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Abstract. The purpose of this article is to introduce the basic elements of  

what is considered to be the missing piece in the time series puzzle, cointegration. 

We begin by defining the spurious regression and the notion of nonstationary, the 

departure point for cointegrated series. We explain the meaningful core of 

cointegration, as equilibrium process, as well as the connection with the error 

correction model and with the Granger Representation Theorem. As the proof of 

the mentioned theorem offers a deeper understanding of the mechanisms lying 

behind the presented phenomena,, we decided to also provide a sketch of the 

proof. The article continues with procedures used to test for the existence of 

cointegration and to estimate the cointegration vectorial space. In order to 

support this, we will revise, as methodology and as well as logical deduction, the 

Engle Granger two stage procedure, mainly utilized in bivariate systems, and the 

Johansen procedure, utilized in multivariate systems. As an applicative study, we 

have chosen to set up a study on the stock market. The capital market having the 

stock exchange series evolving as Random Walk processes proves itself being an 

excellent candidate in testing the cointegrated systems. We have chosen three 

series of  stock exchange indexes, from Romania, France and US, series with 

daily frequencies. Using unit root tests ,Dickey Fuller, we find that the three 

series are nonstationary, moreover each of the series is integrated of first order. 

Afterwards we test the existence of cointegration with the Engle Granger 

procedure. We find that the series BET and CAC40 are cointegrated, thus we can 

estimate an error correction model, and we find that about 2% of the distance 

between the two series is corrected daily, as we have daily observations. 

Eventually we run the Johanses procedure – the three series form a cointegrated 

system, the dimension of the cointeration space is one. 

Key Words: cointegrated systems, spurious regression, Engle Granger two  

stages procedure, multivariate cointegration, Johansen procedure. 
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1. INTRODUCTION 
If mathematics discovers relationships between deterministic at the aid of 

rigorous arguments, scientists soon found out that many objects are not deterministic 

and have to be described using probabilities. That is how mathematics developed a 
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subfield Statistics. The birth of Econometrics came naturally, like Biometrics or 

Psychometrics, with time series one of its most important domains. 

The article starts with reviewing the spurious regression notion (mainly a 

regression estimated with non-stationary data and residuals), then we introduce the 

concept of cointegration.  

Box and Jenkins methodology (1970), suggested that removing unit roots 

through successive differencing ought to be necessary in order to “prepare” the series 

for regression analysis. This approach was criticized, as difficulties arose in inferring 

the long run equilibrium form the estimated model. If deviations from the equilibrium 

relationship affect future changes in a set of variables, estimating a differenced model 

would entail a misspecification error. (Dolado, Gonzalo, 1999). 

Starting from the above mentioned idea, Granger proposed an innovative 

approach, pointing out that a vector of variables, stationary after differencing, could 

have linear combinations that are stationary in levels. In 1987, Engle and Granger were 

the first to formalize the idea of integrated variables, that is variables sharing an 

equilibrium relation which turns out to be either stationary or of a lower degree of 

integration than the original series. They denoted this property as “co-integration”, 

which can be broadly defined as “co-movements among trending variables which 

could be exploited to test for the existence of equilibrium relationship within a fully 

dynamic specification framework”. (Dolado, Gonzalo, 1999) 

 After sketching the proof of the Granger representation theorem and then 

briefly outlining the error correction model, the study continues with the estimation 

models. By applying the estimation procedures on the capital market, we find that 

stock indexes from different countries show a comovement behavior. 

2. SPURIOUS REGRESSION 
For many years, equations involving nonstationary variables modeling 

macroeconomic or financial relationships were estimated and processed using 

simple/multiple linear regression. But, they soon found out that testing hypothesis on 

coefficients using standard regression lead to a statistically significant dependence 

where in fact there is none. The first ones who pointed out the misleading effects of 

using regression on nonstationary time series were Clive Granger and Paul Newbold.  

In 1974, they introduced the idea of (what will be called) spurious regression. 

By generating independent nonstationary series (random walks), regressing them on 

each other, they obtained the value of the t-statistic of the coefficient, calculated under 

the hypothesis that the true value of the coefficient equals zero (that is, the series are 

independent, as mentioned above). The authors found that the null hypothesis is 

rejected, that is the results show that the two series are correlated, thus not 

independent, as we might have expected. The experiment was conducted under the 

form of Monte Carlo simulation and the null hypothesis of a zero coefficient was 

rejected much more frequently than permitted by standard theory. These results are of 
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great importance. They show that many relationships between nonstationary economic 

variables may well be spurious.  

A first solution to this problem was proposed by statisticians working with 

time-series models. They suggested using first difference levels in regression, because 

most of the series used in macroeconomics are first order integrated (that is after 

differencing the series once, they become stationary). However, a problem arises, as 

economic theories are generally formulated for levels of variables rather than for 

differences. For example, theories of consumption are based on levels of consumption, 

income, etc and not on their growth rates. If one uses a model based on the first 

differenced of these variables will not make full use of the theories.  

An alternative approach suggests removing the linear trend from the variables. 

Still, removing time trends assumes that the variables we study follow separate trends, 

not plausible giving the long-run implications. 

The spurious regression is on of the implications in dealing with integrated 

variables, closely related with the notion of unit-roots. The presence of unit-roots gives 

rise to stochastic trends, characterized by that of making innovations permanent rather 

than transitory.  

3. COINTEGRATION 

Many time series are rather smooth, moving with local trends, or with long, 

irregular swings. However, time series that are smooth are very difficult to analyze 

with standard statistical methods, most of which assume that series are stationary. 

Macroeconomic theory relies on forces that, although seem to have divergent 

trajectories, tend on the long term to have resembling trends. Econometric studies 

focus on equilibrium relation or the equilibrium error, that is the distance between the 

economic variables and the curve that gives the equilibrium relation. 

Integration 

The starting point for the co-integration theory is Wold’s representation 

theorem, that is a stationary time series can be written as an infinite moving average 

series, generally approximated by a finite ARMA process.  

We start our theoretical presentation by defining some basic elements. First, a 

series integrated of order d, I(d) has a stationary, invertible ARMA representation after 

differencing it d times. Let’s note that an I(0) process has finite variance, innovations 

have only a temporary effect on the series’ values and the autocorrelation function 

decreases steadily in magnitude, whereas I(1) processes have infinite variance, 

innovations have permanent effect on the series’ values; ACF has values close to 1, 

even when the series goes to infinite. An I(1) series is rather smooth, with dominant 

long swings, as compared to an I(0) series.  

Theoretical infinite variance from I (1) series comes completely from the 

contribution of low frequencies, that is the long run part of the series. We also note 

that: 
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This gives: 

if tt yx ,  are both )(dI , then  the linear combination ttt ayxz −=  will also be )(dI . 

For  to be cointegrated, then the linear combination of them is stationary. 

In the stated relation, if , it means that  and  cannot drift too far apart and 

their difference will be I (0). 

We can broadly say that if the difference between a pair of integrated series 

can be stationary, then the two series are cointegrated: two smooth series, properly 

scaled can move and turn, slowly, in similar but not identical fashions, but the distance 

between them can be stationary. Clive Granger, in a lecture delivered in Stockholm, in 

Dec.2003, with the occasion of receiving the Bank of Sweden Prize in Economic 

Sciences in Memory of Alfred Nobel, makes the following suggestive comparison 

between the concept of co-integration and a string of pearls: 

“Suppose that we had two similar chains of pearls and we threw each on the 

table separately, but for ease of visualization, they do not cross one another. Each 

would represent a smooth series but would follow different shapes and have no 

relationship. The distance between the two sets of pearls would also give a smooth 

series if you plotted it.  

However, if the pearls were set in small but strong magnets, it is possible that 

there would be an attraction between the two chains, and that they would have similar, 

but not identical, smooth shapes. In that case, the distance between the two sets of 

pearls would give a stationary series and this would give an example of cointegration” 

(C.Granger, 2003). 

But the definition of cointegration in general sense is as follows:  

The components of the vector  are cointegrated of order d, b, noted as CI(d,b)  if: 

i).  All components of  are I(d) 

ii). There exists a vector α (not zero) so that  

 In the above relation, α is called the cointegrating vector. If  has N 

components (considering an N-dimensional space vs. two-dimensional space as 

above), there may be more than one cointegrating vector α, mathematical aspect that 

sustains the economic feature that it is possible for the variables to be governed by 

more than one equilibrium relations.  

We will assume that there are r linearly independent cointegrating vectors, 

with . In this case, we will have a cointegration matrix, with N x r 

dimensions of rank r. 



 

 

 

 

Bivariate and Multivariate Cointegration and Their Application in Stock Markets 

 

4. COINTEGRATION AND ERROR CORRECTING MODELS 

 The idea of the error-correction models is the following: a proportion of the 

disequilibrium from one period is corrected in the next period. For example, the change 

in price in one period might depend upon the excess demand in the previous period. 

 In a simple, two variable system, the classical error correction model would 

make connections between the change in one variable, past equilibrium errors and past 

changes in both variables. 

 In a multivariate system however we can define a general error correction 

representation in terms of L, the lag or backshift operator. We say that a vector  has 

an error correction representation if it can be expressed as: 

 

where   is a stationary multivariate disturbance 

             A(0) = I, A(1) – has finite elements, A(L) is a polynomial matrix. 

                                                           

             is the explanatory variable, that is the disequilibrium in the previous 

period. 

 The above relation is the base of the error correction representation model, 

meaning that the differenced  can be explained starting from the disequilibrium of 

the variable. 

Granger Representation Theorem 

 Let’s suppose that each component of  is I(1), this is the most common and 

often case analyzed. It means that changes in each component of  are zero mean 

purely nondeterministic stationary stochastic processes. The Wold representation of the 

process is: 

 

            The left side of the equation is the differenced , an I(0) process, while its 

right side is a polynomial in L, a  process and  - white noise.  

 The Granger representation, first stated by Granger in 1981, it’s a relationship 

between the error correction model and cointegration showing that cointegrated series 

can be represented by error correction models.  

 In the next paragraph we will  state the theorem:  

 Let  be an N x 1 vector with the representation:  

 



 

 

 

 

Gheorghe Ruxanda,  Smaranda Stoenescu (Cimpoeru) 

 

              cointegrated with d=1, b=1, CI(1,1), that is : 

 

  Then,  we will have: 

 1) Rank of C(1) is N-r. 

 2) There exists a vector ARMA representation: 

 

                 where A(0) =  and  A(1) has rank r, 

                d(L) is a scalar lag polynomial with d(1) finite 

           3) There exist N x r matrices  α, γ of rank r such that:  

 

4) There exists an Error correction representation with  an r x 1 

vector of stationary random variables: 

 

with  . 

           5) Vector   is given by: 

 

 

 where K(L) is a (r x N) matrix of lag polynomials given by  with all 

elements of K(1) finite with rank r  and . 

 6) If a finite vector autoregressive representation is possible, it will have the 

form given by: 

 

, 

with  and  and   - matrix of finite polynomials. 

We choose to present here also the guiding lines of the theorem’s proof , as it 

is relevant for a deeply understanding of its meaning.  

 First, we state the following lemma on determinants and adjoints of 

polynomial matrix.  Let  a matrix polynomial N x N on . The 

representation of the matrix could be: 
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 The rank of  and if  in  

 

Then: 

 

 

where  is the   identity matrix,  

Proof of the Lemma:  

 can be expressed in a power series in  as  

 

each  is a sum of finite number of products of elements of  and therefore is 

itself finite valued, having some terms from  and some from . As rank of 

, any product with more then  terms from  will be zero 

because this will be the determinant of a submatrix of larger order than the rank of 

. The non-zero terms will have r or more terms from , so we can write: 

 

and demonstrate the first part of the lemma. 

For the second statement, we will express the adjoint matrix (constructed by 

replacing the elements of the transposed matrix with its algebraic complements) in a 

power series in : 

 

Because the adjoint matrix is composed of order N-1 determinants, the above 

relation establishes that the first r-1  terms must be zero : 
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As the elements of  are products of finite numbers, H(0) must be finite. 

The product of a matrix and its adjoint will always give the determinant, so: 

 

by equating powers of  we get: , that is rank of . 

With that we have demonstrated the lemma. The proof of Granger’s 

representation theorem is starting from the Wold representation theorem:  

, 

for a vector of N random variables   which are co-integrated: ,  the 

cointegration vector. By multiplying the above relation to  we obtain: 

 

For  to be I(0),  must have rank N – r with a null-space containing all 

co-integrating vectors, thus  must be an invertible Moving Average 

representation, we demonstrated with this the first statement of the theorem.  

For the second statement, one uses the lemma with: 

. 

We will also sketch the proof of the fourth statement. By rearranging terms in 

  we obtain: 

 

 

5. COINTEGRATION IN A MULTIVARIATE SYSTEM 
Let’s review what we found out until now: a N-dimensional purely non-

deterministic stochastic process  is called cointegrated of order one-one, if each 

component of  is integrated of order one and if there exist r linearly independent N-

dimensional vectors , such that  are stationary. The number r is referred to as 

the dimension of the cointegration space spanned by  . 

In the context of a bivariate system, in 1987 Engle and Granger proposed a 

two-step procedure for inferring the existence of a linear combination and for 

estimating a basis vector. After normalization (with an arbitrary procedure), the 

procedure consists of two stages. In the first stage, we run an OLS regression of one 
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variable against the other. The estimated coefficient vector of this regression then gives 

a basis of the cointegrating space.  

The test for cointegration is based upon the residuals of this preliminary 

regression: if the residuals still contain a unit root, the null hypothesis of non-

cointegration cannot be rejected.  

The second stage consists in estimation the corresponding error correction 

model where the estimated residuals represent the disequilibrium terms. Although it 

seems possible to extend this method to higher dimensional systems, there appears a 

problem in choosing cointegrating vectors which are not sensitive to normalization. 

There are several approaches to this problem in the literature.   

Stock and Watson (1988), propose a test on the hypothesis that there are r 

cointegrating relations against the alternative that there are r+1 on the OLS estimates 

of the first order serial correlation matrix of the first N – r principal components of .  

However, in the same year Soren Johansen, based on maximum likelihood, 

offers an alternative, unified approach for estimating as well as testing. His idea is to 

analyze the canonical correlation between levels and first differences corrected for 

lagged differences and deterministic components like constants terms.   

 Let’s consider an N-dimensional Gaussian vector autoregression of order k+1 

with constant term µ: 

 

with a non-singular covariance matrix. If we re-parameterize the process, we obtain: 

 

with  defined as . The rank of  gives the dimension of the 

cointegration space. Under the null hypothesis that the dimension is r, the matrix  

when decomposed into: 

 

The matrix of cointegrating vectors β is not unique, but the space spanned by 

its columns vector is. The dynamics of the vector autoregression therefore depend on 

the “error correction” or “disequilibrium” vector  

The strength of Johansen’s procedure is the possibility of constructing 

likelihood ratio tests for the hypotheses that the space spanned by empirically 

determined cointegrating vectors contains a certain subspace spanned by the columns 
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of a N x m matrix K, , or is itself contained in a space spanned by the 

columns of matrix H. The test statistics are distributed as chi-squared.  

Economic models can then be tested not only by exploring the number of 

cointegrating relations but also the implications about the cointegrating space itself.  

6. APPLICATION 

Our goal is to test for cointegration using the Engle-Granger procedure and to 

test for multivariate cointegration. We take 497 observations representing values of 

stock indexes from Romania (BET), France (CAC40) and US (Dow-Jones).  

The series are on a daily frequency and they span the period 03.01.2006 – 

20.12.2007. First we will generate the natural log of the series, which we will use in 

our analysis. We will test stationarity and obtain that all three series are I(1) variables. 

The graph of the three series before differencing suggests AR(1) representations: 

 

Figure 1 – Graphs of the three stock indexes series, before differencing 

Performing Dickey-Fuller tests on each of the series, we cannot reject the 

hypothesis that every series has a unit root: 
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Figure 2 – Output table of the Dickey-Fuller unit root test for BET index 

One observes that the values for the probability and t-statistic are very strong 

in accepting the null hypothesis, that is the series have unit roots.  Consequently, the 

differenced series are stationary. This affirmation is sustained by the Dickey Fuller test 

(probability zero – the null hypothesis is rejected, the first differences of the series are 

stationary. This result is also sustained by the graphic of the autocorrelation and the 

partial autocorrelation function, without peaks or values statistically significant from 

zero: 

 

Figure 3 – Autocorrelation Function and Partial Autocorrelation Function 

of the differenced BET index series 
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In the next section we will test for cointegration using the basic Engle Granger 

procedure for two series. We will take two stock indexes: ln(BET) and ln(CAC40), 

both I(1). We form a group with the two series and perform the first stage regression, 

that is regressing one series over the other: 

 

        Figure 4 – Output table of the regression between BET and CAC40 indexes       

The results in the output table show that the evolution of BET index can be 

explained by that of the CAC40. This is only the first part of the test. From this 

regression we save the first-stage residuals.  

The next step in the procedure is to run an ADF test on the residuals to 

determine if it is stationary. The results show that the residual itself is stationary: 

 

Figure 5 – Output table of the Dickey-Fuller Unit Root test for the residuals of the   

above regression 
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The probability under 5% threshold determines the rejection of the null 

hypothesis (the series of residuals does not have a unit root), thus the residuals are I(0) 

and LNBET and LNCAC are cointegrated. 

The relationship between the two can be expressed as an error correction 

model (ECM), in which the error term from the OLS regression, lagged once, 

represents the error correction term. The ECM, considering DLNBET the dependent 

variable is: 

 

 

Figure 6 – Estimation of the Error Correction Model 

 

The coefficient of the lagged residuals acts as a measure of the speed of 

adjustment back to equilibrium following an exogenous shock. From the output table 

we can deduce that about 2% of the “disequilibrium”, the “distance” between the two 

indexes is corrected each day, as we have daily data. 

Multivariate Cointegration 

In this case, one of the approaches to test for cointegration is by using a Vector 

Autoregressive (VAR) approach.  

We assume by this that all the variables in the model are endogenous, although 

it is possible also to include exogenous variables, even though these do not have the 

role of dependent variables. We will use the Johansen Maximum Likelihood 

procedure, which gives the possibility to have more than a single cointegration 

relationship and determine the number of cointegrating vectors. For this test we will 

use all three indexes.  

We will start by determining the dimension of the cointegration space, using 

the cointegration Johansen test, using the trend assumption version. We find that the 

hypothesis that there is no cointegration vector is rejected at 1% level, that is with a 

99% probability, very accurate result. Also, the hypothesis that there are at most two 

cointegrating vectors is rejected, this at time at 5% level.  

The output table gives the following result: both at 5% and 1% significance 

levels, there is one cointegrating vector for the three series,  that is r = 1. We have the 
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matrix made up by the eigenvectors (corresponding to the largest eigenvalue). Below it 

is also represented the estimated alpha matrix: 

 

 

Figure 7 – Johansen’s output result 

 

7. CONCLUSIONS 

 

In practice, many pairs of macroeconomic series appear to have the property of 

cointegration, as suggested by economic theory. The cointegrated variables can be 

considered to be generated by the error correction model, in the sense that changes of 

one of the series is explained in terms of the lag of the difference between the series 

possibly after scaling, and lags of the difference of each series. Data generated form 

such a model are sure to be cointegrated. The error correction model is important in 

making the concept of cointegration practically and useful.  

We tested for cointegration (both bi- and multivariate cointegration) three 

stock indexes daily series, spanning a period of three years. We found that the series 

are cointegrated, thus there is evidence of a long-run relationship between the 

variables, as one might expect considering the specific capital market behavior.    

In the end, we may conclude, without exaggerate, that cointegration is “the 

missing piece in the approach to modeling groups of series” (C. Granger, 2003). These 

models have been used with success to provide short and medium-term forecasts for 

important macro-variables, such as consumption, income, investments, unemployment, 

all integrated series. 
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