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Abstract. We consider a new robust estimation method based on pseudodis-
tances minimization. Unlike other existing methods of this type, such as minimum
Hellinger distance estimation, the proposed approach avoid the use of nonparame-
tric density estimation and associated complications such as bandwidth selection.
The proposed class of estimators is indexed by a single parameter α which controls
the trade-off between robustness and efficiency. The method is applied to expected
return and volatility estimation of financial asset returns under normality. Empi-
rical results on simulated or financial data prove the performance of this method.
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1 Introduction

Many decision-making and asset pricing models in finance rely on assumptions on
the stochastic model underlying the data. The normal model is one of the most
used. However, for a typical sample of financial returns, the empirical distribu-
tion can deviate from normality in various degrees. Therefore, some sophisticated
representations have been proposed in literature (see Bawens et al. (2006), Zhao
(2008)). In the meantime, a valid alternative is to retain a simple stochastic model
and to use an estimation method stable to possible deviations from the assumed
model. In the present paper we consider this approach by using a new robust
estimation method for financial returns.

The notion which stands at the basis of this method is the pseudodistance be-
tween probability measures. Like divergences, the pseudodistances are information
measures and generalizations of distances between probability measures, they not
satisfying the triangle inequality. The information measures, and particularly the
divergences, are widely used in statistical inference (see Pardo (2006) and the ref-
erences herein) and are also useful in buiding different models with applications
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in system management, in allocation problems, or in transportation problems (see
Purcaru et al. (2009), Purcaru and Verboncu (2010), Purcaru (2011)).

The robust estimation method which we consider was introduced by Bronia-
towski and Vajda (2009) and consists in minimization of an empirical version of
a pseudodistance between the assumed model and the true model by using the
empirical measure pertaining to the sample. This method can be applied to any
parametric model, but in the present paper we focus on the normal location-scale
model. The method is appealing, since it conciliate robustness and efficiency, usu-
ally requiring distinct techniques. The behavior of the estimator depends on a
tuning positive parameter α which controls the trade-off between the two prop-
erties. When the data are consistent with normality and α → 0, the estimation
method corresponds to the maximum likelihood method (MLE) which is known
to have full asymptotic efficiency at the model. When α > 0, the estimator gains
robustness, while keeping high efficiency.

The outline of the paper is as follows: in Section 2 we present the estimation
method and its asymptotic properties. The performance in finite samples of the
method is studied in Section 3 through Monte Carlo simulations, for both contam-
inated and noncontaminated samples. Finally, the estimation method is applied to
monthly log-returns of the Standard & Poor’s 500 stock index.

2 Minimum pseudodistance estimators

2.1 Context and definition

The minimum divergence estimators and related methods have received a consider-
able attention in recent years. Among others, Bouzebda and Keziou (2010), Kara-
grigoriou and Mattheou (2010), Mattheou and Karagrigoriou (2010), Toma (2007),
Toma (2009), Toma and Leoni-Aubin (2010), Toma and Broniatowski (2011) have
developed divergence based estimation and testing methods and proved advantages
of using these methods. In the same line of research, Broniatowski and Vajda (2009)
introduced a family of pseudodistances between probability measures which they
used to define minimum pseudodistance estimators for general parametric models.
This new family of estimators is indexed by a positive tuning parameter α.

For two probability measures P and Q, admitting densities p, respectively q
with respect to some dominating σ-finite measure λ, these pseudodistances are
defined through

Rα(P, Q) :=
1

α + 1
ln
∫

pαdP +
1

α(α + 1)
ln
∫

qαdQ − 1
α

ln
∫

pαdQ (2.1)

for α > 0 and satisfy the limit relation

Rα(P, Q) → R0(P, Q) :=
∫

ln
q

p
dQ for α ↓ 0. (2.2)
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Note that R0(P, Q) coincides with the modified Kullback-Leibler divergence.
Let P be a parametric model with parameter space Θ ⊂ Rd and assume that

every probability measure Pθ in P has a density pθ with respect to the Lebesgue
measure.

The family of minimum pseudodistance estimators of the unknown parameter
θ0 is obtained by replacing the hypothetical probability measure Pθ0 in the pseu-
dodistances Rα(Pθ, Pθ0) by the empirical measure Pn pertaining to the sample and
then minimizing Rα(Pθ, Pθ0) with respect to θ. When the true distribution of the
observations is associated to a measure P , the target parameter is the point θ0 ∈ Θ
corresponding to the measure Pθ closest to P according to the pseudodistance
Rα(Pθ, P ). In this parametric framework, the density pθ0 can be interpreted as
the projection of the true density p on the parametric family. Of course, if P is a
member of the family then pθ = pθ0 .

Eliminating the terms that not involve θ, the minimum pseudodistance estima-
tor (in symbol minRα estimator) is defined by

θ̂n(α) =

 arg infθ
[

1
1+α ln

(∫
pα

θ dPθ

)
− 1

α ln(
∫

pα
θ dPn)

]
if α > 0

arg infθ −
∫

ln pθdPn if α = 0.
(2.3)

or equivalently as

θ̂n(α) =

{
arg supθ Cα(θ)−1 1

n

∑n
i=1 pα

θ (Xi) if α > 0

arg supθ
1
n

∑n
i=1 ln pθ(Xi) if α = 0

(2.4)

where Cα(θ) =
(∫

p1+α
θ dλ

)α/(1+α).
For α > 0, the min Rα estimator entails solving the estimating equation

n∑
i=1

pα−1
θ (Xi)ṗθ(Xi) − cα(θ)pα

θ (Xi) = 0,

where cα(θ) =
∫

pα
θ ṗθdλ∫

pα+1
θ dλ

, while for α = 0 the estimating equation is

n∑
i=1

ṗθ(Xi)
pθ(Xi)

= 0. (2.5)

Note that (2.5) is the equation defining the classical maximum likelihood estimator
(MLE).

In the present paper our interest is on the normal location-scale model. When
P is the normal location-scale model, denoting θ0 := (µ0, σ0) the parameter of
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interest, the definition of a minRα estimator of θ0 corresponding to a positive α
becomes

θ̂n(α) = arg sup
µ,σ

1
n

(√
α + 1

σ
√

2π

)α/(α+1) n∑
i=1

exp

(
−α

2

(
Xi − µ

σ

)2
)

(2.6)

where θ̂n(α) = (µ̂n(α), σ̂n(α)). In the rest of the paper we are most interested by
the case positive α, since the case α = 0 leads to the well known classical maximum
likelihood procedure.

2.2 Robustness properties

The tuning parameter α which indexes the class of estimators balances infinitesimal
robustness and asymptotic efficiency.

The robustness measure that we use in the present paper is the influence func-
tion of the statistical functional corresponding to the estimator. Recall that, a map
T defined on a set of probability measures and parameter space valued is a statisti-
cal functional corresponding to an estimator θ̂n of the parameter θ, if θ̂n = T (Pn),
where Pn is the empirical measure associated to the sample. As it is known, the
influence function of T at Pθ is defined by

IF(x; T, Pθ) :=
∂T (P̃εx)

∂ε

∣∣∣∣∣
ε=0

where P̃εx := (1 − ε)Pθ + εδx, δx being the Dirac measure putting all mass at
x. The influence function measures the standardized effect of an infinitezimal
contamination in a point x on the asymptotic value of the estimator. Whenever
the influence function is bounded with respect to x the corresponding estimator is
called robust.

For fixed α > 0, the statistical functional corresponding to the minRα estimator
defined by (2.4) is

Tα(Q) = arg sup
θ

∫
pα

θ dQ

Cα(θ)
(2.7)

and the corresponding influence function is

IF(x; Tα, Pθ) =
∂

∂ε
Tα(P̃εx)

∣∣∣∣
ε=0

= Mα(θ)−1[pα−1
θ (x)ṗθ(x) − cα(θ)pα

θ (x)] (2.8)

where

Mα(θ) =
∫

pα−1
θ ṗθṗ

t
θdλ −

∫
pα

θ ṗθdλ(
∫

pα
θ ṗθdλ)t∫

pα+1
θ dλ

(2.9)

ṗθ being the derivative of pθ with respect to θ.
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Assuming that Mα(θ) is finite, IF(x; Tα, Pθ) is a bounded function of x whenever
pα−1

θ (x)ṗθ(x) and pα
θ (x) are bounded. For example, this is true for any α > 0 in the

normal location-scale model, unlike other minimum divergence procedures, such as
those based on the Hellinger distance.

Indeed, the influence function of the statistical functional Tα corresponding to
the estimator (2.6) is given by

IF1(x; Tα, Pθ) = (α + 1)3/2(x − µ) exp

(
−α

2

(
x − µ

σ

)2
)

IF2(x; Tα, Pθ) =
σ(α + 1)5/2

2

[(
x − µ

σ

)2

− 1
α + 1

]
exp

(
−α

2

(
x − µ

σ

)2
)

where IF1(x; Tα, Pθ) represents the influence function of the mean estimator µ̂n(α)
and IF2(x; Tα, Pθ) the influence function of the estimator σ̂n(α) of the standard
deviation σ. Note that the above influence functions correspond to redescending
estimators, meaning that the IFs approach to zero as |x| → ∞. Therefore large
outliers will have a very reduced influence on the estimations.

2.3 Asymptotic properties and choice of α

For fixed α, the solution of the optimization problem (2.4) is an M-estimator and
the asymptotic distribution can be derived from existing theory (Hampel et al
(1986), van der Vaart (1989), Broniatowski et al. (2011)).

Suppose that X1, . . . , Xn are i.i.d. random variables with a distribution associ-
ated to the measure P . Under standard regularity conditions it hold:

1. There exists a sequence θ̂n(α) which converges to θ0 in probability as n → ∞.

2. For any consistent sequence θ̂n(α),
√

n(θ̂n(α)− θ0) converges in distribution to
a multivariate normal with mean vector zero and the covariance matrix

Vα(θ0, P ) = Jα(θ0)−1Kα(θ0)Jα(θ0)−1 (2.10)

where

Jα(θ) = −Hθ

[∫
h(θ, x)p(x)dx

]
Kα(θ) =

∫
∂

∂θ
h(θ, x)

[
∂

∂θ
h(θ, x)

]t

p(x)dx

with h(θ, x) = pα
θ (x)

Cα(θ) , when α > 0, Hθ denoting the second derivative (the
Hessian matrix).
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Table 1. MSE in the case of noncontaminated data

α = α∗ MLE α = 0.5 α = 1
n = 50 0.0392 0.0314 0.0403 0.0631
n = 100 0.0149 0.0147 0.0186 0.0273
n = 500 0.0029 0.0029 0.0037 0.0053

In the particular case α = 0, the asymptotic covariance matrix V0(θ0, P ) of the
MLE is given by the formula (2.10) with

J0(θ) = −
∫

p̈θ(x)
pθ(x)

p(x)dx +
∫

ṗθ(x)ṗθ(x)t

p2
θ(x)

p(x)dx

K0(θ) =
∫

ṗθ(x)ṗθ(x)t

p2
θ(x)

p(x)dx

p̈θ being the second derivative of pθ with respect to θ. The above expressions follow
directly from Theorems 5.14 and 5.41 in van der Vaart (1998). If α = 0 and the
model is correctly specified, i.e. p(x) = pθ0(x), it can be seen that Kα(θ0) = Jα(θ0)
and Vα(θ0) is just the inverse of the Fisher information matrix.

In the case of the univariate normal model, it holds

h(θ, x) =
(√

α + 1
σ
√

2π

)α/(α+1)

exp

(
−α

2

(
x − µ

σ

)2
)

. (2.11)

Different values of α correspond to estimators with different robustness and ef-
ficiency levels. One approach for choosing α is to select the estimator with the
largest empirical efficiency among all min Rα estimators with α ≤ 1. (We do not
take α > 1 since the corresponding estimators have unacceptable low asymptotic
efficiency.) In this sense, we consider the ratio

Λ(α, θ0, P ) = V0(θ0, P )V −1
α (θ0, P ), (2.12)

where Vα(θ0, P ) is given by (2.10) (see Ferrari and Young (2010) for a similar
formula). Since θ0 and P are unknown, we consider a grid of escort parameters
A = {α1, . . . , αr} and compute the estimates θ̂n(α1), . . . , θ̂n(αr). Then we choose
α∗ defined by

α∗ := arg max
α∈A

tr{Λ̂(α, θ̂n(α), Pn)}, (2.13)

where Λ̂(α, θ̂n(α), Pn) is obtained from Λ(α, θ0, P ) by replacing θ0 with the estimate
θ̂n(α) and P with the empirical measure Pn associated to the sample.
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3 Monte Carlo simulations

We performed a Monte Carlo simulation study in order to evaluate the performance
of the proposed estimators. We investigated the efficiency and robustness for vari-
ous levels and type of contamination. For a sample size n we generated B samples
containing about (1 − ε)n observations from N (µ0, σ0), while the proportion εn
comes from the contaminating distribution N (µc, σc). We fixed µ0 = 0, σ0 = 1 and
generated samples of size n = 50, 100, 500, with contamination ε = 5%, 10%, 20%,
for each configuration the number of replications being B = 1000.

We considered the min Rα estimator with α selected by the formula (2.13), the
MLE, as well as the min Rα estimators with α = 0.5, respectively with α = 1.

Table 2 presents the mean squared errors of these estimators, when µc = 2, 4, 6, 8
and σc = σ0, while Table 3 presents the mean squared errors of the same estimators
when µc = µ0 and σ2

c = 2, 4, 6, 8. The results in these tables are obtained for n = 50.
Similar results are given in Tables 4,5,6,7 for n = 100, 500.

As it can be seen, in the presence of contamination, the minRα estimators
outperform the MLE. Few exceptions are for σ2

c = 2, situation in which the con-
taminating distribution is very close to the true one. However, the mean square
errors of the MLE and of the minRα estimator with α = α∗ are very close in this
particular case. Generally, for contaminated data, the best results are provided by
the min Rα estimator with α = 0.5. In the meantime, the choice α = α∗ leads to
estimations which are close to the best ones in most cases. Also, when the data
are not contaminated, the minRα estimator with α = α∗ is very close to the MLE
which provides the best results in this case. Such results are given in Table 1.

Thus, the proposed procedure for choosing α leads to estimations which tend
to be close to the best ones in each case. Usually in practice we do not dispose of
any information, whether the data are contaminated or not. Therefore the minRα

procedure with α∗ selected could be preferred, being an adaptive one, flexible for
each situation in part.

4 Real data example

We apply our method to 263 monthly observations of the log-returns of the Stan-
dard & Poor’s 500 from December 1987 to October 2009. Figure 1 shows a normal
quantile plot for these data. While the bulk of the data follows normality fairly
closely, there are values in the tails which depart from normality in various degrees.

In Table 8 we give the estimates of the mean and of the standard deviation
computed with min Rα corresponding to α∗ and to α ∈ {0, 0.5, 1}. A visual rep
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Table 2. MSE when n = 50 and µc = 2, 4, 6, 8

α = α∗ MLE α = 0.5 α = 1
ε = 5%

µc = 2 0.0422 0.0389 0.0412 0.0617
µc = 4 0.0731 0.1172 0.0451 0.0694
µc = 6 0.0510 0.3344 0.0416 0.0674
µc = 8 0.0413 0.7612 0.0417 0.0641

ε = 10%
µc = 2 0.0982 0.0957 0.0690 0.0822
µc = 4 0.3550 0.4906 0.0644 0.0710
µc = 6 0.1432 1.4644 0.0471 0.0696
µc = 8 0.0467 3.1122 0.0418 0.0652

ε = 20%
µc = 2 0.2661 0.2684 0.1944 0.1691
µc = 4 1.0282 1.4360 0.3305 0.1091
µc = 6 0.3385 3.9702 0.0606 0.0777
µc = 8 0.0633 7.9597 0.0475 0.0795

Table 3. MSE when n = 50 and σ2
c = 2, 4, 6, 8

α = α∗ MLE α = 0.5 α = 1
ε = 5%

σ2
c = 2 0.0366 0.0302 0.0378 0.0618

σ2
c = 4 0.0404 0.0379 0.0413 0.0616

σ2
c = 6 0.0400 0.0467 0.0392 0.0615

σ2
c = 8 0.0454 0.0571 0.0420 0.0658

ε = 10%
σ2

c = 2 0.0376 0.0336 0.0405 0.0611
σ2

c = 4 0.0570 0.0613 0.0475 0.0676
σ2

c = 6 0.0648 0.0945 0.0481 0.0691
σ2

c = 8 0.0652 0.1375 0.0481 0.0655
ε = 20%

σ2
c = 2 0.0484 0.0431 0.0481 0.0704

σ2
c = 4 0.0858 0.1069 0.0624 0.0786

σ2
c = 6 0.1137 0.2017 0.0681 0.0787

σ2
c = 8 0.1250 0.3473 0.0718 0.0824
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Table 4. MSE when n = 100 and µc = 2, 4, 6, 8

α = α∗ MLE α = 0.5 α = 1
ε = 5%

µc = 2 0.0310 0.0323 0.0254 0.0329
µc = 4 0.0715 0.1485 0.0241 0.0317
µc = 6 0.0202 0.4758 0.0200 0.0290
µc = 8 0.0181 1.0836 0.0198 0.0303

ε = 10%
µc = 2 0.0787 0.0807 0.0501 0.0475
µc = 4 0.3979 0.4737 0.0381 0.0363
µc = 6 0.0795 1.4245 0.0220 0.0316
µc = 8 0.0199 3.0675 0.0216 0.0309

ε = 20%
µc = 2 0.2517 0.2532 0.1805 0.1391
µc = 4 1.2165 1.4123 0.2982 0.0494
µc = 6 0.1744 3.9703 0.0266 0.0357
µc = 8 0.0239 7.9887 0.0238 0.0356

Table 5. MSE when n = 100 and σ2
c = 2, 4, 6, 8

α = α∗ MLE α = 0.5 α = 1
ε = 5%

σ2
c = 2 0.0163 0.0160 0.0197 0.0284

σ2
c = 4 0.0205 0.0230 0.0222 0.0310

σ2
c = 6 0.0219 0.0331 0.0216 0.0309

σ2
c = 8 0.0223 0.0476 0.0212 0.0296

ε = 10%
σ2

c = 2 0.0171 0.0173 0.0204 0.0298
σ2

c = 4 0.0268 0.0374 0.0236 0.0311
σ2

c = 6 0.0352 0.0696 0.0266 0.0332
σ2

c = 8 0.0366 0.1139 0.0265 0.0332
ε = 20%

σ2
c = 2 0.0254 0.0264 0.0254 0.0339

σ2
c = 4 0.0621 0.0884 0.0407 0.0432

σ2
c = 6 0.0881 0.1944 0.0470 0.0445

σ2
c = 8 0.0892 0.3155 0.0492 0.0438
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Table 6. MSE when n = 500 and µc = 2, 4, 6, 8

α = α∗ MLE α = 0.5 α = 1
ε = 5%

µc = 2 0.0191 0.0200 0.0100 0.0090
µc = 4 0.0648 0.1397 0.0057 0.0058
µc = 6 0.0038 0.4657 0.0041 0.0057
µc = 8 0.0035 1.0749 0.0041 0.0059

ε = 10%
µc = 2 0.0663 0.0680 0.0336 0.0225
µc = 4 0.4642 0.4658 0.0160 0.0071
µc = 6 0.0041 1.4286 0.0043 0.0059
µc = 8 0.0036 3.0768 0.0041 0.0058

ε = 20%
µc = 2 0.2375 0.2380 0.1617 0.1129
µc = 4 1.4089 1.4104 0.2646 0.0111
µc = 6 0.0049 3.9557 0.0052 0.0068
µc = 8 0.0043 8.0141 0.0049 0.0069

Table 7. MSE when n = 500 and σ2
c = 2, 4, 6, 8

α = α∗ MLE α = 0.5 α = 1
ε = 5%

σ2
c = 2 0.0035 0.0036 0.0040 0.0057

σ2
c = 4 0.0059 0.0085 0.0047 0.0059

σ2
c = 6 0.0069 0.0160 0.0050 0.0061

σ2
c = 8 0.0075 0.0272 0.0052 0.0064

ε = 10%
σ2

c = 2 0.0053 0.0056 0.0052 0.0066
σ2

c = 4 0.0135 0.0226 0.0080 0.0080
σ2

c = 6 0.0163 0.0505 0.0082 0.0074
σ2

c = 8 0.0169 0.0896 0.0089 0.0079
ε = 20%

σ2
c = 2 0.0113 0.0123 0.0091 0.0098

σ2
c = 4 0.0439 0.0712 0.0207 0.0145

σ2
c = 6 0.0611 0.1670 0.0273 0.0164

σ2
c = 8 0.0579 0.2917 0.0295 0.0155
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Figure 1. QQ-plot of monthly log-returns of the S&P 500 stock index
Table 8. Expected return and volatility

estimates for monthly S&P 500

α = α∗ MLE α = 0.5 α = 1
µ 0.0048 0.0025 0.0045 0.0051
σ 0.0157 0.0185 0.0161 0.0151

resentation of this is given in Figure 2 where the normal densities N (µ̂n, σ̂n) are
superimposed on a histogram of the data. Excepting the case when MLE is used,
all the normal densities fit the main body of the data quite well. In Figure 3 we can
see the influence of the observations on the min Rα estimates with α = 1 (in the
left hand side the influence on the mean and in the right hand side, the influence on
the standard deviation). Extreme observations, both positive and negative, which
would affect the final estimates have nearly zero influence on the estimates.

Finally, we compute estimates for the annual expected returns and volatilities.
The estimates are obtained by the min Rα method with optimally chosen α, re-
spectively with α ∈ {0, 0.5, 1}. The results are presented in Figure 4. The min
Rα estimators with α = 0.5, 1 provide results that are less affected by the presence
of atypical observations in the sample. Also, the choice of α∗ allows for a flexible
treatment of the periods characterized by high (low) volatilities and by the presence
of anomalous data.
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Histogram of Standard & Poor’s data
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Figure 2. Histogram of the S&P 500 data with normal fits
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Figure 4. Annual estimates of expected return and volatility
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