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PRINCIPAL COMPONENT ANALYSIS AND CLASSIFICATION 

WITH APPLICATIONS IN MEDICINE 

             Abstract. PCA and a classification algorithm are summarized. These are then 

used for processing data collected by GfK Romania on urinary incontinence. 

For urology, the study conducted by GfK Romania is a premiere, it is a 

beginning helping  doctors to familiarize with the condition of patients in Romania.  

The study may also be useful to a drug company for an optimal distribution 

upon regions of products needed for treatment. Results obtained by GFK Romania 

were processed with data analysis techniques and presented further 
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Principal Component Analysis (PCA) is one of the most common methods of 

factorial analysis of multidimensional data. 

PCA analyzes quantitative numerical data in order to form homogeneous groups of 

statistical units and investigate interdependencies between variables. Being a 

descriptive method, it highlights fundamental properties of data, using  numerical 

parameters and graphic  plots. 
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The initial data is represented by different valued observations also known as variables, 

denoted by  on a set of statistical units numbered from . 

Frequently these data are presented as a table for which rows correspond to statistical 

units and columns represent the observed variables. 

  Variables  
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The generic element of the table, situated at the crossing between row  and column , 

, is the observation of variable  for the statistical unit . 

Data used for PCA must be quantitative, i.e. the notion of average must have meaning. 

PCA can be performed for data defined by a preference order between the  variables, 

but it is often recommended to apply Correspondence Analysis to this data.  

Quantitative variables can be homogeneous (same units of measure, dispersion of same 

magnitude as the data) or heterogeneous. The variables can be discrete (can only take a 

finite number of values) or continuous (can take any value inside an interval). These do 

not affect the PCA method since the fundamental property of data is still that of being 

quantitative. 

PCA will provide relevant results for sufficiently large data tables. The number of 

statistical units should be greater than 15 and the number of rows superior to 4. 

Obviously, this is only a suggestion, since often we can perform PCA on a smaller data 

set. Most commonly in practice, tables have hundreds of rows (statistical units) and 

tens of columns (variables). 

To make easier the interpretation of results, we can insert in the table supplementary 

data. Supplementary statistical units are those statistical units for which we have 

observations upon the variables, but we do not wish to take them into account when 

computing the statistical parameters. Similarly, we can also introduce supplementary 

variables.  

Using the supplementary data we can characterize groups of statistical units on graphic 

plots, or highlight bonds between initial variables and various other variables. 



 

 

 

 

Principal Component Analysis and Classification with Applications in Medicine 

____________________________________________________________________ 

In the beginning, we must define (by measuring) the distance or similitude between 

two statistical units. Two statistical units are similar if the observed variables take 

similar values. 

Our objective is to quantify the distance between two statistical units, reflecting as 

much as possible reality – we must take into account all the variables (except 

supplementary ones) in order to define the function which expresses the distance 

between two statistical units. A first definition for the distance function would be the 

sum of the squares of the distances between the variable observations. This definition 

is not satisfactory because it would depend on the measurement units of the statistical 

units. 

To stabilize the distance, we must center and reduce the data, obtaining the formula: 

                                   
The distance no longer depends on the units of measure in which the variables are 

expressed. Using the formula above, we can calculate all distances between statistical 

units, that is  distances for  statistical units. 

PCA best describes the data, providing a system of orthonormal axes conserving as 

good as possible the distances between data. The axes have additional properties: they 

are the straight lines that best fit the cloud of points corresponding to observations 

according to the least squares criterion and they are called the factor axes. Their 

directing vectors of the axes are called eigenvectors and are denoted by . 

Each eigenvector  has the components: 

                                    
The axes origin characterizes the statistical unit defined by the average of the initial 

variables. This property has fundamental consequences in interpreting the results. 

Next, the axes are taken in the descending order of closeness to the statistical units. 

The plane  will be the closest to the statistical units. On each projection plane the 

distances between points are inferior to the distances between the statistical units. 

A principal component denoted by  is the list of coordinates of statistical units for the 

factor axis generated by . Each principal component defines a new variable, because 

for each statistical unit there is a corresponding coordinate on the factor axis. 

The principal components are centered and each pair is uncorrelated. They have great 

importance in interpreting the results as they explain the relationships between initial 

variables and justify the formation of homogeneous groups of statistical units. In doing 

this, we use correlation coefficient between principal components and initial variables. 

The dispersion of a principal component is called the eigenvalue or inertia 

corresponding to factor axis of same rank. The eigenvalues  are sorted in descending 

order and their number is equal to the number of initial variables, . Each factor axis 
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corresponds to an eigenvalue. We usually take into account only the first  nonzero 

eigenvalues. 

The eigenvectors which generate the factor axes are the eigenvectors of the correlation 

matrix associated to the eigenvalues. These vectors  

 
are unitary (the sum of the squares of their components is equal to 1) and orthogonal 

(the sum of products of components of same rank for any pair of different vectors is 

null). 

The coordinates  of the statistical units on the axis generated by  is given by 

                                                 
The computation of coordinates of supplementary statistical units is performed using 

the same formula but without modifying the average and dispersion used in 

determining the reduced centered value of a variable. We use the formula for data 

reconstruction which expresses the reduced centered initial variables  as a function 

of the principal components: 

                          
Graphic representations are obtained using the above results. 

The statistical units are in the planes whose axes are the factor axes, which are 

orthonormal. The coordinate of the statistical unit  on the axis  is equal to the  

value of the principal component  referring to the statistical unit . The origin of the 

axes characterizes the statistical unit whose values are equal to the averages of the 

initial variables. These planes are called factor planes. 

Variables are represented using correlation circles: the coordinates of a variable are the 

correlation coefficients of this variable with respect to principal components which 

define the circle. 

Classification with Algorithm Based on an Ultrametric Distance 

 

Proving that a total hierarchy determines and is determined by an ultrametric 

structure on X, S.C. Johnson ([3]) has firstly proposed a general scheme for 

constructing a classification based on ultrametric distance. Essentially, this scheme 

determines a chain of partitions which contains classes with growing diameters. 

Let  δ  be an ultrametric distance on X. 

STAGE 0:  

Let P   
0 

  be the discrete partition, with   . 

 Define , L   
0 
= {1,2,…, n}. 
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STAGE T (T ≥≥≥≥ 1): 

 1
0
. Determine  min  P   
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, ,       

      I   
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}. 

3
0
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0
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t - 1  
\ I   

t
,  

          I   
t
 = indices of elements of  P   
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5
0
. If |P   

T| = 1, write L   
T  

= {P   
0
, P   

1
,…, P   

T
}. STOP. 

     If  |P   
T| > 1, go to 6

0 
. 

6
0
. Define ,  i, j ∈L   

t
. 

     Repeat the cycle for t = t +1. 

Proposition 1. For every i, j ∈L    
t 
 and  , it follows that 

. 

Proof. Inductively, in respect to t. 

Let  t = 1,  be. 

According to 1
0
 and 2

0
,  min . 

Let  and assume that . 

But,  max , contradicting the previous inequality. 

Hence, . 

In the same way, it results δ(x, v) = δ(u, v). On the other hand, if y ≠ v, then δ (y, v) ≠ 

. Interchanging the two pairs, we obtain another two inequalities, which complete 

the proof for t = 1. 

Further, let we presume that the proposition is verified   until the stage t -1, (t ≥ 2) and 

let   ∈P   
t
. If   ∈P   

t - 1
, the induction assumption ensures the truth of 

proposition. 

1) Suppose that  ∉P   
t - 1

,  ∈P   
t – 1

. Then there exist  i1, i2 ∈L   
t -1

 

such that  and  

 min k, l ∈ L   
t -1

, k ≠ l . 

Consider three situations: 

a) x, u belongs to the same set from the above union. Then, the desired 

equality results from induction assumption. 

b) . Then,  

min k, l∈L   
t -1

, k ≠ l . As in the first step, we 
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conclude that  and . But, from the 

induction assumption,  and, hence, . 

c) . It is sufficient to show that  and argue as 

in case b). 

Consider . Then we may write  max .  

In addition, if  , the inequality fails (otherwise one contradicts 

the choice of  ). 

2)  P    
t -1

. We may find  j1,  j2 ∈L    
t  

 such that 

 and . 

From the first part of the proof it results that  and . 

Interchanging  and  we obtain again from 1) that  and 

. 

 Corollary. If 
 
 for same  t ≥ 1 and  j, k ∈L   

t -1
, then 

 for every  l ∈L   
t -1

. 

 Proof. Indeed, the algorithm assures that . Then, we follow 

as in stage  t = 1 of the previous proof. 

 Remarks. 1) Proposition 1 justifies the instructions of the algorithm. Since 

 is the same with the distance between any two points of the two sets, we can 

take  if, at the step t,  has been obtained as a union which 

includes . 

      2) Moreover, the adopted notation has the usual signification: 
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 Proof. The first part of theorem is easily verified by induction. For the second 

affirmation it is sufficient to verify that ( )P
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 For t = 1 both properties are trivial. Suppose that they are true for t -1. Assume 
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 Let . Then, 

{ } ( ) t

t

j

t

i PPzyyxzx νδδδδ ==≤ −− 11 ,),(),,(max),( . Hence, ( ) t

t

iP νρ ≤−1
. 

Consequently, ( ) t

t

iP νρ =  and ( ) t
PP

P
t

νρ =
∈

max . 

 Finally, we notice that  . Indeed, in the case of equality the set  

would be formed at the step t -1. 

Theorem 2. The set  A 
 
  of distinct classes of partitions  P   

0
, P   

1
,…, P   

T
 
 
is 

a total hierarchy of  X, indexed by the mapping ν : A  → R
+
, ν (A) = ντ , if  τ = min {t | 

A  ∈ P   
t
}. 

 Proof. Evidently, from the inequalities Tννν <<< ...10 , above proved. 

 Corollary. The algorithm constructs a total ascending hierarchy. 

 Remark. The algorithm is well defined, that is, for each ultrametric distance 

constructs a unique total classification. 

Application in medicine of PCA and Classification 
Urinary incontinence is not so much a disease as a symptom that can be attributed to 

various physical or mental disorders: diabetes, stroke, Parkinson's disease, etc. 

Urinary incontinence may occur at any age, but shows an increased incidence in 

women over 60 years. The incidence in case of women over 65 years old is 25% and 

for men is approximately 15%. Moreover, 10% of children suffer from enuresis 

(involuntary or unconscious emission of urine at night). Some forms of urinary 

incontinence may be temporary and disappear after treatment (for a urinary infection, 

for example). Other forms are due to long-term problems, but in most cases, there are 

solutions to eliminate or keep them under control - especially if treatment is instituted 

promptly. In the absence of treatment, incontinence can be a disability that limits 

physical activities, social, sexual or professional life, without considering the increased 

risk of depression and anxiety. 

Treatment depends on the cause and severity of urinary incontinence. In many cases, 

urinary incontinence can be corrected with drugs. Often, medication is used in 

combination with behavioral techniques. Medications commonly used to treat urinary 

incontinence are anticholinergics, antispasmodics, antibiotics. Also, among commonly 

used medical devices are: urethral inserts - small devices inserted into the urethra, 

pessary - rubber rings to support bladder, catheter - flexible tube that is inserted into 

the urethra several times a day for drainage. 

 For urology, the study conducted by GfK Romania is a premiere. A beginning which 

helps doctors to familiarize with the condition of patients in Romania. The study may 

also help a drug company for an optimal distribution upon regions of products needed 

for treatment. Results obtained by GFK Romania were processed with data analysis 

techniques and presented further. 
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Presentation of data 
Subject: Urinary Incontinence 

Field:  03 – 22 August 2008 

Population:  Men and women aged 40 years old and over 

Region:  Nationally representative 

Interviewing technique:  Face-to-face, “paper and pencil”, in respondents’ home  

Sampling method Multi stratified sample on regions and locality size; 

Random distribution of sampling areas and statistic  
step for household selection;  

Birthday rule for selecting the respondent inside the household.  

Total number of interviews:  874 interviews 

Weighting:  On gender, age, region and residence area 

Questionnaire:  Developed by MMD and adapted by GfK Romania  

Approved by the client 

Research management:  GfK Romania  

 

 

OBJECTIVES  

The study covers the following objectives:  

• Incidence of urinary incontinence among the population over 40;  

• How common urinary leakage is, their amount and when they occur;  

• Finding the distributions of patients by geographical area. 

 

METHODOLOGY  

• The study was developed as part of GfK*Omnibus, unfolding between 3 and 

22 August 2008.  

• The interviews were conducted face to face at the respondents’ residence.  

• Sampling method was based on a probabilistic sample, stratified by region and 

size of locality. Selection of sampling areas and households were made 

randomly.  

• In the household, respondents were selected by the "first birthday".  

• Respondents were men and women from urban and rural area, aged at least 40. 

• For 874 respondents, the maximum sampling error is + / - 3.3% at a 

confidence of 95%.  

 

 

 The results obtained from the survey 

The Moment of Leaking Urine – analysis on region 

Base: N=874 respondents (all respondents)  
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Never - urine does not leak  82  89  85  81  74  80  77  88  

Leaks before you can get to 

the toilet  6  4  3  7  6  7  5  9  

Leaks when you cough or 

sneeze  7  3  9  6  12  4  7  4  

Leaks when you are asleep  2  1  1  4  1  0  1  0  

Leaks when you are 

physically active/ exercising  4  3  4  3  5  8  5  2  

Leaks when you have finished 

urinating and are dressed  2  1  1  4  5  0  2  3  

Leaks for no obvious reason  4  3  2  4  6  2  7  2  

Leaks all the time  0  0  0  0  0  0  1  1  

The Quantity of Urine Leaked – analysis on region Base: N=874 respondents (all respondents) 

Region  

%  

T
o
ta

l  

(b
a

se
=

8
7
4
)    

A
rd

ea
l  

(b
a

se=
1

5
3
)  

B
a

n
a
t/C

risa
n

a
/ 

M
a

ra
m

u
re

s  

(b
a

se=
1

0
4
)  

M
u

n
ten

ia
  

(b
a

se=
1

9
1
)  

O
lten

ia
  

(b
a

se=
9

4
)  

D
o

b
ro

g
ea

  

(b
a

se=
3

9
)  

M
o

ld
o

v
a

  

(b
a

se=
2

1
4
)  

B
u

ch
a
r
est  

(b
a

se=
7

8
)  

None  82  89  85  81  74  79  77  88  

A small amount  14  8  14  15  24  14  15  9  

A moderate amount  3  2  2  3  2  5  6  2  

A large amount  1  1  0  1  0  2  2  1  

The Frequency of Urine Leaking – analysis on region Base: N=874 respondents (all 

respondents) 
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Region  
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Never  
82  89  85  81  74  79  77  88  

About once a week or less often  
9  4  10  8  14  20  12  6  

Two of three times a week  
3  4  1  4  5  2  2  3  

About once a day  
1  1  1  2  3  0  2  0  

Several times a day  
4  2  4  5  4  0  5  3  

All the time  
1  1  0  0  0  0  3  0  

 

Results obtained using data analysis 

Time of urine leakage  

The results obtained from the surve 

 

Correlation  matrix 

     |   nici   ina    tust   dorm   acfi   imbr   fara   tot 

-----+-------------------------------------------------------- 

nici |   1.00 

ina  |  -0.04   1.00 

tust |  -0.68  -0.30   1.00 

dorm |  -0.15  -0.05   0.14   1.00 

acfi |  -0.59  -0.07   0.14  -0.33   1.00 

imbr |  -0.43   0.38   0.55   0.46  -0.40   1.00 

fara |  -0.75  -0.13   0.53   0.26   0.11   0.52   1.00 

tot  |   0.06   0.38  -0.20  -0.33  -0.27   0.08   0.26   1.00 

-----+-------------------------------------------------------- 
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The amount of urine leaked 
Correlation  matrix 

     |   delc   redu   mode   ridi 

-----+---------------------------- 

delc |   1.00 

redu |  -0.89   1.00 

mode |  -0.67   0.27   1.00 

ridi |  -0.11  -0.35   0.76   1.00 

-----+---------------------------- 
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Frequency of urine leaking 

Correlation  matrix 

     |   nic    1sap   23sp   1zi    muzi   tot 

-----+------------------------------------------ 

nic  |   1.00 

1sap |  -0.30   1.00 

23sp |   0.23  -0.26   1.00 

1zi  |  -0.42   0.02   0.53   1.00 

muzi |  -0.43  -0.36   0.13   0.70   1.00 

tot  |  -0.87  -0.06  -0.21   0.25   0.32   1.00 

-----+------------------------------------------ 
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Conclusions  
82% of respondents are not suffering of urinary incontinence. Among those who have 

urinary leakage (18% of the total number of respondents), half reported that they 

happen once a week or less, while 21% said they had urinary leakage several times a 

day. 
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Compared with the overall results, in Transylvania there are less people suffering from 

urinary incontinence, while in Dobrogea 20% of respondents said they had urinary 

leakage once a week or less (higher percentage than in the entire sample).  

Most (76%) who had urinary leakage consider that they are losing a small amount of 

urine. 61% of those who lose a small amount of urine said this happens once a week or 

less often. Several respondents in Oltenia lose smaller amounts of urine, compared 

with the total sample.  

Moments when urinary leakage occurs differ: 35% lose urine when coughing or 

sneezing, 30% before reaching the toilet, 25% do not have a precise time or reason, 

and for 20% it is caused by physical activity. The number of women over 70 in Oltenia 

suffering from urine leakage when coughing or sneezing is greater than the entire 

sample.We noticed  that from the  point of view of time when it causes loss of bladder, 

Banat, Crisana and Maramures are very similar to Ardeal. Bucharest is then added. 

Oltenia is like Moldova and Muntenia.  

The size of urinary leakage Ardeal with Bucharest joins first. Then, we  add the class 

consisting of Banat, Crisana, Maramures and Muntenia. Class consisting of Dobrogea 

and Oltenia, Moldova is also  added. The same classification is obtained and the 

frequency urinary loss. These are observations that may help later in the prevention of 

urinary incontinence. Also the results obtained may be useful for a drug company for 

an optimal distribution upon regions of products needed for treatment. 
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