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PORTFOLIO OPTIMIZATION WITH PRIOR STOCK SELECTION 

 

 
Abstract. We consider the problem of a decision maker, who is concerned 

with the management of a single-period portfolio that consists of holdings in n 

risky assets and is adjusted at the beginning of the time-period. The portfolio 

optimization problem consists in choosing the optimal rebalancing decisions in 

response to new information on market future prices (returns) of the risky assets in 

the portfolio in order to maximize the expected value of the end of period wealth in 

the presence of transaction costs, while satisfying a set of constraints. Rebalancing 

decisions are manifested in the revision of holdings through sales and purchases of 

assets. We assume that the assets are sufficiently liquid that market impacts can be 

neglected. 

We propose to solve the portfolio optimization problem in two steps: first, 

the phase of stock selection and second, the asset allocation phase. For the stock 

selection, we use principal component analysis to reduce the number of 

characteristics that will be taken into account. After that, applying clustering 

techniques, we find the similarities between the assets and we obtain a partition of 

the set of assets in clusters. Taking one element from each class, we get the set of 

assets that will be used to build the optimal portfolio. Once the stock selection 

completed, the optimal portfolio is obtained using an algorithm that combines the 

specific features of the convex programming with approximation techniques. 

The unique nature of our work is the combination of the classification 

theory with the portfolio optimization techniques and the study of this approach.      

To illustrate the behaviour of the proposed method, we consider the case 

of a portfolio of assets from Bucharest Stock Exchange. 

Keywords: portfolio optimization, stock selection, clustering. 
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1. INTRODUCTION 

 

Portfolio management is a topic of particular interest to multinational firms, 

financial intermediaries, institutional investors and individuals. Recent years have 

seen a growing interest in portfolio optimization problem and therefore, a rich 

literature on this field. The paper of Best and Hlouskova (2003) deals with the 
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portfolio selection problem of risky assets with a diagonal covariance matrix, upper 

bounds on all assets and transactions costs. Blog et al. (1983) consider the specific 

optimal selection problem of small portfolios. Kellerer et al. (2000) introduce 

mixed-integer linear programming models dealing with fixed costs and minimum 

lots and propose heuristic procedures based on the construction and optimal 

solution of mixed integer sub-problems. Konno and Wijayanayake (2001) propose 

a branch and bound algorithm for calculating a globally optimal solution of a 

portfolio construction/rebalancing problem under concave transaction costs and 

minimal transaction unit constraints. Schattman (2000) develops an iterative 

heuristic for finding a suboptimal solution for the portfolio problem. Meyer (1974) 

proved the convergence of a class of algorithms that includes the heuristic in this 

paper. If the portfolio optimization problem is nonlinear, the algorithm presented in 

Fulga (2006), that combines penalty concepts and sequential quadratic 

programming techniques can be used. In recent years, a large amount of work has 

been devoted to the dynamic portfolio optimization problem, see for example Birge 

(2008), Topaloglu et al. (2008), Fulga (2008, 2009a, 2009b). 

In Section 2 we present the mathematical model of the portfolio problem. 

Section 3 focuses on deriving a method for solving the portfolio optimization 

problem. A preliminary condition required is building the initial portfolio. The 

originality of our approach consists in providing a method that takes into 

consideration both aspects: the prior stock selection and the asset allocation phase. 

In this paper we develop a method for choosing the risky assets from a large data 

set. For stock selection, in Subsection 3.1 we use principal component analysis to 

reduce the number of characteristics that will be taken into account. After that, 

applying classification techniques, we obtain a partition of the set of assets in 

clusters. Taking one element from each class, we get the set of assets that will be 

used to build the optimal portfolio.  

The idea of obtaining clusters that characterize a set of assets can be found 

also in Kaski et al. (2009), Ştefănescu et al. (2008) and Mantegna (1999). The 

methodology based on clustering techniques is an useful tool for understanding and 

detecting the global structure, taxonomy and hierarchy in financial data. These 

methods were successfully applied to analyze stock and exchange markets. Brida 

and Risso (2007a, 2007b) have applied clustering techniques in order to classify 

the assets from Milano Stock Exchange and Frankfurt Stock Exchange using 

Pearson correlation. Once completed stock selection, in Subsection 3.2 the optimal 

portfolio is obtained using an algorithm that combines approximation techniques 

with the specific features of the convex programming.  

The rest of the paper goes as follows. In Section 4 we present and solve a case 

study using, besides the proposed methods, fundamental analysis and technical 

analysis, two techniques belonging to financial analysis. 

Section 5 summarizes the conclusions concerning this original approach and 

reveals the advantages of using the proposed technique. 

 

2. MATHEMATICAL MODEL OF THE PORTFOLIO PROBLEM 

 We are concerned with the single-period portfolio, that consists of 

holdings in n  risky assets. The portfolio is adjusted at the beginning of the time-
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period. The goal is to choose the optimal portfolio in order to maximize the 

expected value of the end of period wealth in the presence of transaction costs, 

while satisfying a set of constraints on the portfolio. 

The current holdings in each asset are the components of the wealth vector  

( )Tnwww ,...,1= . The total current wealth is then .

1

i

n

i

w∑
=

  

The amount of money transacted in each asset ,,1 ni =  is denoted by ix , with 

0>ix  for buying,  0<ix   for selling and  ( ) nT

n Rxxx ∈= ,...,1   is the vector of 

transactions. After transactions, the adjusted portfolio is xw + . Representing the 

sum of all transaction costs associated with x  by  ( )xf  , the budget or self-

financing constraint is ( ) .0
1

=+∑
=

xfxi

n

i

 The adjusted portfolio  xw +  is then 

held for a fixed period of time. At the end of that period, the return on asset  i   is 

the random variable  .,1,~ niri =  All random variables are on a given probability 

space. We assume knowledge of the first and second moments of the joint 

distribution of ( ) ,~,...,~~
1

T

nrrr = ( ) ,E r r=% ( )1,..., ,
T n

nr r r R= ∈      

( )( )( ) .
T

E r r r r C− − =% %  A riskless asset can be included, in which case the 

corresponding  ir   is equal to its (certain) return, and the i
th
 row and column of C 

are zero. 

The end of period wealth is a random variable, ( )xwrw T += ~~ , with expected 

value and variance given by ( ) ( ) ,TE w r w x= +%  respectively, 

( )( )( ) ( ) ( )
2

.
T

E w E w w x C w x− = + +% %    The budget constraint can also be 

written as an inequality, ( ) .0
1

≤+∑
=

xfxi

n

i

 With some obvious assumptions 

( )0,  0,  1,if r i n≥ > = , solving an expected wealth maximization problem with 

either form of the budget constraint yields the same result. The inequality form is 

more appropriate for use with numerical optimization methods. For example, if f  

is convex, the inequality constraint defines a convex set, while the equality 

constraint does not. We summarize the portfolio selection problem as 

( ) ( )
1

max ( )

 . .  0

,

T

n

i
i

r w x

PP s t x f x

w x X

=
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+ ≤

 + ∈
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where  ( ) nT

n Rrrr ∈= ,...,1   is the vector of expected returns,  

( ) nT

n Rwww ∈= ,...,1   is the vector of current holdings,  ( ) nT

n Rxxx ∈= ,...,1   

is the vector of amounts transacted,  RRf n →:   is the transaction cost 

function and 
nRX ⊂   is the set of feasible portfolios.  

 

3. THE METHOD 

 We propose to solve the portfolio optimization problem in two steps: first, 

the phase of stock selection and second, the asset allocation phase. For the stock 

selection, we use principal component analysis to reduce the number of 

characteristics that will be taken into account. After that, applying classification 

techniques, we find the similarities between the assets and we obtain a partition of 

the set of assets in clusters. Taking one element from each class, we get the set of 

assets that will be used to build the optimal portfolio. Once the stock selection 

completed, the optimal portfolio is obtained using an algorithm that combines 

approximation techniques with the specific features of the convex programming. 

 

3.1. THE STOCK SELECTION PHASE 

Nowadays huge amount of financial data are available. Consequently, it is 

very difficult to make use of such an amount of information and to find basic 

patterns, relations or trends in the data. We will apply data analysis techniques in 

order to discover relevant information in the field of financial data, that will be 

useful in stock selection phase and decision making process.  

Let consider we have collected information concerning a number of N  assets, 

each of them with P  characteristics, that represents financial indices and will be 

called variables. We denote by 
j

iy  the value of the j  variable for the asset i . The 

multivariate dataset will be represented using a matrix ( )
Pj

Ni
j

iyY
,1

,1

=
==  and can be 

visualized as a set of N  points in a P - dimensional data space. 

Principal Component Analysis (PCA) is an useful data analysis technique for 

finding patterns in high dimension data. PCA involves a mathematical procedure 

that transforms the P  variables, usually correlated, into a smaller number Pp ≤  

of uncorrelated variables, called principal components. PCA involves the 

calculation of the eigenvalue decomposition of a data covariance matrix, usually 

after mean centering the data for each attribute.  

After applying PCA, each asset i  will be characterized by p  variables, 

represented by an array of the parameters 
p

iii yyy ,...,, 21
, therefore it is possible to 

form p - dimensional vectors ( ) NiyyyY p

iiii ,1,,...,, 21 == , which correspond to 

the set of N  assets.  

Let suppose that we have obtained a set of analyzed data consisting of N  

objects: NYYY ,...,, 21 , where ( ) NiyyyY p

iiii ,1,,...,, 21 == . We will use clustering 

techniques in order to find the similarities and differences between the assets. The 
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clustering idea consists in assigning the vectors NYYY ,...,, 21  to one of n  classes 

nCCC ,...,, 21 . The goal of clustering analysis is to separate data into groups based 

on individual cases.  

After applying clustering techniques, we will build the initial portfolio by 

taking one asset from each class. We will obtain a portfolio consisting of  n  assets: 

nYYY ,...,, 21 . Our approach has an important advantage, as guarantees the diversity 

of the portfolio and consequently improve the optimizing process, because it starts 

with an initial portfolio composed by a wide range of assets. 

When the stock selection phase will be accomplished, we will have chosen n  

representative assets from the N  available ones. 

 

3.2. THE ASSET ALLOCATION PHASE 

In this section we focus on solving the portfolio problem ( )PP . We note that 

the n risky assets in the composition of the portfolio were chosen during the prior 

stock selection phase. 

The difficulty about solving ( )PP  problem consists in the presence of the 

transaction costs. Transaction costs can be used to model a number of costs, such 

as brokerage fees, bid-ask spreads, taxes, or even fund loads. In this paper, we 

assume the transaction costs to be separable, i.e., the sum of the transaction costs 

associated with each trade is ( ) ( )
1

,
n

i i
i

f x f x
=

= ∑   where  if   is the transaction cost 

function for asset 1, .i n=   

The simplest model for transaction costs is that there are none, i.e.,  

( ) 0.f x =  In this case the original portfolio is irrelevant, except for its total value. 

We can make whatever transactions are necessary to get the optimal portfolio. 

A better model of realistic transactions costs is a linear one, with the costs for 

each transaction proportional to the amount traded 

( ) ( ) ,  0
,  1, ,

0,  0

i i i i

i i

i

x x x
f x i n

x

ξ ≠
= =

=
 where ( )

,  0

,  0.

buy

i i

i i sell

i i

x
x

x

ξ
ξ

ξ

 >
= 
− <

 

Here  0buy

iξ >   and  0sell

iξ >   are the cost rates associated with buying and selling 

asset 1, .i n=  We will consider a model that includes fixed plus linear costs, but 

our method is readily extended to handle more complex transaction cost functions. 

In this case, the transaction cost function is given by 

( ) ( ) ( ) ,  0
,  1, ,

0,  0

i i i i i i

i i

i

x x x x
f x i n

x

ξ ψ + ≠
= =

=
 where ( )

,  0

,  0

buy

i i

i i sell

i i

x
x

x

ψ
ψ

ψ

 >
= 

<
  

and  0buy

iψ >   and  0sell

iψ >   are the fixed costs associated with buying and 
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selling asset 1, .i n=  Further comments on the transaction costs will be made in the 

next section. 

Evidently the function  if   is not convex, unless the fixed costs are zero. 

We assume from now on equal costs for buying and selling, the extension for 

non-symmetric costs being straightforward. The transaction cost function is then 

( ) ( ) ( )
1

,  0
,  ,  1, .

0,  0

n
i i i i

i i i i
i

i

x x
f x f x f x i n

x

ξ ψ
=

 + ≠
= ∑ = =

=
 

In the general case, costs of this form lead to a hard combinatorial problem. 

The simplest way to obtain an approximate solution is to ignore the fixed 

costs, and solve with  ( )i i i if x xξ=  . If iψ  are very small, this may lead to an 

acceptable approximation. In general, however, it will generate inefficient 

solutions with too many transactions. Note that if this approach is taken and the 

solution is computed disregarding the fixed costs, some margin must be added to 

the budget constraint to allow for the payment of the fixed costs.  

On the other hand, by considering the fixed costs, we discourage trading small 

amounts of a large number of assets. Thus, we obtain a sparse vector of trades; i.e., 

one that has many zero entries. This means most of the trading will be concentrated 

in a few assets, which is a desirable property. 

We assume that lower and upper bounds for  ix   are known i.e., there exist  

im   and  iM   such that  .i i im x M≤ ≤   We denote by  ig   the convex envelope of  

,if   which is the largest convex function which is lower or equal to  if   in the 

interval  [ ],i im M  . For  0im ≠   and  0,iM ≠   the function   ig   is given by 

( ) ( )( ) ,  0
 ,  1, ,

0,  0

i

i

b

i i im x

i i

i

a x x
g x i n

x

 + ≠
= =
 =

 where  ( )
,  0

.
,  0

i i

i

i i

M x
m x

m x

>
= 

<
  Using 

ig  for if relaxes the budget constraint in the sense that it enlarges the search set. 

Following the approach in Lobo et al. (2007) we consider the portfolio selection 

problem with ig  replaced for if , 

( ) ( )
1

max ( )

 . .  0

,

T

n

i
i

r w x

PP s t x g x

w x X

=

 +

′ + ≤

 + ∈

∑  

where ( ) ( )
1

.
n

i i
i

g x g x
=

= ∑  This corresponds to optimizing the same objective, the 

expected end of period wealth, subject to the same portfolio constraints, but with a 

looser budget constraint. Therefore, the optimal value of ( )PP′  is an upper bound 

on the optimal value of the unmodified problem ( ).PP  Since the problem ( )PP′  
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is convex, we can compute its optimal solution, and hence the upper bound on the 

optimal value of the original problem ( )PP , very efficiently. 

The algorithm 

Step 1. Building the initial portfolio. 

Apply clustering techniques, in order to find the composition of the initial 

portfolio. 

Step 2. Initialization. 

Set  k = 0. 

Initialize θ  and δ. 

Step 3.  Solving the problem ( )PP′  

Solve the convex relaxed problem ( )PP′  and let ( )1 1 1

1 ,..., nx x x= be the optimal 

solution of this problem. 

Step 4.  Solving the modified portfolio selection problem ( )modPP′  

Set k=k+1. 

Solve the modified portfolio selection problem ( )modPP′  

( ) ( )( )mod
1

max ( )

 . . 0

,

T

n
k

i i i
i

r w x

PP s t x g x

w x X

=

 +

′ + ≤

 + ∈

∑  

where ( ) ( )
1

n
k k

i i
i

g x g x
=

=∑  and ( )
1

, 1, .k i
i i i ik

i

g x x i n
x

ψ
ξ

θ−

 
 = + =
 + 

 

The optimal solution of this problem is denoted by ( )1 ,..., .k k k

nx x x=  

Step 5.  Checking stopping condition. 

If 
1 ,k kx x δ−

∞
− <  set 

kx x∗ =  and the algorithm stops. Otherwise, go to Step 4. 

Remark. In Meyer 1974 the convergence of a class of algorithms that includes our 

proposed algorithm is established. 

In the next section we consider an example of applying the stock selection 

phase for determining the initial composition of the portfolio in the particular case 

of Bucharest Stock Exchange.  

 

4. FUNDAMENTAL ANALYSIS AND TECHNICAL ANALYSIS  

FOR BUCHAREST STOCK EXCHANGE. CASE STUDY  

Applying clustering techniques in the stock selection phase must be preceded 

by two methods specific to financial analysis: fundamental analysis and technical 

analysis. 

Fundamental analysis tries to find a more realistic value for the assets, based 

on the information regarding the financial situation of the company, the domain of 
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its investments and the goods owned. The goal is to select the assets whose market 

price is smaller than the price obtained applying fundamental analysis. The result is 

creating the opportunity that market will recognize the smaller value of these assets 

in the future and consequently their price will rise. 

In other words, fundamental analysis tries to predict the way of evolution of 

the asset’s price during medium and long term, starting from the past and present 

achievements of the company and from the estimations about their future. 

Technical analysis studies the evolution of the transaction price. Technical 

analysis starts from the idea that all the relevant information regarding the market 

is included in the price, excepting the events like natural disasters, wars. Technical 

analysis captures very well the psychology of the investors. 

Depending on the access to the necessary information, on the time dedicated 

to the analysis and to the investment strategy chosen, each investor chooses the 

type of analysis which is  more suitable for him. Thus, speculators use technical 

analysis and long term investors use fundamental analysis. It is important that the 

two techniques are used together, in order to confirm the decision of buying or 

selling based on this kind of analysis. 

 We have collected information concerning a number of 40 assets, 

representing the assets from Bucharest Stock Exchange which had profit during the 

last two years. The goal is to find the similarities and differences between the 

assets and to build a diversified portfolio. Since Bucharest Stock Exchange is not 

mature enough, we can not afford to use only one financial index, such as, for 

example, the closing price. 

As we will take into account more characteristics for each asset, we will use 

data analysis. We consider the values of seven financial indices for each asset. 

Four of these indices are specific to fundamental analysis: market capitalization, 

the ratio between the current price and the net profit net per share in the last year, 

the turnover evolution between 2006 and 2007, the turnover evolution between 

2005 and 2006 and the profit evolution between 2006 and 2007. The other three 

are characteristic to technical analysis: the ratio between minimum price during the 

last year and current price, the ratio between maximum price during the last year 

and current price and the ratio between transaction value and capitalization.  

Table 1 contains, for each of the 40 assets considered, the values of seven 

characteristics: market capitalization ( )BvP / , the ratio between the current price 

and the net profit net per share in the last year (PER), the turnover evolution 

between 2006 and 2007 ( )20062007 /TT , the turnover evolution between 2005 and 

2006 ( )20052006 /TT , the profit evolution between 2006 and 2007, the ratio between 

minimum price during the last year and current price ( )PP /min , the ratio between 

maximum price during the last year and current price ( )PP /max  and the ratio 

between the transaction value and the capitalization ( )CapTrV / . We have used 

data available on Bucharest Stock Exchange site [18] from January 9, 2008. 
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Table 1. The values of seven characteristics considered for each asset 

 

Turnover evolution Price evolution  
 

Nr. 

 
 

Symbol 

 
 

P/Bv 

 
 

PER 










2006

2007

T

T  









2005

2006

T

T

 









P

Pmin  







P

Pmax

 

 
 

TrV /Cap 

1 ALR  0.55 2.51 0.93 1.36 0.97 6.29 0.016 

2 ALT  0.14 1.86 1 1.38 0.86 5.76 0.61 

3 ALU  0.44 2.03 1.14 1.21 0.83 8.09 0.38 

4 APC  0.61 8.73 1.54 0.98 0.93 2.21 0.08 

5 ARS 0.88 5.19 0.99 1.37 0.86 28 0.0345 

6 ATB  0.73 6.84 1.17 1.19 0.87 4.83 0.3 

7 BCC  1.79 107.26 1.61 1.69 0.912 7.03 0.53 

8 BIO  0.6 6.35 1.08 1.14 0.81 6.31 0.92 

9 BRD  1.66 4.51 1.8 1.3 0.79 2.81 0.12 

10 BRK  0.21 3.64 1.92 1.44 0.81 20.5 5.22 

11 BRM  0.34 10.8 0.92 0.8 0.912 7.03 0.27 

12 CBC 0.53 21.87 0.96 1.06 0.875 1.97 0.03 

13 CMF  3.54 18.9 1.08 1.16 0.97 1.31 0.03 

14 CMP  0.09 7.96 1.25 0.7 0.79 12.39 0.52 

15 COMI 0.71 5.4 2.05 0.88 0.73 3.06 0.55 

16 COTR  0.73 2.84 1.97 1.25 0.86 13.8 0.15 

17 DAFR  0.27 2.75 1.94 1.12 1 10 1.2 

18 EFO  0.37 12.2 1.07 1.05 0.8 2.9 0.04 

19 ENP  0.19 13.66 1.16 1.35 1 6.35 0.37 

20 IMP  0.19 6.74 0.93 0.91 0.66 12.4 1.67 

21 MECF  0.49 8.36 1.23 0.03 0.91 5.37 0.4 

22 OIL  0.63 61.98 1.02 0.94 0.767 4.64 0.07 

23 PPL  1.71 26.34 1.01 1.06 0.89 1.18 0.17 

24 PTR  1.25 4.19 1.4 1.14 0.51 4.75 0.37 

25 SCD  0.49 7.97 0.79 1.26 0.88 3.44 0.2 

26 SIF1  0.75 2.67 1.18 1.46 0.66 3.16 1.19 

27 SIF2  0.77 3.55 0.8 1.6 0.71 5.14 2.3 

28 SIF3  0.53 4.33 1.47 1.57 0.82 6.4 1.35 

29 SIF4  0.25 3.73 1.06 1.39 0.31 1.51 0.99 

30 SIF5  0.64 4.61 1.37 1.69 0.77 5.86 2.16 

31 SNO  0.68 5.08 1.11 1.2 0.9 3.37 0.06 

32 SNP  0.82 4.32 0.92 1.3 0.67 2.91 0.05 

33 SOCP  0.94 6.83 1.12 0.92 0.97 2.65 1.11 

34 SRT  0.23 3.76 0.76 0.84 0.83 2.09 0.92 

35 TEL  0.38 5.84 0.95 1.41 0.9 2.83 1.68 

36 TGN  0.94 6.35 1.14 1.18 0.77 2.24 0.11 

37 TUFE  0.55 10.23 1.16 1.05 0.86 4.45 0.08 

38 UAM  0.31 36.8 0.74 1.06 0.7 2.23 0.14 

39 VESY  0.3 11.92 0.98 0.98 0.77 2.67 0.67 

40 VNC  0.49 5.98 1.32 1.28 0.91 3.22 0.095 

 

We will apply data analysis techniques to find the similarities and differences 

between the shares from Bucharest Stock Exchange, using StatistiXL 1.8. We will 

give the interpretation of the results obtained using Principal Component Analysis. 

       Table 2 contains: the Principal Components (PCs), the eigenvalues of the 

correlation matrix between the variables, the percentage of the variance explained 
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by each PC and the cumulated variance. The eigenvalue corresponding to the first 

principal component is 1.824, which represents 26.063% of the sum of the 

eigenvalues, hence PC 1 explains 26.063% from the total variance. The second 

principal component corresponds to an eigenvalue of 1.441, which is 20.582% of 

the total. Cumulatively,  PC 1 and PC 2 explain 46.646% of the total variance. The 

third principal component corresponds to an eigenvalue of 1.167, which is 

16.677% of the total. Cumulatively, the first three PC explain 63.323% of the total 

variance. The succeeding PCs explain the remaining 36.677% of the variance.  

 

Table 2. The eigenvalues corresponding to PC, the percentage of the variance  

explained by each PC and their cumulative variation percentage 
 

Explained Variance (Eigenvalues) 

Value PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 

Eigenvalue 1.824 1.441 1.167 0.804 0.723 0.562 0.479 

% of Variance 26.063 20.582 16.677 11.481 10.328 8.024 6.844 

Cumulative % 26.063 46.646 63.323 74.804 85.131 93.156 100.000 

 

The graph represented in Figure 1 reveals the contributions of the original 

variables to both PC 1 (Principal Component 1) and PC 2. The graph shows the 

relationship between PC 1 (which explains 26.063% of the total variance) and PC 2 

(which explains 20.582% of the total variance). For example, CapTrV /  has a 

small contribution to PC 2, as seen from its small positive component on the PC 2 

axis, but a large contribution to PC 1, as seen from its large positive component on 

the PC 1 axis. These graphical representations of the contributions of the original 

variables to the PC axes are normalized to a convenient scale and reflect the 

relative values of the component score coefficients.  
 

 
 

Figure 1. The contributions of each variable to the principal components 
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Table 3 contains the principal component score coefficients, which  

represent the correlations between initial variables and principal components. 

These numbers provide the coefficients by which the principal component axes are 

defined and from which the actual principal component scores can be computed for 

each case. 

Table 3. Component Loadings (correlations between initial variables and 

principal components) 
 

Variable PC 1 PC 2 PC 3 PC 4 PC 5 PC 6 PC 7 

P/Bv -0.471 0.658 -0.142 -0.277 0.197 0.291 0.353 

PER -0.416 0.563 -0.134 0.393 -0.558 -0.162 -0.012 

T2007/2006 0.409 0.532 0.301 -0.584 -0.207 -0.140 -0.234 

T2006/2005 0.343 0.497 -0.581 0.215 0.391 -0.021 -0.313 

Pmin/P -0.224 0.326 0.734 0.283 0.397 -0.258 0.008 

Pmax/P 0.666 0.207 0.370 0.316 -0.137 0.508 0.007 

TrVal/Cap 0.807 0.113 -0.159 0.064 -0.011 -0.325 0.448 

         

The plot represented in Figure 2 shows the successive eigenvalues. It can be used 

to establish how many principal component axes should be considered as useful. 

As the first five eigenvalues decline quickly and the remaining eigenvalues form a 

relatively flat curve, the first five eigenvalues and their corresponding principal 

components should be retained.                                                .                                                                                         
.                                                    
 

 

                                   Figure 2. The eigenvalues plot 
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Figure 3 contains the tree obtained applying the clustering technique, which 

models the classification process. The tree graph (dendrogram) is a common means 

of graphically summarizing the clustering pattern. The dendrogram usually starts 

with all assets as separate clusters and shows the combination of fusions back to a 

single "root". The order of individuals shown in the dendrogram is that order in 

which the groups enter the clustering. The assets belonging to the same cluster are 

similar regarding the characteristics considered.  

In order to build a diversified portfolio, we will first chose the number n  of 

clusters that will be taken into account. We will take one asset from each cluster 

and we will obtain the initial portfolio. 

As a consequence of applying clustering techniques, we have selected a 

portfolio consisting of  n = 10 assets, each of them representing different classes: 

PPL, SCD, BRD, SIF1, CMP, BRK, ARS, UAM, OIL and BCC. We will use this 

initial portfolio to solve the optimal portfolio problem. 

 

5. CONCLUSIONS 

Many mathematical methods for the portfolio optimization problem for the 

real world use a certain composition of the initial portfolio without specifying how 

the risky assets were chosen.  

In this paper we have developed an original algorithm that take into 

consideration both aspects: the prior stock selection and the asset allocation phase.  

We apply the proposed techniques to solve a case study using, besides data 

analysis methods, tools belonging to financial analysis, such as fundamental 

analysis and technical analysis. 

Computational results show that the approach using classification provides 

useful results for the portfolio optimization problem. The proposed procedure 

allows us to build a diversified portfolio and improve the optimization algorithm. 
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Figure 3. The dendogram obtained applying clustering techniques 
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