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Abstract. This paper proposes a model for portfolio optimization.              

Firstly we compare the mean-variance method with the mean -VaR method and we 

search the link between the mean-variance efficient set and the mean-VaR efficient set. 

Then we analyze two portfolio optimization approaches. The first is a two-stage 

portfolio optimization approach using, in order, both mean-variance and mean-VaR 

approaches. The second is a general mean-variance-VaR approach using both 

variance and VaR as a double-risk measure simultaneously. Finally we consider the 

case of an equity portfolio at the Italian Stock Market. We use data analyze for 

portfolio selection, then estimation of risk for each stock and after we solve the 

portfolio optimization in the framework  mean – var. 

Keywords: portfolio optimization, risk measures, mean-var analyze, mean-

variance analyze. 
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1. Introduction 

Mean-risk models are still the most widely used approach in the practice of 

portfolio selection. With mean-risk models, return distributions are characterized and 

compared using two statistics: the expected value and the value of a risk measure. 

Thus, mean-risk models have a ready interpretation of results and in most cases are 

convenient from a computational point of view. Sceptics on the other hand may 

question these advantages since the practice of describing a distribution by just two 

parameters involves great loss of informations. It is evident that the risk measure used 

plays an important role in making the decisions. Variance was the first risk measure 

used in mean-risk models (Markowitz 1952) and, in spite of criticism and many 

proposals of new risk measures ( Konno and Yamazaki 1991, Ogryczak and 

Ruszczynski1999, 2001, Rockafellar and Uryasev 2000, 2002), variance is still the 

most widely used measure of risk in the practice of portfolio selection.  
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For regulatory and reporting purposes, risk measures concerned with the left tails of 

distributions (extremely unfavourable outcomes) are used. The most widely used risk 

measure for such purposes is Value-at-Risk (VaR). However, it is known that VaR has 

undesirable theoretical properties (it is not subadditive) and thus fails to reward 

diversification). In addition, optimization of VaR leads to a non-convex NP-hard 

problem which is computationally intractable. In spite of a considerable amount of 

research, optimizing VaR is still an open problem ( Larsen et al. 2002). 

In this paper, we propose a two-stage portfolio optimization approach which 

has all the strengths of the mean-VaR and the mean-variance approaches, and 

overcomes their shortcomings as the two stages complement one another.                      

This approach also uses more information of the underlying distribution of the 

portfolio return. Here, variance and VaR as risk measures are used separately in two 

stages according to a priority order of the two risk measures.                                               

In stage one, we use a primary risk measure to collect all efficient portfolios.                    

In stage two, we use a secondary risk measure to re-evaluate (optimize) these efficient 

portfolios from stage one. This approach provides better results than the mean-variance 

and the mean-VaR approaches considered separately. The mean-variance-VaR 

efficient portfolio may not be mean-variance efficient or mean-VaR efficient. We also 

show that the mean-variance and the mean-VaR approaches are special cases of the 

mean-variance-VaR approach. 

Many papers have been published that are related to this work, the most related 

being works by Alexander and Baptista [2000] and Basak and Shapiro [1999].           

The first study compares the mean-variance and mean-VaR approaches for two special 

cases:  multivariate normal distribution and multivariate t-distribution.                             

The second study analyzes optimal policies focusing on the VaR based risk 

management. Our work does not only compare the mean-variance and mean-VaR 

approaches in a general case, but also merges the two approaches into one single 

approach.  

The rest of this paper is organized into for sections. In Section 2, we review the 

mean-risk approach using both variance as well as risk measures VaR.  In Section 3, 

we propose a more general portfolio optimization strategy: the mean-variance-VaR 

model. The usual mean-variance model and the mean-VaR model are special situations 

of this model. Both variance and VaR are used as the risk measures during the 

procedure of optimization. In Section 4,  we consider the case of an stocks portfolio 

listed at the Italian Stock Market. We use data analyze for portfolio selection, then 

estimation of risk with VaR risk measures for each stock and finally we solve the 

portfolio optimization in the framework  mean – var. 
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2. Mean-risk models 

Mean-risk models were developed in the early 1950s for the portfolio selection 

problem. In his seminal work ‘Portfolio selection’, Markowitz (1952) proposed 

variance as a risk measure. Since then, many alternative risk measures have been 

proposed. The question of which risk measure is most appropriate is still the subject of 

much debate. In mean-risk models, two scalars are attached to each random variable: 

the expected value (mean) and the value of risk measure. Preference is then defined 

using a trade-off between the mean where a larger value is desirable and risk where a 

smaller value is desirable. 

In the mean-risk approach with the risk measure denoted by  , random 

variable xR  dominates (is preferred to) random variable yR  if and only if: 

   
yx RERE   and    yx RR    with least one strict inequality. Alternative, we 

can say that portfolio x dominates portfolio y. In this approach, the choice x (or the 

random variable xR ) is efficient (non-dominated) if and only if there is no other choice 

y such that yR  has higher expected value and less risk than xR . This means that, for a 

given level of minimum expected return, xR  has the lowest possible risk, and, for a 

given level of risk, it has the highest possible expected return. Plotting the efficient 

portfolios in a mean-risk space gives the efficient frontier. 

Thus, the efficient solutions in a mean-risk model are Pareto efficient solutions 

of a multiple-objective problem, in which the expected return is maximized and the 

risk is minimized:      AxRRE xx  :max   

The problem of portfolio selection with one investment period is an example 

of the general problem of deciding between random variables when larger outcomes 

are preferred. Decisions are required on the amount (proportion) of capital to be 

invested in each of a number of available assets such that at the end of the investment 

period the return is high as possible. Consider a set of n assets, with asset j in  n...,,1  

giving a return jR  at the end of the investment period. jR  is a random variable, since 

the future price of the asset is not known. Let jx  be the proportion of capital invested 

in asset j ( wwx jj /  where jw  is the capital invested in asset j and w is the total 

amount of capital to be invested), and let  nxxx ...,,1  represent the portfolio 

resulting from this choice. This portfolio’s return is the random variable: 

nnx RxRxR  ...11  with distribution function    rRPrF x   that depends on 

the choice  nxxx ...,,1 . 
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 To represent a portfolio, the weights  nxx ...,,1  must satisfy a set of 

constrains that forms a feasible set M of decisions vectors. The simplest way to define 

a feasible set is by the requirement that the weights must sum to 1 and short selling is 

not allowed. For this basic version of the problem, the set of feasible decisions vectors 

is    








 


n

j

jjn njxxxxM
1

1 ....,,1,0,1/...,,  

 The next issue is to consider a practical representation for the random variables 

that describe asset and portfolio returns. We treat these random variables as discrete 

and describe by realizations under T states of the world, generated using scenario 

generation of finite sampling of historical data. Let state  Ti ...,,1  occur with 

probability ip , 



T

i

ip
1

1. Let ijr  be the return of asset j under scenario i, 

 Ti ...,,1  nj ...,,1 . Thus, the random variable jR  representing the return of 

asset j is finitely distributed over  Tjj rr ...,,1  with the probabilities Tpp ...,,1 .           

The random variable xR  representing the return of portfolio  nxxx ...,,1  is finitely 

distributed over xTx RR ...,,1 , where  TirxrxR innixi ...,,1,...11  . 

 In the following, we summarize: 

-Let there be n assets njS j ...,,2,1,   and let jR  be the random variables representing 

the rate of return of jS . Let 0jx  be the proportion of the fund to be invested in jS .  

-The vector )...,,,( 21 nxxxx   is called a portfolio, which has to satisfy the following 

condition:  



n

j

jjj njxx
1

...,,2,1,0,1    (1) 

-Let  xR  be the rate of return of the portfolio:   



n

j

jj RxxR
1

  (2) 

and let  xr  and  xv  be, respectively the mean and the risk of  xR . 

Then the mean-variance (MV) model is represented as follows. 

 
 
 

Xx

xrtosubject

xvimize

MV



 

min

1                          (3) 

where 
nRX   is an the set defined by (1). Also, it may contain additional linear 

constraints. And   is a constant to be specified by an investor. 
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Varying   and repeatedly solving the corresponding optimization problem identifies 

the minimum risk portfolio for each value of  . 

Let  x , be an optimal solution of the problem (3). Then trajectory of 

       xxr ,  is called an efficient frontier. By plotting the corresponding 

values of the objectives function and of the expected return respectively in a return risk 

space, we trace out the efficient frontier. 

 There are two alternative representations of the mean variance model, namely 

 
 
 

Xx

xvtosubject

xrimize

MV



 2

2

max

        (4) 

 
   

Xxtosubject

xxrimize
MV



max
3

                  (5) 

 All three representations are used interchangeably since they generate the same 

efficient frontier as we vary   in (MV 1 ),   in (MV2) and 0  in (MV3). 

 There are several measures of risk uses for to assess the risk such as :               

absolute deviation(        xRExRExW   ), lower semi-variance, partial 

moments, below-target risk, value-at-risk (VaR), conditional value-at-risk (CVaR). 

Most of these except VaR are convex functions of x. 

  

 

2.1     Mean -Variance Model 

The mean-variance approach is the earliest method to solve the portfolio 

selection problem (Markowitz [1952, 1959]). The principle of diversification is the 

foundation of this method and it still has wide application in risk management.   

However, there are some arguments against it though this approach has been accepted 

and appreciated by practitioners and academics for a number of years (Korn [1997]). 

The variance of the portfolio return is the only risk measure of this method.                 

Controlling (minimizing) the variance does not only lead to low deviation from the 

expected return on the down side, but also on the up side it may bound the possible 

gains too. 

In this section, we briefly review the mean-variance approach. 

 Suppose that there are n securities with rates of return )...,,1( niX i  .        

- The means and covariances of these rates of return are: 

 ii XE  and  jiij XX ,cov , nji ...,,1,   

- The portfolio vector is :   n

n R
'

1 ...,,    and 



n

i

i

1

1  
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-We define that set W is a collection of all possible portfolios: 









 


n

i

i

nRW
1

1    

-The total return of portfolio   is 



n

i

ii XR
1

  

- Its mean and variance are 

  












n

i

ii

n

i

ii XERE
11

 
 and  

 











n

i

n

j

ijji

n

i

ii XVar
1 11

2   

There are two common models that utilize the mean-variance principle. 

The idea of the first model is that for a given upper bound 
2

0   for the 

variance of the portfolio return (
2

0

2    ), select a portfolio ,                                 

such that  is maximum : 

                             

2

0

2..

max















ts

W                       (6) 

The second model states that for a given lower bound 0  for the mean of the 

portfolio return ( 0  ), select a portfolio  ,                                  such that 
2

  is 

minimum : 

                             

0

2

..

min















ts

W       (7) 

 

 

2.2  Mean-VaR Model 

   In recent years, VaR has become a new benchmark for managing and control 

risk (Dowd [1998], Jonon [1997], RiskMetrics [1995]). Unfortunately, VaR based risk 

management has two shortcomings. First, VaR measures have difficulties aggregating 

individual risks, and sometimes discourage diversification (Artzner et al [1998]). 

Second, the VaR based risk management is only focusing on controlling the 

probability of loss, rather than its magnitude (Basak and Shapiro [1999]). The expected 

losses, conditional on the states where there are large losses, may be higher sometimes. 

The mean-variance approach encourages risk diversification, but the mean-VaR 

approach discourages risk diversification sometimes. The mean-variance approach 

does not only control the risk of return on the down side, but also bounds the possible 
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gain on the up side while the mean-VaR approach only controls risk of return on the 

down side. Another limitation of both approaches is that the underlying distribution of 

the rate of return is not well understood, and there are no higher degree information is 

utilized except means, covariances (variances), or values of VaR 

In this section, we briefly review the concept of VaR and the mean-VaR 

approach. 

 The VaR measures the worst expected loss over a given time interval under 

normal market conditions at a given confidence level, and provides users a summary 

measure of market risk. Precisely, the VaR at the %100   confidence level of a 

portfolio   for a specific time period is the rate of return q  such that the probability 

of that portfolio having a rate of return of q  or less is :     qRP    (8). 

Here q  is also called the 
th  quantile of the distribution of R . Similar to the mean-

variance method, we defined two models for the mean-VaR principle.  

The first one is that for a given upper bound 0q  for the VaR of the portfolio 

return, select a portfolio  , such that   is the maximum with 0qq  : 

                             

0..

max

qqts

W













                       (9) 

The second model states that for a given lower bound 0  for the mean of the 

return , select a portfolio  , such that its VaR ( q  ) is minimum with 0  : 

                           

0..

min













ts

W

q

                                     (10) 

 

2.3 Comparison of Mean -Variance and Mean -VaR Models 

 

In this section, we compare the mean-VaR approach with the mean-variance 

approach. The two approaches are using completely different risk measures to optimize 

portfolios. The mean-variance approach only uses of the mean and variance of 

portfolio return. The Mean-VaR approach only uses the mean and VaR of the portfolio 

return. Both approaches have many advantages; however they do not sufficiently use 

the information from the distribution of the portfolio return. Example shows that a 

mean-variance efficient portfolio is not a mean-VaR efficient portfolio. Remark  says 

that a mean-VaR efficient portfolio is not a mean-variance efficient portfolio but under 
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the normality assumption proposition  can show that a mean-VaR efficient portfolio is 

a mean-variance efficient portfolio. 

 

Example  : A mean-variance efficient portfolio is not a mean-VaR efficient portfolio. 

We consider a simple two-security portfolio selection problem.  

The rate of return for the first security is ZX 1 , where Z is the standard 

normal  1,0N  with mean, variance and VaR, ,0
1
X  12

1
X , and zqX 

1
, 

where 1  is the confidence level (say 05,0 ), and z , is the 
th  quantile of 

the standard normal distribution, such that 












z
z

dze 2

2

2

1
 

The rate of return for the second security is zZX 222  , with mean, 

variance, and VaR, ,2
2  zX   42

2
X , and 0

2
Xq  (    02XP ) . 

The correlation of 1X  and 2X  is     222,, 21  zZZCorrXXCorr  

For any portfolio  , the variance of its return 2211 XXR    is  

       21

2

212211 22   XXVarRVar  

-This variance reaches minimum value 1 when 11  . Therefore  0,1*   is a 

mean-variance efficient portfolio with mean, variance, and VaR  

0* 
 , 12

* 
  and 

zq *  

-But this portfolio is not mean-VaR efficient. Consider portfolio  1,0**  . Both 

mean and VaR of 2** XR 


 are better, 

*
2

** 02


  zX  and *
2

** 0


qqq X   

 

Remark:  A mean-VaR efficient portfolio is not a mean-variance efficient portfolio. 

 

Proposition: Under the normality assumption, a mean-VaR efficient portfolio is mean-

variance efficient. 

-Under the normality assumption, the portfolio return R is a  2,  N  random 

variable with VaR,    zq                   (11) 

-If 
*  is a mean-VaR efficient portfolio, then for any portfolio, we have:  

* qq  if *   Using result (11), we have: 

    ***

11








   q
z

q
z
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3. Mean-Variance-VaR Model 

In this section, we propose a general mean-variance-VaR model for portfolio 

optimization with two variations. We use both variance and VaR as risk control 

measures. Our models cover both the mean-variance model and the mean-VaR model. 

In other words, the two models are special cases of our models. 

 The first model is that for a given upper bounds 
2

0  and 0q  for the variance 

and VaR of the portfolio return respectively, select a portfolio  , such that  is the 

maximum with 
2

0

2     and 0qq  : 

                                        

0

2

0

2..

max

qq

ts

W



















                                                             (12) 

Comparing with the mean-variance model or the mean-VaR model, we use 

double-risk measures instead of one single risk measure. The mean-variance-VaR 

efficient portfolio may not be mean-variance efficient or mean-VaR efficient.   

 Moreover, the mean-variance (6) and the mean-VaR models (9) are special 

cases of our model (12): 

- when 0q , our model (12) becomes the mean-variance model (6); 

- when 2

0 , our model (12) becomes the mean-VaR model (9). 

The second model is not that for a given lower bound 
2

0  for the mean of the 

portfolio return, select a portfolio  , such that the convex combination of variance 

and VaR of the portfolio return     q 12
 is the minimum with 0  : 

                               

 

0

2

..

1min

















ts

W

q

 ,  1,0  .                                 (13) 

For the two extreme values of  , we have 

- when 1 , our model (13) becomes the mean-variance model (7);  

- when 0 , our model (13) becomes the mean-VaR model (10). 

Possible alternatives to the objectives function of model (13) are: 

  22 1   q  and     q 1 .From the computational point view, 

  22 1   q  is better than     q 1  since square-root takes more 

computation time than square. We also can substitute the objectives function of model 

(13) by a general utility function   qf ,2
. 
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4. Case study : Italian Stock Market 

4.1. Stage of selection of assets 

In the context of nowadays financial markets it is a huge amount of available 

financial data. It is therefore very difficult to make use of such an amount of 

information and to find basic patterns, relationships or trends in data. We apply data 

analysis techniques in order to discover information relevant to financial data, which 

will be useful during the selection of assets and decision making. Consider that we 

have collected information on a  number  S of assets, each with P  features, which 

represent various financial ratios, still called variables. Denote by 
j

iy  the j-th variable 

for stock i. Multivariate data set will be represented by a matrix  
Pj

Si
j

iyY
,1

,1



  and can 

be viewed as a set of S points in a P-dimensional space. Principal components analysis 

(PCA) is a useful technique for analyzing data to find patterns of data in a large-scale 

data space. PCA involves a mathematical procedure that transforms        P variables, 

usually correlated in a number of Pp   uncorrelated variables called principal 

components. After applying the PCA, each asset i will be characterized by p variables, 

represented by a set of parameters
p

iii yyy ,...,, 21
 therefore, it is possible to form the 

arrays   SiyyyY p

iiii ,1,,...,, 21  , which correspond to a set of S assets. Suppose now 

that we obtained a data set   SiyyyY p

iiii ,1,,...,, 21  . We then use clustering 

techniques in order to find similarities and differences between the stocks under 

consideration. The idea of clustering is an assignment of the vectors SYYY ,...,, 21  in T 

classes TCCC ,...,, 21 . Once completed the selection of activities, we construct the 

initial portfolio by selecting  low-risk asset in each class. 

          We will present some of the most important financial indicators that we will use 

in study: 

- The P / E  is calculated by dividing the current market price to the value of net profit 

per share for the past four consecutive quarters, net income per share is calculated by 

dividing the total net profit earned by the company during the reporting period (it is 

relevant to relate to the last 12 months) the number of shares issued and outstanding. 

- The P / BV is calculated by dividing the current trading price to book value per share 

determined according to the latest financial reporting; accounting value of a share is 

calculated by dividing the total equity value of the company to the  total of it shares 

issued and outstanding; equity value is determined by deducting total liabilities from 

total assets owned company and is "shareholder wealth", which is what remains to be 

recovered if the assets and liabilities would be paid. 

- Divy  index measures the performance of dividend and is calculated as the ratio 

between the amount of the dividend and book value or market value of the stock. and 

assesses the efficiency of investment in an asset. 
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- Volatility is a measure for variation of price of a financial instrument over time. It is 

used to quantify the risk of the financial instrument over the specified time period. 

- Evolution of price: to observe the price level at a given time we take into acount the 

maximum price and minimum price achieved in the last 6 months   

          We used information on a total of those  40 shares representing shares of  FTSE 

MIB Index traded on the Italian Stock Market. The aim of our study is to find 

similarities and differences between the current analysis and build a diversified 

portfolio. We take into account for each stock the 6 features described above;   

           We use data analysis techniques in order to process this vast amount of 

information. Table 1 lists, for each of the 40 stocks  analyzed, the values of the six 

features; we used the data available on the Italian Stock Market on 27 March 2012. 

 

Table 1: The value of the 6 features 

 

No Company P / E P / BV 
DIVY 

% 

Volatility 

% 

P / 

Max 

P / 

Mi

n 

1 A2A 11.4 0.8 8 26 0.66 1 

2 Ansaldo Sts 13.9 2.8 2.5 21 0.91 

1.0

7 

3 Atlantia 8.8 5.8 6.9 25 0.81 

1.3

4 

4 Autugrill  15.8 2.7 3.7 21 0.92 

1.1

2 

5 Azimut 11.6 1.87 3.1 31 0.97 

1.5

6 

6 

Banca 

Popolare 22.7 0.37 0.00 60 0.95 

1.8

5 

7 Bca Mps 16.5 0.18 0.00 77 0.83 1.8 

8 

BcaPopEmil 

Romagna 11.1 0.4 1.3 38 0.79 

1.2

8 

9 

BcaPop 

Milano 38.4 0.3 0.00 64 0.87 

1.9

2 

10 Buzzi Unicem 30.7 0.6 0.00 33 1 

1.6

1 

11 Campari 18 2.58 0.07 19 0.92 

1.0

4 

12 DiaSorin 11.8 4.5 2.03 32 0.78 

1.2

3 

13 Enel 6.1 0.72 8.7 26 0.8 1 
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14 

Enel Green 

Power 6.1 0.72 8.7 26 0.84 

1.0

4 

15 Eni 8.2 6.2 6.4 14 0.98 

1.3

8 

16 Exor 3.9 1.3 1.7 24 0.94 

1.3

7 

17 Fiat 23.1 0.6 0.00 36 0.89 

1.3

8 

18 Fiat Industrial 23.1 0.6 0.00 36 0.97 

1.6

7 

19 Finmeccanica 10.9 0.7 0.00 48 0.63 

1.3

3 

20 Generali  1 1.4 1.4 27 0.92 1.1 

21 Impregilo 12.8 1.26 1.29 25 0.98 

1.6

8 

22 

Intesa 

Sanpaolo 9.7 0.34 3.3 40 0.9 

1.2

4 

23 Lottomatica 10.4 7.4 5.27 23 0.98 

1.3

8 

24 Luxottica 21.8 3.0 2.3 20 0.99 

1.4

5 

25 Mediaset 9.2 1.6 5.9 34 0.98 

1.1

6 

26 Mediobanca 9.7 0.94 2.6 38 0.59 

1.2

1 

27 Mediolanum 12.9 2.9 4.4 31 0.99 

1.5

2 

28 Parmalat 16.1 0.7 3.1 32 0.98 

1.3

9 

29 Pirelli 8.9 1.3 4.3 32 0.98 

1.7

4 

30 Prysmian 10.6 1.8 2.7 30 0.97 

1.4

8 

31 Saipem 16.4 3.2 2 19 0.97 

1.5

5 

32 

Salvatore 

Ferragamo 25.2 8.23 1.6 35 0.99 

1.8

5 

33 Snam 16 2.3 6.2 16 0.99 

1.1

6 

34 St 9.96 0.85 0.00 36 0.96 1.4
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microlectronic

s 

6 

35 Telecom Italia 6.30 0.6 5.4 26 0.97 

1.1

7 

36 Tenaris 15.6 1.9 2 27 0.65 

1.6

5 

37 Terna 16.9 1.8 7 17 1 

1.2

4 

38 Tod’S 18.8 4 3 25 0.99 

1.3

7 

39 Ubi Banca 21.4 0.43 0.00 44 0.84 

1.3

4 

40 Unicredit 12.7 0.31 0.00 79 0.57 

1.7

3 

Source: www.borsaitaliana.it 

We apply data analysis techniques to discover the similarities and differences 

between the stocks of the Bucharest Stock Exchange, using the package StatistiXL 1.8. 

Figure 1 contains the tree resulted from PCA (dendrogram). 

Dendrogram usually begins with all assets as separate groups and shows a 

combination of mergers to a single root. Stocks belonging to the same cluster are 

similar in terms of features taken into account. In order to build a diversified portfolio, 

we first choose the number of clusters, which will be taken into account. We will then 

choose a stock from each group and we get the initial portfolio. 

 

Figure 1: Group of stocks 

 
Source: package programe STATISTI XL 1.8 

http://www.borsaitaliana.it/
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4.2. Phase risk  estimation. 

We evaluate the performance of an asset using expected future income, an 

indicator widely used in financial analysis. Denote by )(tS j
 the closing price for an 

asset j at time t. Expected future income attached to the time horizon ]1,[ tt  is given 

by: .,1),(ln)1(ln)( SjtStStR jjj   Similary, we define the loss random 

variable, the variable 
jL , for asset j for ]1,[ tt  as 

.,1),1(ln)(ln)()( SjtStStRtL jjjj   Using Rockafellar et al., 2000, define the 

risk measure VaR corresponding loss random variable 
jL . Probability of 

jL  not to 

exceed a threshold Rz  is  .)( zLPzG jL j
 .  Value at risk of loss random 

variable 
jL associated with the value of asset j income and corresponding probability 

level )1,0(  is:      1)(min zGzLVaR
jLj R   or   P ( X > VaR  ) = .        

If 
jLG  is strictly increasing and continuous,  

jLVaR  is the unique solution of 

equation 1)(zG
jL  then   .)1(1   

jLj GLVaR  One of the most frequently 

used methods for estimating the risk is the historical simulation method. This risk 

assessment method is useful if empirical evidence indicates that the random variables 

in question may not be well approximated by normal distribution or if we are not able 

to make assumptions on the distribution. Historical simulation method calculates the 

value of a hypothetical changes in the current portfolio, according to historical changes 

in risk factors. The great advantage of this method is that it makes no assumption of 

probability distribution, using the empirical distribution obtained from analysis of past 

data. Disadvantage of this method is that it predicts the future development based on 

historical data, which could lead to inaccurate estimates if the trend of the past no 

longer corresponds. If 
jL  is  the loss random variable and 

nĜ  is empirical distribution 

function of 
jL   and )1,0(  a fixed level of probability, then   




n

i

zLn j
I

n
zG

1

}{

1ˆ .  

We can prove that :   .1
1

min
1

}{








 





n

i
zLj i

j

I
n

zLVaR R Once completed the 

phase of grouping the assets in T classes by the existing  similarities, we focus on the 

selection of the assetsş of each class to have a minimal risk. Consider the loss random 

variable corresponding to each asset in each obtained class TiCi ,1,   : 

)(min i

k
k

ALVaR . We used the closing price values daily for each share, corresponding 

to a time horizon of 50 days to measure VaR for each stock. We used the data available 
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on the Italian Stock Market from 15 march 2012 - 30 april 2012. The following tables 

contain values of VaR for each stock and three levels of probability values 

 

 

 
 

         4.3  Optimization portfolio phase in the framework Mean - VaR  

We obtain an initial portfolio comprising a wide range of stocks with minimal 

risk. We will try to determine what percentage is the optimal composition of capital 

that needs to be invested in each of the assets  under consideration, so that at the end of 

the investment we have a maximum return on investment.  

Thus, T is a set of stocks, with stock  j  that leads to expected income 

TjR j ,1,  ;Expected income of portfolio is: 



T

j

jj RxR
1

x
.The model to be solved is:  




T

j

jj Rx
1

max , with   ,0 xLVaR where 0  is the model parameter. 

As a consequence of applying the technique of selection, we selected a 

portfolio of  5 stocks, each of them representing the minimum risk stock class 

corresponding VaR measured probability level  0.99: Bca 

Mps,Telecom,Saipem,Unicredit, A2A.  We will try to determine what percentage is the 

optimal composition of capital that needs to be invested in each of the stocks  under 

consideration, so that at the end of the investment we have a maximum return on 

investment. In these conditions, the optimization problem to be solved is: 
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






















5.1,0

1

0.0392+0.0354+0.044+0.052+0.031

0.205+0.1724+0.04+0.0286+0.1122max

5

1

054321

54321

ix

x

xxxxx 

xxxxxf

i

i

i

  

 

There are several methods for solving this problem ( math programming or 

software Scientific Work Place). A solution to this problem remains a challenge for 

future.  

 

5.Conclusion : In this paper we have discussed and compared the mean-variance 

approach with the mean-VaR approach. The mean-variance-VaR approach uses 

variance and VaR as a double-risk measure simultaneously. The mean-variance and the 

mean-VaR approaches are special cases of this approach. Finally we build a portfolio 

with stocks listed at Italian Stock Market. 
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