3.001 3.001 3.814 3.814 37.884 0.099 3.900 5 14 3.87 0.04 1.19 4.92 1.63 3.48 4.68 4.77 3.389 4.487 27.773 0.0275 2.4904 26.690 

5 14 8.948 2.728 2.728 3.635 3.635 27.464 0.129 5.728 4 11 6.01 0.02 1.06 4.86 1.31 3.16 4.48 4.98 3.718 3.771 21.672 0.0356 4.024 21.089 

6 17 6.819 2.999 2.999 3.591 3.591 40.199 0.092 4.176 4 9 5.22 0.03 0.83 4.99 0.96 3.41 3.36 3.63 4.645 4.678 30.654 0.0363 3.1952 23.743 

7 17 6.056 2.999 2.999 4.210 4.210 43.921 0.104 3.705 4 9 3.51 0.03 1.1 4.99 0.96 3.43 4.43 4.89 3.841 4.855 32.670 0.0437 2.445 25.616 

8 15 6.027 2.78 2.78 4.181 4.181 40.597 0.172 3.726 5 11 4.54 0.02 1.03 4.99 1.24 3.27 4.59 4.89 3.528 4.965 31.403 0.0359 2.7082 22.648 

9 17 6.709 2.98 2.98 4.908 4.908 78.108 0.098 4.081 5 13 

 

4.54 0.02 1.15 4.99 1.48 3.41 2.44 2.5 3.303 4.215 69.291 0.0256 2.8351 11.288 

10 16 3.037 2.906 2.906 3.807 3.807 111.47 0.049 1.901 5 12 1.79 0.02 1.27 4.99 1.45 3.18 3.31 4.27 3.593 4.018 94.383 0.0163 1.2057 15.330 

11 10 4.919 3.452 3.452 4.481 4.481 33.556 0.059 2.829 4 8 3.27 0.02 1.7 5 1.93 3.83 4.78 4.95 4.541 4.557 26.295 0.0248 1.847 21.639 

12 41 10.16 2.312 2.312 3.561 3.561 63.828 0.238 6.873 10 27 5.32 0.01 0.93 4.99 0.93 2.79 3.48 4.54 3.446 4.562 49.991 0.0624 4.527 21.679 

13 9 4.127 3.847 3.847 3.105 3.105 28.990 0.038 2.2611   3 7 3.2 0.02 2.01 4.99 3.44 4.39 3.38 4.31 3.805 3.872 24.050 0.0302 1.7173 17.038 



 

 

 

 
Seyed Taghi Akhavan Niaki, Fazlollah Masoumi Gazaneh, J. Karimifar 

_____________________________________________________________________ 

1. In all trials, the expected loss values of the VSSI control schemes are consistently smaller 

than that of the FSSI control scheme. 

2. Compared to the FSSI scheme, the VSSI scheme requires a smaller sample size, a larger 

upper control limit, and a more frequent sampling. 

3. The optimal value of 
2h in all cases is close to zero. This implies that if the sampling 

point is plotted in the warning zone, a more frequent sampling will be required. 

4. Not only smaller AATS of the VSSI scheme indicates a faster detection of the process 

mean shifts, but also lower ( )E FA  implies the VSSI control schemes suggests better 

protection against false alarms than the FSSI scheme. 

5. The minimum expected loss is achieved for situations in which the obtained profit per 

hour during an in-control period is high or the time the process remains in-control is 

short. 

6. A longer time spent on detection and elimination of an assignable cause leads to a 

higher expected hourly loss. 

7. For cases in which δ ,λ , 1t , 1C  are small, 0V  is large compared to 1V , or s is small, the 

percent reduction becomes larger. 

 

7. Conclusions 

In this paper, a methodology was proposed for economic design of asymmetric X  

control charts with variable sample size and sampling interval under the non-normality of the 

process data. In this methodology, the Burr distribution was first employed to model non-normal 

sample means. Second, a Markov chain approach was used to determine the chart's adjusted 

average time to signal (AATS). Third, the mixed-integer non-linear loss function of the problem 

was derived. Finally, a parameter-tuned (using Taguchi approach) genetic algorithm was utilized 

to solve the model and determine the chart's optimal design parameters.  

A numerical example was given to demonstrate the application of the proposed 

methodology and to compare its performances with the ones of a fixed sample size and sampling 

interval (FSSI) X control charts under different cost and process settings. The results of the 

comparison study showed that in all parameter settings the expected loss values of the proposed 

scheme is consistently lower than the one of the FSSI chart for non-normal data. Further, the 

adjusted average time to signal and the expected number of false alarms of the proposed scheme 

were lower than the ones of the FSSI scheme.   
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Appendix: Transition probabilities for asymmetrical control limits 

 

Let  0  ;     1, 2iq i∀ =  be the conditional probability that a sample mean X falls outside the 

control limits given that  0µµ =  ; 1,2i    =∀ in . Further, let    1, 2  &  1,2,3,4ijP i j∀ = =  be 

the conditional probability that X falls within central (safe) or warning regions, given that 

X falls inside the two controls limits when 0µµ = , and finally let    3, 4 &  3,4ijP i j∀ = =  be 

the conditional probability that X falls within central (safe) or warning regions 

when δσµµ +=  0  . Then, for non-normal process data that is modeled by a 2-parameter Burr 

distribution we have: 

0 1 0 2 0Pr Pri i
i i i

i i

Y M Y M
q k k

S S
µ µ µ µ

   − −
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Hence, the transition probabilities are obtained as 
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