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           Abstract. The classical multicollinearity diagnostic measures are not resistant 

to high leverage points since their formulation are based on eigen analysis of classical 

correlation matrix that is very sensitive to the presence of these leverages. The existing 

robust multicollinearity diagnostics also are not able to diagnose the variables which 

are collinear to each other. In this paper, we proposed robust multicollinearity 

diagnostic measures based on the Minimum Covariance Determination (MCD), which 

is a highly robust estimator of multivariate location and scatter.  The results of 

numerical example and simulation study confirmed the merit of our new proposed 

robust multicollinearity diagnostic measures.  

           Keywords: Multicollinearity, Condition number, Variance Inflation Factor, 
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1. INTRODUCTION 

 

High leverage points that fall far from the majority of the explanatory variables are 

another source of multicollinearity, which is a linear relationship between the 

explanatory variables (Kamruzzaman & Imon 2002). These points are considered as 

good or bad leverage points based on whether they follow the same regression line as 

the other data in the data set or not. Furthermore, collinearity-influential observations 

are the observations that can change the collinearity pattern of the data. They may be 

enhancing or reducing collinearity in the data set. All the high leverage points are not 

collinearity-influential observations and vice versa (Hadi 1988). Additionally, high 

leverage points that exist in different positions of several explanatory variables may be 
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collinearity-reducing observations and decrease the degree of multicollinearity for 

explanatory variables in collinear data sets (Bagheri & Habshah 2011; Bagheri et al. 

2010). Moreover, in non-collinear data sets, high leverage points in the same positions 

of different explanatory variables cause multicollinearity problems and become 

collinearity- enhancing observations (Bagheri et al. 2012; Midi et al. 2010). At the 

same time, multicollinearity does have some destructive effects on the statistical 

inferences of multiple regression, for instance, causing least squares regression 

estimates to be unstable, inconsistent and have large variances. Another important 

effect of multicollinearity for the data set is when correlation matrix (X) is singular or 

near-singular. Multicollinearity can be detected by applying different classical 

diagnostic measures such as the condition number (CN), Variance Inflation Factor 

(VIF) and Variance Decomposition Properties (VDP) which can be computed based on 

the eigen value and eigen vectors of the correlation matrix (X) (Montgomery 2001). 

Nonetheless, all of these classical multicollinearity diagnostic measures are sensitive to 

the presence of high leverage points. Hence, it is very crucial to use robust diagnostic 

measures that are resistant to multicollinearity to avoid misleading conclusion in 

regression analysis. Furthermore, the existing robust multicollinearity diagnostic 

methods may not be able to diagnose the collinear variables (Bagheri and Habshah 

2011,Midi et al. 2010). Rousseeuw (1985) introduced the Minimum Covariance 

Determinant (MCD) method, which aims to find h observations out of n observations 

which covariance matrix has the lowest determinant. It is important to note that the 

MCD estimators of location and scatter have high breakdown value while its efficiency 

is generally low. Several researches noted that one-step reweighting could increase the 

efficiency of MCD (Croux and Haesbroeck 1998; Lopuha¨a 1999, Rousseeuw and Van 

Driessen 1999). For many years, the Minimum Volume Ellipsoid (MVE) proposed by 

Rousseeuw (1985) was preferred over the MCD, because of its slightly better 

computational efficiency when using a resampling algorithm. However, many users 

prefer to use MCD as a robust estimator of location and scatter after the establishment 

of the fast-MCD algorithm by Rousseeuw and Van Driessen 1999. The basic ideas of 

Fast-MCD are in the inequality involving order statistics, determinants, and 

techniques, which we call selective iteration and nested extensions. For small datasets, 

FAST-MCD typically finds the exact MCD, whereas for larger datasets it gives more 

accurate results than the existing algorithms and is faster by orders of magnitude. 

Since the classical diagnostic measures are not resistant to high leverage points, we 

take the initiative to develop robust multicollinearity diagnostic measures to remedy 

this problem.  In this paper, we develop several robust multicollinearity diagnostic 

measures such as the Robust Condition Number (RCN), the Robust Variance Inflation 

Factor (RVIF) and the Robust Variance Decomposition Properties (RVDP). A one-

step reweighted MCD is incorporated into the establishment of these robust 

multicollinearity diagnostic measures. The paper proceeds as follows. Section 2 
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reviews the classical multicollinearity diagnostic measures. The MCD is presented in 

Section 3. The application of MCD on robust multicollinearity diagnostic measures is 

presented in section 4. Finally, section 5 focuses on a well known collinear data set and 

the Monte Carlo simulation study. Some concluding remarks are offered in section 6. 

 

2. CLASSICAL MULTICOLLINEARITY DIAGNOSTIC MEASURES 

 

Consider the following regression model: 

𝑦 = 𝑥𝛽 + 𝜀                                                                                (1) 

where y is an n1 vector of response or dependent variables, X is an np (𝑝 = 𝑘 + 1)  

k) , 𝛽 is a 

p 1 vector of unknown parameters and 𝜀  is an n1 vector of random errors with 

distribution N[0, 𝜎2 In ].  

There is no statistical test for detecting the presence of multicollinearity in the data set, since it 

is a data problem. In this situation, a diagnostic measure can replace a statistical test to 

indicate the existence and extent of multicollinearity in a data set. Let the jth column of 

the X matrix be denoted as Xj  X X1, X2,…,Xp ]. Additionally, we 

defined multicollinearity in terms of the linear dependence of the columns of X , i.e., 

whereby the vectors of X1, X2 ,…,Xp are linearly dependent if there is a set of constants 

t1, t2,…,tp , that are not all zero, such as: 

∑ 𝑡𝑗𝑋𝑗 = 0
𝑝
𝐽=1                                                                  (2) 

If (2) holds exactly, we face severe multicollinearity problem. However, the problem 

of moderate multicollinearity (near-linear dependency) is said to exist when (2) holds 

approximately.  

By applying unit length scaling introduced by (Montgomery 2001) or the correlation 

transformation indicated by Kutner et al. 2004 as: 

𝑍𝑖𝑗 =
𝑋𝑖𝑗−𝑋̅

𝑆𝑗
          i=1,2,…,n and j= 1,2,…,k                          (3) 

where 𝑆𝑗𝑗 = ∑ (𝑋𝑖𝑗 − 𝑋̅𝑗)
2𝑛

𝑖=1   for explanatory variables, the product matrix of  𝑍′𝑍 will 

produce correlation matrix of X as R.  

𝑅 =

[
 
 
 
 
 
 
1       𝑟12        𝑟13     .   .   .            𝑟1𝑘

𝑟12     1            𝑟23     .   .   .          𝑟2𝑘

𝑟13     𝑟23          1        .   .   .         𝑟3𝑘

.         .            .           .   .   .         .

.         .            .           .   .   .         .

.         .            .           .   .   .         .
𝑟1𝑘     𝑟2𝑘       𝑟3𝑘           .   .   .          1]
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where 𝑆𝑖𝑗 = ∑ (𝑋𝑢𝑖 − 𝑋̅𝑖)(𝑋𝑢𝑗 − 𝑋̅𝑗)
𝑛
𝑡=1   , 𝑟𝑖𝑗  can be defined as: 

𝑟𝑖𝑗  =
𝑆𝑖𝑗

(𝑆𝑖𝑖𝑆𝑗𝑗)
1 2⁄

 

Scaling reduces rounding errors, and also makes the condition indices comparable 

from one data set to another. However, if the intercept has interpretative value, then 

centering is not recommended (Montgomery 2001). Nonetheless, in some fields such 

as engineering and the physical sciences, the intercept has no physical interpretation. 

Examining the simple correlations 𝑟𝑖𝑗 (the off diagonal elements of the 𝑅 matrix) is 

only helpful in detecting near–linear dependence between pairs of explanatory 

variables. Unfortunately, when more than two explanatory variables are involved in a 

near-linear dependence, there is no assurance that any of the pairwise correlations 

𝑟𝑖𝑗will be large (Montgomery 2001). Hence, generally, inspection of the 𝑟𝑖𝑗 is not 

sufficient for detecting anything more than pairwise multicollinearity.On the other 

hand the singular-value decomposition of n×p X matrix is defined as: 

𝑋 = 𝑈𝐷𝑇′                                                                  (4) 

where U is the n×p matrix whose columns are the eigenvectors associated with the p 

nonzero eigenvectors of 𝑋𝑋′.T is the p×p matrix of eigenvectors of 𝑋′𝑋. UU’=I, 

TT’=I, and D is a p×p diagonal matrix with nonnegative diagonal elements 𝜇𝑗, 

j=1,2,…,p which are called singular-values of X matrix. 𝑋′𝑋 = (𝑈𝐷𝑇 ′)′𝑈𝐷𝑇 ′ =
𝑇𝐷2𝑇 ′ = 𝑇𝛬𝑇 ′ where 𝛬 is a diagonal matrix whose diagonal elements are the eigen 

values of 𝑋′𝑋 or 𝑋𝑋′(𝜆1, 𝜆 2, … , 𝜆 𝑘) the squares of the  𝜇𝑗. If we consider 𝑅 = 𝑋′𝑋 

where R defined as the correlation matrix of unit normal scaled X, then 𝑇 and 𝛬 will be 

the eigen vectors and eigen values of R matrix. 

Belsley et al. (1980) proposed an approach of diagnosing multicollinearity through the 

singular value decomposition of X matrix. They defined the Condition Indices (CI) of 

the X matrix as: 

𝐾𝑗 =
𝜆𝑚𝑎𝑥

𝜆𝑗
                     j=1,…, k                        (5) 

where 𝜆1, 𝜆2, … , 𝜆𝑘  are the eigen values of the matrix 𝑋′𝑋  or correlation matrix of the 

unit normal scaled X. The largest value of Kj (called K) is defined as Condition 

Number (CN) of the matrix 𝑋′𝑋. In addition, the square root of K is considered as the 

condition number of X matrix, which is preferably used as the condition number in 

Section 5. Condition numbers of X matrix between 10 and 30 imply moderate to 

strong multicollinearity while values more than 30 indicate severe multicollinearity.  

The Ordinary Least Squares (OLS) estimate of regression model defined in equation 

(1) is given by: 
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𝛽̂ = (𝑋′𝑋)
−1

𝑋′𝑌                                                          (6) 

The covariance matrix of the estimates was defined as: 

𝑉𝑎𝑟(𝛽 ̂) = 𝜎2(𝑋′𝑋)−1 = 𝜎2𝑇𝛬−1T′                                        (7) 

and the variance of the jth regression coefficient is:     

𝑉𝑎𝑟(𝛽̂𝑗) = 𝜎2 ∑
𝑡𝑗𝑖
2

𝜆𝑖

𝑘
𝑖=1 = 𝜎2𝑉𝐼𝐹𝑗               𝑗 = 1,2,… , 𝑘                    (8) 

Hence, the jth diagonal element of 𝑇𝛬−1T′ is the jth Variance Inflation Factor (VIF) that 

is one of the most practical multicollinearity diagnostic methods(Marquardt 

1970).Obviously, when  X  matrix is unit length scaled, one or more small eigen values 

of correlation matrix (X) can inflate the variance of  𝛽̂𝑗. The values of VIF between 5 

and 10 indicate moderate to strong multicollinearity while the values of more than 10 

diagnose the existence of severe multicollinearity in the data set. Belsley et al. (1980) 

also suggested using Variance Decomposition Proportions (VDP) as another measure 

of multicollinearity, which is defined and denoted as: 

𝜋𝑖𝑗 =
𝑡𝑗𝑖
2 𝜆𝑖⁄

𝑉𝐼𝐹𝑗
               𝑖, 𝑗 = 1,2,… , 𝑘                                          (9) 

The elements of each column of 𝜋 are just the proportions of the VIF or the variance 

of each 𝛽̂𝑗 contributed by the ith eigen values of the matrix 𝑋′𝑋 or correlation matrix of 

the unit normal scaled X. Multicollinearity is indicated by the high proportion of the 

variance for two or more regression coefficients which is associated with one small 

eigen values of the matrix 𝑋′𝑋  or correlation matrix of the unit normal scaled X , R. 

VDPs greater than 0.5 that corresponds to each of the large value of CN indicates the 

existence of one dependence in the column of X matrix. The explanatory variables that 

are involved in the multicollinear relationship in the X matrix column can be detected 

when the VDPs of the explanatory variables exceeds 0.5.   

 

3. MINIMUM COVARIANCE DETERMINATION 

 

The minimum covariance determinant (MCD) method of Rousseeuw (1985) is a 

highly robust estimator of the multivariate location and scatter (Andersen 2008; 

Daszykowski 2007; Rousseeuw and Leroy 1987; Wilcox  2005).  Its objective is to 

find h observations (out of n) which covariance matrix has the lowest determinant. The 

MCD looks for the subset of data objects (h observations out of n) which sample 

covariance matrix has the smallest possible determinant. The MCD estimates of 

location and scatter are then the sample mean and sample covariance matrix 
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(multiplied by a consistency factor) of that optimal subset of h observations where h is 

usually chosen between ([n/2] + 1) and n ( [
(𝑛+𝑘+1)

2
]  based on Splus 6 Robust Library 

User’s Guide (Splus 6 robust library user’s guide 2001). Although the raw minimum 

covariance determinant estimate has a high breakdown value, its statistical efficiency 

is low. Better finite-sample efficiency can be attained while retaining the high 

breakdown value by computing a one-step reweighted mean and a covariance estimate, 

with weights based on the MCD estimate. The one-step reweighted MCD estimates are 

a weighted mean and covariance, where regular observations are given weight one, but 

outliers (according to the initial MCD solution) are given weight zero. The one-step 

reweighted MCD estimators have the same breakdown value as the initial MCD 

estimators but with a much better finite-sample efficiency (Croux and Haesbroeck 

1998; Lopuha¨a 1999; Rousseeuw and Van Driessen 1999). A one step reweighted 

MCD of location and scatter of X matrix, 𝑡𝑛
1 and 𝐶𝑛

1, are respectively defined as 

(Rousseeuw and Van Driessen 1999 ):  

𝑡𝑛
1 = (∑ 𝑤𝑖 𝑥𝑖)

𝑛
𝑖=1 (∑ 𝑤𝑖)

𝑛
𝑖=1⁄                                                   (10) 

𝐶𝑛
1 = ∑ (𝑤𝑖(𝑥𝑖 − 𝑡𝑛

1)(𝑥𝑖 − 𝑡𝑛
1)𝑇)𝑛

𝑖=1 (∑ 𝑤𝑖 − 𝑘)𝑛
𝑖=1⁄                                   (11) 

By considering where 

𝑤𝑖 = {
1           𝑖𝑓 𝑅𝑀𝐷𝑀𝐶𝐷(𝑥𝑖) ≤ √𝜒(𝑝,0.975)

2

  0                                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

} 

and 

𝑅𝑀𝐷𝑀𝐶𝐷 = √(𝑋 − 𝑋̅𝑀𝐶𝐷)′∑MCD
−1(𝑋 − 𝑋̅𝑀𝐶𝐷)       𝑓𝑜𝑟    𝑖 = 1,… , 𝑛 

Hereinafter, we will use the one-step reweighted MCD for the analysis and still refer 

them as MCD. 

 

4. ROBUST MULTICOLLINEARITY DIAGNOSTIC MEASURES 

 

There are several sources of multicollinearity such as the data collection method 

employed, constraints on the model or in the population being sampled, model 

specification, and an over determined model (Montgomery 2001). Kamruzzaman and 

Imon (2002) pointed out multiple high leverage points as new sources of 

multicollinearity where these points are observations that not only deviate from the 

same regression line as the other data in the data set, but also fall far from the majority 

of explanatory variables (Hocking and Pendelton 1983; Moller et al. 2005). All the 

high leverage points are not collinearity-influential observations and vice versa (Hadi 

1988). High leverage points can reduce or increase collinearity according to their 
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position in the data. Classical multicollinearity diagnostic measures are not able to 

indicate collinearity pattern of a data in the presence of high leverage collinearity- 

influential observations especially when these points exist in a collinear data set 

(Bagheri et a;. 2010) .To avoid the distractive effect of these points on 

multicollinearity diagnostic measures, it is vital to utilize robust diagnostic measures 

 (Bagheri et a;. 2010; Midi et al. 2010). It is worth mentioning that multicollinearity 

diagnostic measures depend on the eigen structure of non-scaled X matrix or 

correlation matrix (X ) for scaled X matrix.  

Midi et al. (2010) defined Robust Variance Inflation Factors (RVIF) by incorporating 

the robust coefficient determination based on Generalized M-estimator embedded with 

DRGP, namely as RVIF(GM (DRGP)) (For more details, one can refer to Midi et al. 

2010) . They proved by numerical examples and simulation studies that this new 

proposed robust multicollinearity diagnostics is very powerful in indicating the source 

of multicollinearity for non-collinear data sets (Midi et al. 2010). Furthermore, 

RVF(GM(DRGP)) is resistant to the high leverage points and could successfully 

diagnose the multicollineariy pattern of collinear data sets (Bagheri and Habshah 

2011). Besides the practical benefits of utilizing RVF(GM(DRGP)) in detecting the 

multicollinearity pattern of the data, it couldn’t detect the variables which are in linear 

relationship with each other. 

In what follows, we propose the robust multicollinearity diagnostic measure to solve 

the drawback of existing robust mulicollinearity diagnostic methods. To do so, for the 

X matrix which is scaled according to the equation (3), the MCD is incorporated in the 

development of the proposed measures. The Algorithm for the robust multicollinearity 

diagnostic measures based on MCD is summarized as follows; 

Step 1:  Scale the explanatory variables according to the Equation (3). 

Step 2: Compute the product matrix of the scaled explanatory variables that is equal to 

the correlation matrix (X), R. 

Step 3: Calculate robust estimate of the correlation matrix (X ) based on MCD, denoted 

as 𝑅𝑀𝐶𝐷. 

Step 4: Decompose (𝑅𝑀𝐶𝐷)−1 as follows: 

(𝑅𝑀𝐶𝐷)−1 = 𝑇𝑀𝐶𝐷(𝛬𝑀𝐶𝐷)−1(𝑇𝑀𝐶𝐷)′                                                        (12) 

where  𝑇𝑚𝑐𝑑and 𝛬𝑚𝑐𝑑are the matrix of eigen vectors of 𝑅𝑚𝑐𝑑 (where 𝑡𝑖𝑗
𝑀𝐶𝐷 i,j= 1,…,k 

are the elements of 𝑇𝑚𝑐𝑑 matrix) and diagonal matrix whose diagonal elements are the 

eigen values of 𝑅𝑚𝑐𝑑 , 𝜆1
𝑀𝐶𝐷, 𝜆2

𝑀𝐶𝐷 , … , 𝜆𝑘
𝑀𝐶𝐷

 , respectively.  

Step 5:  Finally the Robust Diagnostic Measures are formulated as follows: 

 • The Robust Condition Indices (RCI (MCD)) of the X matrix is defined as: 

𝐾𝑗
𝑀𝐶𝐷 =

𝜆𝑚𝑎𝑥
𝑀𝐶𝐷

𝜆𝑗
𝑀𝐶𝐷                      𝑗 = 1,… , 𝑘                      (13) 
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where 𝜆𝑚𝑎𝑥
𝑀𝐶𝐷

 is the largest eigen values of 𝑅𝑚𝑐𝑑 . The largest value of 𝐾𝑗
𝑀𝐶𝐷 

(called 𝐾𝑀𝐶𝐷) is defined as Robust Condition Number (RCN(MCD)) of the correlation 

matrix(X) based on MCD, that is 𝑅𝑚𝑐𝑑.  

 •    The  jth VIF based on MCD is defined as:       

   𝑉𝐼𝐹𝑗
𝑀𝐶𝐷 = ∑

(𝑡𝑗𝑖
𝑀𝐶𝐷)2

𝜆𝑖
𝑀𝐶𝐷

𝑝
𝑖=1                  𝑗 = 1,2,… , 𝑘            (14) 

• The Robust Variance Decomposition Proportions (RVDP (MCD)) based on MCD 

also is formulated as: 

𝜋𝑖𝑗
MCD =

(𝑡𝑗𝑖
𝑀𝐶𝐷)2 𝜆𝑖

𝑀𝐶𝐷⁄

𝑉𝐼𝐹𝑗
𝑀𝐶𝐷                𝑖, 𝑗 = 1,2,… , 𝑘                 (15) 

 

5.  EXPERIMENTAL EVALUATION 

5.1. BODY FAT DATA SET 

 

In this section, the effect of high leverage points on a collinear data set, taken from 

Kutner et al. (2004) is investigated. Body Fat data set contains 20 observations with 

three explanatory variables, triceps skinfold thickness (X1), thigh circumference (X2) 

and mid arm circumference (X3). This data set has multicollinearity problem (Kutner et 

al. 2004). In the collinear data set, the large magnitude of high leverage point in the 

same position of explanatory variables increase collinearity while in one or different 

positions of explanatory variables reduce linear dependency between them (Kutner et 

al. 2004).This data set is modified such that the first observation of the first 

explanatory variable is replaced with a large magnitude of high leverage point (equal 

to 300). Figure 1 demonstrates the original and the modified Body Fat data set. There 

is an obvious linear relationship between explanatory variables in the original data set 

(Figure 1 part (a)). However, after modifying the data set, the added high leverage 

point changed the collinearity pattern of the data (Figure 1 part (b)).  

Table1 presents the classical and robust multicollinearity diagnostic measures for the 

Original Body Fat data set. According to this table, the Original Body Fat data set has 

severe multicollinearity, which can be concluded from the large value of the last CI or 

CN (𝐾𝑗 = 53.3287 > 30). Thus, there is one dependency in the column of X. 

Moreover, all the three values of 𝜋31, 𝜋32 and 𝜋33  exceeded 0.5, indicating that all 

three explanatory variables are involved in a multicollinear relationship. The same 

results can be drawn from robust multicollinearity diagnostics based on the MCD. 

The classical and robust multicollinearity diagnostic measures for Modified Body Fat 
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Figure.1 Original and modified Body fat data set 

      Table 1  

Classical and robust multicollinearity diagnostic measures for 

 Original Body fat data set 

Ind. 𝜆 CI 

VDP 

𝜆𝑀𝐶𝐷 

RCI 

(MCD) 

RVDP(MCD) 

X1 X2 X3 X1 X2 X3 

1 1.4375 1.0000 0.0003 0.0003 0.0006 1.4929 1.0000 0.0001 0.0001 0.0002 

2 0.9658 1.4884 0.0000 0.0004 0.0082 0.8780 1.7003 0.0000 0.0002 0.0013 

3 0.0270 53.3287 0.9997 0.9993 0.9912 0.0151 98.8294 0.9999 0.9997 0.9985 

 

data set are illustrated in Table 2. It can be seen that none of the classical CI of X  

matrix were affected by the presence of the added high leverage point in this data set 

(CN < 30). However, robust multicollinearity diagnostic measures are resistant to the 

added high leverage points and indicate one collinear relationship between all 

explanatory variables in the data set. Table 3 exhibits the classical and robust VIF for 

the original and Modified Body Fat data set. Similar results of Table1 and Table 2 can 

be concluded from CVIF and RVIF. In the original data set, CVIF and RVIF (MCD) 

detected severe multicollinearity. After modifying the data set, CVIF failed to detect 

multicollinearity in the data while our new proposed RVIF is not affected by the added 

high leverage point and detected multicollinearity pattern of the data accurately. 

 

 

 

(b) 
(a) 

X1 

X3 

X2 

X2 

X3 

Modified X1 
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5.2 MONTE CARLO SIMULATION STUDY 
 

A simulation study was conducted to further assess the performance of our new 

proposed robust multicollinearity diagnostic measures based on MCD. Following the 

idea of Lawrence and Arthur (1990), three explanatory variables were generated as follows: 

𝑥𝑖𝑗 = (1 − 𝜌2)𝑧𝑖𝑗 + 𝜌𝑧𝑖4      𝑓𝑜𝑟  𝑗 = 1,2,3      𝑖 = 1,… , 𝑛 ;                         (16) 

 

where the 𝑧𝑖𝑗   for 𝑖 = 1,… , 𝑛  and 𝑗 = 1,… ,4  are independent standard normal random 

numbers. The value of  𝜌2  represents the correlation between the two explanatory variables 

X1 and X2. In this study, 𝜌2 was chosen to be equal to 0.98, which created high collinearity 

between these two explanatory variables. Thus in the data sets, only one dependence exists 

in the column of  X, whereby two explanatory variables X1 and X2 are involved in this 

multicollinear relationship. Different percentages of high leverage points were added in 

the explanatory variables. The level of high leverage points (𝛼) is varied from zero to 

40%. The magnitude of high leverage points is varied from 20, 50,100 and 300.  High 

leverage points in different positions of two collinear explanatory variables are generated in 

order to create collinearity-reducing observations.  In doing so, the first 100 (
𝛼

2
) percent 

observations of X1 and the last 100( 
𝛼

2
) percent observations of X2 have been replaced 

by a certain magnitude of high leverage points.  We ran 10000 simulations for moderate 

sample size equals to 100. The classical and robust multicollinearity diagnostic 

measures were then applied to the data. The results for the data without high leverage 

points are presented in Table 4. According to the results, the largest CI (CN) is greater than 

30, which indicates that severe multicollinearity exists in the data sets. The VDP of X1 and 

X2 exceeded 0.5, which shows that these two explanatory variables caused multicollinearity 

in the simulated data sets. It is important to note that the same result can be drawn from 

RCN (MCD) and RVDP (MCD). 

 

Table 2 

 

Classical and robust multicollinearity diagnostic measures for  

Modified Body fat data set 

Ind. 𝜆 CI 

VDP 

𝜆𝑀𝐶𝐷 

RCI 

(MCD) 

RVDP(MCD) 

X1 X2 X3 X1 X2 X3 

1 1.1398 1.0000 0.3593 0.3149 0.0136 1.4929 1.0000 0.0001 0.0001 0.0002 

2 1.0306 1.1060 0.0276 0.1202 0.7493 0.8780 1.7003 0.0000 0.0002 0.0013 

3 0.7992 1.4263 0.6132 0.5649 0.2371 0.0151 98.8294 0.9999 0.9997 0.9985 
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Table 5 presents the classical and robust multicollinearity diagnostic measures for 

n=100, different percentages of high leverage points, and at of 20 and 300 magnitude  

 

Table 3  

 

Classical and robust VIF for original and modified Body fat data set 

index 

Original  data set Modified data set 

CVIF RVIF(MCD) CVIF RVIF(MCD) 

1 708.8429 2718.3973 1.1266 2718.3973 

2 564.3434 1761.5475 1.1141 1761.5475 

3 104.6060 496.1453 1.0363 496.1453 

 

 Table 4 

 

Simulated classical and robust multicollinearity diagnostic measures for n=100 

and without high leverage points 

Ind. 𝜆 CI 

VDP 

𝜆𝑀𝐶𝐷 

RCI 

(MCD) 

RVDP(MCD) 

X1 X2 X3 X1 X2 X3 

1 1.4204 1.0000 0.0008 0.0008 0.0082 1.4849 1.0000 0.0004 0.0004 0.0356 

2 0.9903 1.4343 0.0000 0.0000 0.9815 0.8783 1.6907 0.0003 0.0003 0.7636 

3 0.0400 35.5100 0.9992 0.9992 0.0103 0.0265 56.0340 0.9994 0.9994 0.2007 

 

of high leverage points. The results of other magnitudes of high leverage points are 

consistent and are not included due to space limitation. It is worth mentioning that the 

values of CI and RCI (MCD) are computed based on the values of 𝜆 and  𝜆𝑀𝐶𝐷 , 

respectively. As soon as the small magnitude and percentages of high leverage points 

were added to the simulated data sets, the classical multicollinearity diagnostic 

measures such as the CI failed to detect the presence of multicollinearity in the data 

set. Since none of the CIs exceeded their cutoff points, the results of VDP were not 

checked because it was not conclusive as to which explanatory variables were involved 

in the collinearity relationship. However, the values of the last RCI (MCD)s, RCN 

(MCD)s for different percentages and magnitudes of high leverage points, are greater 

than the cutoff point 30, which indicates that they correctly specify one linear 

relationship in the data set. On the other hand, the RVDP (MCD) s in all different 

situations recognized the explanatory variables which are involved in this collinear 

relationship. 
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Figure 2 part (a) and part (b) illustrate the maximum classical VIF and robust VIF 

based on MCD for different magnitudes and percentages of high leverage points. This 

Figure part (a) clearly shows the effect of adding high leverage points in collinear 

simulated data sets. When none of the high leverage points are present in the data sets.  

 Table 5  

Simulated classical and robust multicollinearity diagnostic measures for n=100 

and different percentage and magnitude of high leverage points 

 𝛼  I 𝜆 CI 

VDP 

𝜆𝑀𝐶𝐷 

RCI 

(MCD) 

RVDP(MCD) 

MC X1 X2 X3 X1 X2 X3 

20 

10 

1 1.0655 1.0000 0.2623 0.2589 0.3458 1.4762 1.0000 0.0004 0.0004 0.0351 

2 0.9995 1.0661 0.4002 0.4061 0.1875 0.8952 1.649063 0.0002 0.0002 0.7932 

3 0.9294 1.1465 0.3375 0.3351 0.4668 0.0276 53.49326 0.9994 0.9994 0.1717 

20 

1 1.0814 1.0000 0.3174 0.3154 0.2029 1.4681 1.0000 0.0004 0.0004 0.0347 

2 0.9974 1.0842 0.2453 0.2502 0.4966 0.9111 1.6113 0.0002 0.0002 0.8282 

3 0.9130 1.1844 0.4373 0.4344 0.3004 0.0292 50.3217 0.9994 0.9994 0.1371 

30 

1 1.1052 1.0000 0.3366 0.3355 0.1153 1.4571 1.0000 0.0005 0.0005 0.0322 

2 0.9948 1.1109 0.1405 0.1434 0.7072 0.9311 1.565011 0.0001 0.0001 0.8654 

3 0.8872 1.2457 0.5229 0.5211 0.1774 0.0311 46.82461 0.9994 0.9994 0.1024 

40 

1 1.1346 1.0000 0.3249 0.3260 0.0738 1.4422 1.0000 0.0006 0.0006 0.0261 

2 0.9937 1.1418 0.0886 0.0853 0.8138 0.9565 1.507876 0.0001 0.0001 0.9133 

3 0.8508 1.3335 0.5864 0.5887 0.1124 0.0345 41.84453 0.9993 0.9993 0.0605 

300 

10 

1 1.0667 1.0000 0.2651 0.2650 0.3345 1.4774 1.0000 0.0004 0.0004 0.0351 

2 0.9992 1.0675 0.3922 0.3920 0.2098 0.8933 1.6539 0.0002 0.0002 0.7903 

3 0.9282 1.1491 0.3427 0.3430 0.4557 0.0276 53.5531 0.9994 0.9994 0.1746 

20 

1 1.0819 1.0000 0.3212 0.3169 0.1967 1.4678 1.0000 0.0004 0.0004 0.0343 

2 0.9971 1.0851 0.2361 0.2456 0.5111 0.9115 1.6104 0.0002 0.0002 0.8270 

3 0.9128 1.1852 0.4427 0.4375 0.2922 0.0291 50.4219 0.9994 0.9994 0.1387 

30 

1 1.1056 1.0000 0.3355 0.3368 0.1141 1.4561 1.0000 0.0005 0.0005 0.0318 

2 0.9951 1.1110 0.1419 0.1389 0.7096 0.9330 1.5607 0.0001 0.0001 0.8667 

3 0.8864 1.2473 0.5226 0.5243 0.1762 0.0311 46.8579 0.9994 0.9994 0.1015 

40 

1 1.1351 1.0000 0.3246 0.3255 0.0737 1.4416 1.0000 0.0006 0.0006 0.0257 

2 0.9935 1.142546 0.0876 0.0853 0.8153 0.9575 1.505562 0.0001 0.0001 0.9145 

3 0.8504 1.334718 0.5879 0.5892 0.1111 0.0346 41.69594 0.9993 0.9993 0.0598 

#MC: magnitude of high leverage points and #I :Index. 
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Figure 2. Maximum values of CVIF or RVIF (MCD) for different percentage and 

magnitude of high leverage points and n=100 

 

the maximum CVIF for all different magnitudes of high leverage points exceed the 

cutoff point, which reflects that without high leverage points, the data sets are 

collinear. By increasing the magnitude of the high leverage points, the CVIF fails to 

detect collinearity in the data. Figure 2 part (b) reveals that if RVIF (MCD) is used as 

an indicator of multicollinearity diagnostic, it can diagnose correctly the collinearity of 

the data sets. However, by increasing the percentage of high leverage points decreases 

the values of maximum RVIF (MCD). 

 

5. CONCLUSION 

High leverage points that are the outliers in the X-direction may change the 

multicollinearity pattern of the data set. The classical multicollinearity diagnostic 

measures in the presence of these points in a collinear data set may fail to detect the 

multicollinearity in the data set. Moreover, the existing robust multicollinearity 

diagnostics tools are not able to detect the collinear explanatory variables.  In this 

paper, we proposed robust multicollinearity diagnostic measures based on a one-step 

reweighted Minimum Covariance Determinate (MCD). The performance of our robust 

multicollinearity diagnostic measures is evaluated by a well-known collinear data set 

and simulation study.  The results of the study signify that all the classical measures 

failed to detect the multicollinearity pattern of the data whereas our proposed measures 

were very successful in detecting the multicollinearity pattern of the data and the 

collinear explanatory variables. 
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