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Abstract. Mean-variance portfolios constructed using maximum likelihood es-
timates of the mean and covariance matrix perform poorly in practice due to esti-
mation errors. For this reason, researchers have recently focused on robust mean-
variance portfolios which rely on stable estimates of the mean and covariance ma-
trix. In this paper we consider robust minimum pseudodistance estimators in the
framework of Markowitz’s mean-variance portfolio selection model. The use of these
estimators leads to robust weights for the optimal portfolio. Our numerical results
on empirical data sets confirm that the proposed portfolios are more stable than the
traditional mean-variance portfolios.
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1 Introduction

The mean-variance portfolio selection model proposed by Markowitz (1952) is one
of the most known models for asset allocation. Practitioners often use this model
although, in recent literature, it was underlined that the traditional approach can
lead to financially irrelevant sub-optimal portfolios. Among the reasons of this
drawback, an important role is played by the unbounded influence of the extreme
returns on the procedure. The mean-variance optimization method aims to find
the optimal portfolio which maximizes some objective function whose input pa-
rameters are the mean and the covariance matrix of the asset returns. The optimal
portfolio is very sensitive to inputs, these inputs being subject to estimation errors
of the expected return and covariance. Small changes in these estimates can in-
duce significant changes in the portfolio composition. Therefore, diverse attempts
were made to improve the performance of portfolio optimization. Some authors
suggested portfolio optimization using robust estimators. Among the papers that
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consider this approach, we recall Perret-Gentil and Victoria-Feser (2005), Welsch
and Zhou (2007), DeMiguel and Nogales (2009), Fabozzi et al. (2010), Grossi and
Laurini (2011).

Our approach in the present paper is based on using robust minimum pseudodis-
tance estimators of location and covariance. Pseudodistances are generalizations
of distances between probability measures usually not satisfying the triangle in-
equality. By its definition, a pseudodistance satisfies two properties, namely the
nonnegativity and the fact that the pseudodistance between two probability mea-
sures P and Q equals to zero, if and only if the two measures are equal. Note that
the divergences are moreover characterized by the information processing property,
i.e. by the complete invariance with respect to the statistically sufficient transfor-
mations of the observation space. In general, a pseudodistance may not satisfy this
property. The use of divergence measures in statistical inference is an important
issue. We refer to the books of Pardo (2006) and Basu et al. (2011) for a variety
of statistical methods based on divergences, as well as to some recent papers such
as Toma (2008), Broniatowski and Keziou (2009), Toma (2009), Toma and Leoni-
Aubin (2010), Bouzebda and Keziou (2010), Karagrigoriou and Mattheou (2010),
Panayiotis and Karagrigoriou (2011), Toma and Broniatowski (2011) and Vonta et
al. (2012) which develop divergence based estimation and test procedures. The
minimum pseudodistance estimators are defined by minimizing an empirical ver-
sion of pseudodistance between the assumed parametric model and the true model
underlying the data, by using the empirical measure pertaining to the sample. The
pseudodistances that we consider, as well as the corresponding minimum pseu-
dodistance estimators, are indexed by a positive escort parameter α which controls
the equilibrium between robustness and efficiency. We consider these estimators
in the case of the multivariate normal model and apply them in the framework of
Markowitz mean-variance portfolio selection model.

The content of this paper is organized as follows. In Section 2, we recall the
Markowitz mean-variance portfolio selection model. In Section 3 we present mini-
mum pseudodistance estimators of location and covariance together with their ro-
bustness properties. These estimators are used in the framework of the Markowitz
model in order to construct robust and efficient portfolios. In Section 4 some ex-
amples based on real data are given to illustrate the performance of this approach
for robust portfolio optimization.

2 The Markowitz mean-variance portfolio selection model

The Markowitz mean-variance portfolio selection model is one of the most known
and studied models for asset allocation. There is an extensive literature related to
this model and its applications (see for example Markowitz (1959), Fabozzi et al.
(2007), as well as some recent papers such as Dedu and Fulga (2011) and Şerban
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et al. (2011)).

Consider N financial assets and denote by X := (X1, . . . , XN )t the random
vector of the asset returns, Xi being the random variable associated to the return
of the ith asset, i = 1, . . . , N . Let µ = (µ1, . . . , µN )t := E(X) be the vector
of expected returns and Σ := cov(X) be the covariance matrix of the returns of
the assets. Denote by pi the weight of the ith asset in the portfolio and let p :=
(p1, . . . , pN )t. Then, the total return of the portfolio is given by the random variable∑N

i=1 piXi. The expected return of the portfolio is R(p) := E(
∑N

i=1 piXi) = ptµ

and the variance of the portfolio return is S(p) := Var(
∑N

i=1 piXi) = ptΣp.

The Markowitz’s approach for optimal portfolio selection consists of determin-
ing the portfolio p∗ solution to the following optimization problem. For a given
positive value of the parameter λ, representing the investor’s risk aversion, the
portfolio p∗ is solution of

argmax
p

{R(p)− λ

2
S(p)} (2.1)

with the constraint pteN = 1, where eN := (1, . . . , 1) is the N -dimensional vector
of ones. The solution to the optimization problem (2.1) is explicit and is given by

p∗ =
1

λ
Σ−1(µ− ηeN ) (2.2)

where

η =
etN

∑−1 µ− λ

etN
∑−1 eN

.

Different positive values of λ give different investment strategies and determine the
so-called mean-variance efficient frontier. The greater the value of λ, the more risk
averse the investor is. This is the case when short selling is allowed. When short
selling is not allowed, all the portfolio weights pi, i = 1, . . . , N , have positive values.

Traditionally, the unknown parameters µ and Σ are estimated using their sam-
ple counterparts, namely the maximum likelihood estimators under multivariate
normal distribution. It is known that the portfolio optimization based on sample
mean and covariance performs poorly in practice. Since the maximum likelihood
estimators of µ and Σ, which are inputs in the optimization procedure, are very
sensitive to outlying observations, the weights of the resulted portfolio, which are
outputs of this procedure, may be substantially affected by such observations.

Our approach for robust portfolio optimization is based on using robust mini-
mum pseudodistance estimators of location and covariance.



Aida Toma, Samuela Leoni-Aubin

3 Minimum pseudodistance estimators

Recently, Broniatowski et al. (2012) introduced a class of parametric estimators
called minimum pseudodistance estimators.

The considered family of pseudodistances is indexed by a positive tuning pa-
rameter α and is defined as follows. Let P and Q two probability measures with
densities p, respectively q, with respect to the Lebesgue measure. The pseudodis-
tance between P and Q is defined by

Rα(P,Q) :=
1

α+ 1
ln

∫
pαdP +

1

α(α+ 1)
ln

∫
qαdQ− 1

α
ln

∫
pαdQ

for α > 0 and satisfy the limit relation

Rα(P,Q) → R0(P,Q) :=

∫
ln

q

p
dQ for α ↓ 0.

We note that the pseudodistances Rα(P,Q) are related to the Renyi entropy func-
tionals as studied by Källberg et al. (2012).

Let (Pθ)θ∈Θ be a parametric model, with the parameter space Θ ⊂ Rd, and
assume that each probability measure Pθ has a density pθ with respect to the
Lebesgue measure. Let X1, . . . , XT be a sample on Pθ. A minimum pseudodistance
estimator θ̂n of the parameter θ is defined by

θ̂n := arg inf
θ
Rα(Pθ, Pn),

where Pn is the empirical measure pertaining to the sample, or equivalently as

θ̂n =

 arg supθ
1

TCα(θ)

∑T
i=1 p

α
θ (X

i) if α > 0

arg supθ
1
T

∑T
i=1 ln pθ(X

i) if α = 0

where Cα(θ) =
(∫

pα+1
θ dλ

) α
α+1 . Note that the case α = 0 leads to the definition of

the maximum likelihood estimator of the parameter θ.
When pθ is the N -variate normal density with θ = (µ,Σ)

pθ(x) =

(
1

2π

)N/2√
detΣ−1 exp

(
−1

2
(x− µ)tΣ−1(x− µ)

)
it holds

Cα(θ) =

(
1
2π

) Nα2

2(α+1) (
√
detΣ−1)

α2

α+1

(
√
α+ 1)

Nα
α+1
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and then the minimum pseudodistance estimators corresponding to positive α may
be written as

θ̂n = arg sup
θ
(
√
detΣ−1)

α
α+1

T∑
i=1

exp
(
−α

2
∥Xi − µ∥2Σ−1

)
,

where ∥Xi − µ∥2Σ−1 = (x− µ)tΣ−1(x− µ).
By direct differentiation with respect to µ and Σ, we see that the minimum

pseudodistance estimators of these parameters are solutions of the system

µ =
T∑
i=1

exp(−α
2 ∥X

i − µ∥2Σ−1)∑T
i=1 exp(−

α
2 ∥Xi − µ∥2

Σ−1)
Xi

Σ =

T∑
i=1

(α+ 1) exp
(
−α

2 ∥X
i − µ∥2Σ−1

)∑T
i=1 exp(−

α
2 ∥Xi − µ∥2

Σ−1)
(Xi − µ)(Xi − µ)t.

The definitions of the minimum pseudodistance estimators in the unidimen-
sional normal case, as well as some empirical results in this case are given in Toma
(2012).

For studying the robustness of an estimator the influence function is often used.
Recall that, a map T defined on a set of probability measures and parameter space
valued is a statistical functional corresponding to an estimator θ̂n of the parameter
θ, if θ̂n = T (Pn). As it is known, the influence function of T at Pθ is defined by

IF(x;T, Pθ) :=
∂T (P̃εx)

∂ε

∣∣∣∣∣
ε=0

where P̃εx := (1 − ε)Pθ + εδx, ε > 0, δx being the Dirac measure putting all mass
at x (see Hampel et al. (1986)). The influence function measures the standardized
effect of an infinitezimal contamination in a point x on the asymptotic value of
the estimator. Whenever the influence function is bounded with respect to x, the
corresponding estimator is called robust.

Broniatowski et al. (2012) derived the influence function of the statistical func-
tional Tα corresponding to a minimum pseudodistance estimator

IF(x;Tα, Pθ) = Mα(θ)
−1[pα−1

θ (x)ṗθ(x)− cα(θ)p
α
θ (x)],

where

Mα(θ) =

∫
pα−1
θ ṗθṗ

t
θdλ−

∫
pαθ ṗθdλ(

∫
pαθ ṗθdλ)

t∫
pα+1
θ dλ

and cα(θ) :=
∫
pαθ ṗθdλ∫
pα+1
θ dλ

, ṗθ being the derivative of pθ with respect to θ.
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When Pθ is the N -variate normal model and θ = (µ,Σ) is the parameter of
interest, the influence functions of the corresponding minimum pseudodistance es-
timators are

IF(x;µ, Pµ,Σ) = (
√
α+ 1)N+2(x− µ) exp

(
−α

2
∥x− µ∥2Σ−1

)
(3.1)

IF(x; Σ, Pµ,Σ) = (
√
α+ 1)N+4

[
(x− µ)(x− µ)t − 1

α+ 1
Σ

]
exp

(
−α

2
∥x− µ∥2Σ−1

)
.(3.2)

In the particular case α = 0, we find the influence functions of the maximum
likelihood estimators of location and covariance

IF(x;µ, Pµ,Σ) = x− µ

IF(x; Σ, Pµ,Σ) = (x− µ)(x− µ)t − Σ.

These influence functions are unbounded and consequently the maximum likelihood
estimators are not robust, as it is well known.

When α > 0, the estimators gain robustness, in this case the influence func-
tions (3.1) and (3.2) being bounded with respect to x. By using robust minimum
pseudodistance estimators of µ and Σ in formula (2.2), we obtain robust estimates
of the portfolio weights.

4 Application to real financial data

In this section we use empirical data sets to illustrate the stability and performance
of the proposed portfolios.

In a first example, we consider monthly log-returns of 3 indexes (BET, BET-
C, BET-FI) from the Bucharest Stock Exchange for the period January 2001 to
May 2012 included. Data come from Bucharest Stock Exchange (www.bvb.ro) and
are displayed in Figure 1. Figure 2 contains normal quantile plots, while Figure
3 presents boxplots for these data. All these graphical representations highlight
the presence of outliers among data. The normal quantile plots show that the
bulk of the data follows normality fairly closely, but values in the tails depart
from normality in various degrees. In this situation, we choose to use robust mini-
mum pseudodistance estimators for the vector of the expected returns and for the
covariance matrix of the returns. These estimators will be inserted in the opti-
mized portfolio according to the formula (2.2). For comparison with the classical
Markowitz’s approach, we also consider maximum likelihood estimates in the op-
timization procedure. Previous studies (Broniatowski et al. (2012)) showed that
a good choice of the tuning parameter associated to the pseudodistance is one not
far to zero, in order to achieve robustness and high efficiency of the estimation
procedure. We choosed α = 0.2 in our study. As noted before, the choice α = 0 in
pseudodistance corresponds to the maximum likelihood estimates.
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Figure 1. Monthly log-returns of the indexes BET, BET-C, BET-FI,
for the period January 2001 - May 2012
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Figure 2. Normal QQ-plots for monthly log-returns of the indexes
BET, BET-C, BET-FI

In Figure 4 expected returns estimates and variance estimates of the 3 indexes
are presented. The expected returns estimates obtained with robust minimum
pseudodistance estimators are superior to the ones provided by the classical maxi-
mum likelihood estimators, while the robust estimates of variances obtained with
minimum pseudodistance estimators are lower than the classical ones.

In Figure 5 mean-variance efficient frontiers are represented. First, short selling
is allowed, case in which we use the formula (2.2) for computing portfolio weights.
In this case, a comparison between the efficient frontier based on robust minimum
pseudodistance estimators and the efficient frontier based on classical maximum
likelihood estimators can be seen in the left hand side of Figure 5. Then, we
considered that short selling is not allowed. For this case, the two efficient frontiers,
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Figure 3. Boxplots for monthly log-returns (1: BET, 2: BET-C, 3:
BET-FI)
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Figure 5. Mean-variance efficient frontiers for the indexes BET,
BET-C, BET-FI
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namely the robust one based on robust minimum pseudodistance estimators and the
classical one based on maximum likelihood estimators are given in the right hand
side of Figure 5. Moreover, we provide an overview of all these efficient frontiers in
Figure 6. Note that, in both cases, the robust efficient frontier is situated higher
and more to the left than that based on classical maximum likelihood estimates.
This indicates that, for a given level of the portfolio variance, the total return of
the portfolio is higher when using robust estimates.

In a second example, we use an empirical data set representing monthly log-
returns of 8 assets from Bucharest Stock Exchange (ARS, ART, BRD, PEI, SIF1,
SIF3, SIF4, SNP). The data span from January 2004 to May 2012 and are provided
by www.tranzactiibursiere.ro. Time series of asset log-returns are given in Figure
7. In the case of SIF3, we remark the presence of large outliers in the sample.
Indeed, the price of this asset in October 2008 was 0.0008 RON and consequently
the log-returns constructed with this data are very distant with respect to the
other log-returns in the sample. But outliers in the data set come from the other
assets, too. This can be seen in Figure 7 and also in Figure 9 where boxplots of the
data are represented. Moreover, the normal QQ-plots from Figure 8 indicate the
deviation of the distribution of the data from the normal distribution. Thus, we
are motivated to apply a robust method in order to construct optimal portfolios.

Figure 10 (right hand side) shows how much the presence of extreme outliers
(especially determined by values of log-returns of SIF3) influenced the estimation of
variance when using the classical maximum likelihood estimators. In contrast, the
robust estimators reduced significantly the effect of large outliers. Also, the robust
estimates of the expected returns are in general higher that those obtained with
classical estimators. Efficient frontiers obtained with robust minimum pseudodis-
tance estimations, respectively with classical maximum likelihood estimations, are
represented in Figure 11 and Figure 12. The two cases, ”short selling allowed” and
”short selling not allowed” are considered. As in the previous example, the robust
efficient frontier is located higher than and to the left of the classical one. For a
given value of the portfolio variance, the portfolio expected return is higher in the
case ”short selling allowed” than in the case ”short selling not allowed”. This is
valid both when using the classical procedure and when using the robust proce-
dure based on minimum pseudodistance estimators. These results are illustrated
in Figure 12.

The obtained numerical results show that the proposed portfolios are less-
sensitive to deviations of the returns distribution from normality than those pro-
vided by the traditional approach. The stability of the portfolios makes them a
viable alternative to the traditional portfolios, because investors are usually ret-
icent to use methods for which the portfolio weights change drastically over the
time.
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Figure 7. Monthly log-returns of the assets ARS, ART, BRD, PEI,
SIF1, SIF3, SIF4, SNP, for the period January 2004 - May 2012



Aida Toma, Samuela Leoni-Aubin

−2 −1 0 1 2

−
1.

0
−

0.
5

0.
0

0.
5

ARS

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

ART

Theoretical Quantiles
S

am
pl

e 
Q

ua
nt

ile
s

−2 −1 0 1 2

−
0.

5
0.

0
0.

5
1.

0

BRD

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

PEI

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

SIF1

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
6

−
4

−
2

0
2

4

SIF3

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

0.
6

SIF4

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

−2 −1 0 1 2

−
0.

8
−

0.
6

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

SNP

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 8. Normal QQ-plots for monthly log-returns of the assets ARS,
ART, BRD, PEI, SIF1, SIF3, SIF4, SNP
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Figure 9. Boxplots for monthly log-returns corresponding to ARS,
ART, BRD, PEI, SIF1, SIF3, SIF4, SNP
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Figure 11. Mean-variance efficient frontiers for ARS, ART, BRD, PEI,
SIF1, SIF3, SIF4, SNP
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Figure 12. Mean-variance efficient frontiers for ARS, ART, BRD, PEI,
SIF1, SIF3, SIF4, SNP
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