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Abstract: The cost of protection on a CDO tranche is driven, to a large 

extent, by the default dependence among entities composing the underlying 

portfolio. We propose a CDO valuation model where we independently fit default 

intensities to CDS market data and then calibrate different types of copulas to 

match the portfolio default dependence. We have adapted our model to 

accommodate the after crisis market conditions that changed the way CDO 

tranches are quoted and traded. The model is calibrated to replicate the up-front 

fees for the iTraxx Europe tranches. Our approach provides a good approximation 

of market data and allows for performance comparison of different classes of 

copulas. 
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1 Introduction 

Credit derivatives allow investors to trade credit risk in the same way they 

trade market risk. This is one of the reasons why credit derivatives market has been 

the most innovative and fastest growing in the past decade. The most popular 

multi-name product of this market is the collateralized debt obligation (CDO). 

The market standard tool for pricing CDOs is the one factor Gaussian 

copula model introduced by Li (2000). In this setting the univariate distribution of 

time to default of each asset is derived from market data and then the joint 

distribution is specified using a one factor Gaussian copula. The main assumption 

of this methodology is that one parameter is sufficient to model the correlation of 

times to default among all assets in the portfolio. The literature concerning credit 

risk dependency modeling has evolved around the copula concept. Many different 

types of copulas have been proposed such as t-copula by O’Kane and Schögl 

(2005), double t-copula by Hull and White (2004), Clayton copula by Friend and 

Rogge (2005), Gumbel copula by Choroś-Tomczyk (2010) or normal inverse 

Gaussian by Kalemanova, Schmid and Werner (2007). Hofert and Scherer (2011) 

provide a comprehensive comparison of different types of Archimedean copulas 

both in exchangeable and nested form. The method called implied copula proposed 



 

 

 

 

 

Gabriel Gaiduchevici, Bogdan Negrea 

 

by Hull and White (2006) determines the copula parameter implied by market 

quotes in a manner analogous to that used to derive the implied volatility in the 

Black-Scholes option pricing model. The implied correlations derived in this way 

are not equal among tranches depicting the so called correlation smile. We also 

refer to Burtshell, Gregory and Laurent (2008) for a comparison of selected copula 

approaches. Alternative valuation methods are the random factor loading model as 

implemented by Andersen and Sidenius (2004) or intensity based models proposed 

by Duffie and Gârleanu (2001). The top-down approach for CDO valuation 

represents another stream of models represented by Schönbucher (2005) and 

Filipovic, Overbeck and Schmidt (2011). 

In this study we propose a CDO valuation model based on default 

intensities calibrated to market data and credit risk dependence modeled with 

copula functions. For the empirical study we used iTraxx Europe Series 15 data, 

retrieved from the Bloomberg database. The analysis was conducted on after the 

crisis data which led to supplemental challenges due to the changes in quotation 

styles for CDSs and CDO tranches. Liquidity has become an important factor and 

therefore we have chosen a period where market quotes were not influenced by 

lack of liquidity. 

The paper is organized as follows. In Section 2 we introduce the intensity 

based approach used for default modeling and review the computation of CDO 

payment streams. In Section 3 we present the concept of introducing dependence 

via copulas and describe the methods we used to sample from different types of 

copulas. Model calibration to market data is explained in Section 4. Section 5 

presents the results and Section 6 concludes.  

 

2 Synthetic CDO Valuation 

Portfolios of credit derivatives and CDOs in particular have shown an 

impressive growth in the period preceding the crisis. This is partly attributable to 

the optimistic ratings provided by rating agencies and to their appealing 

characteristics such as low initial investment and explicit choice of risk/return 

profile.  

A cash CDO is a specific type of Asset Backed Security where the 

underlying portfolio is constituted of corporate bonds. In order to set up such a deal 

the originator would create the portfolio by buying the bonds and then create a 

waterfall structure to allocate the cash flows generated by the portfolio into 

different tranches ranked by seniority. Cash CDOs were not popular because of the 

initial investment required to finance the bond portfolio.  

Two important market innovations led to the increasing popularity of 

multi-name credit derivatives. In a first market development it was recognized that 

a long position in a bond has a similar risk to a short position in a CDS written on 

the same entity that issued the bond. This led to an explosion of CDS issuance and 

trading that facilitated the development of an alternative structure named synthetic 

CDO. The originator of a synthetic CDO chooses a portfolio of companies and 
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sells CDS protection on each of the names. The maturity of the structure is given 

by the maturity of the CDS contracts and the principal is given by the sum of the 

notional of the underlying CDSs. Inflows generated by the CDS spreads and 

outflows generated by defaults constitute the cash flows of the structure that are 

allocated to form the tranches. Because of the straightforward waterfall structure 

and minimal initial investment synthetic CDOs have become very popular. The 

second market development was the single-tranche trading. This term is used to 

describe the prevalent form of synthetic CDOs which involves trading of tranches 

without the underlying portfolio of short CDSs being created. The portfolio of 

short CDS positions is used only as a reference to define the cash flows between 

parties engaged in tranche transactions.  

The two most important reference points for synthetic CDO tranches are 

the CDX NA IG and iTraxx Europe indices. These indices cover 125 investment 

grate companies in United States and Europe respectively. Market participants 

have used the portfolios of CDSs underlying these indices to define standardized 

synthetic CDO tranches. The purpose of this study is the valuation of these CDO 

tranches. 

 

2.1 The credit curve 

The most important quantity in pricing multi-name credit derivatives is the 

portfolio loss process. In the case of CDOs this stochastic process can be derived 

from individual times to default of underlying reference entities.  

We assume the existence of a filtered probability space  where  

is a pricing measure calibrated to market quotes. The reference portfolio is 

comprised of  companies and their times to default are given by a 

positive random variable . The default status of each entity is specified via an 

intensity model, also called hazard rate model. The intensity used to derive the 

default probabilities is assumed to be a deterministic, nonnegative function denoted 

by . The term structure of unconditional default probabilities (i.e. the credit 

curve),  is related to  by the following function: 

 

  (1) 

 

and the corresponding survival probability is given by: 

  

  (2) 

 

In the following we adopt the canonical model for constructing  as it is 

implemented by Schönbucher (2003), page 122 for its suitability to simulation. If, 

the variables  are uniformly distributed in and independent of  , then: 

 

  (3) 
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The default times , are obtained by taking the inverse of the survival function at 

points . The greatest challenge in modeling the portfolio loss process is to 

determine the joint distribution of the times to default. We introduce dependence 

among the stopping times by making the trigger variables  dependent.  

Multivariate copula functions are a suitable method to specify the dependence 

structure with given margins. By assuming this setting on which the dependency is 

specified independently of the univariate margins the distribution function of the 

loss process is not available in an analytical form. However, the loss process can be 

simulated, via Monte Carlo, by sampling from different types of copulas. 

   

2.2 Present value of expected cash flows 

Generally speaking, CDSs and CDOs provide protection against defaults in 

exchange for a fee that can take the form of a spread, an up-front fee or both. In a 

typical CDO contract the protection buyer pays a spread , quarterly in arrears, 

times the outstanding principal. In case of a default the outstanding principal is 

reduced and two payment streams occur. First there is an accrual payment to bring 

the periodic payments up to date and then the protection seller reimburses the 

buyer for the losses caused by the default.  

The credit crisis that started in 2007 caused some changes to the way credit 

derivatives are quoted and traded; two of them are important for the purpose of this 

analysis. First, spreads for CDS and CDS indices became very volatile with large 

swings caused more by market sentiment than true perception of risk. As a result, 

even though CDSs continued to be quoted as a spread, the actual transaction is 

carried out as an up-front fee calculated as the present value of the difference 

between the CDS spread and the bond coupon. The following relation:  

 

  (4) 

 

where  stands for the duration of the CDS payments,  for the quoted spread and 

 for the bond coupon, denotes the required up-front fee that an investor has to pay 

in order to receive protection. For the remaining maturity the investor would also 

pay the fixed coupon  times the outstanding principal. This arrangement 

facilitates trading by decoupling future periodic payments from the spread that was 

prevalent in the market at transaction date. The second important change is the 

implementation of the same CDS trading arrangement to the CDO tranches. Before 

the crisis it was typical to assume a running-spread of 500bp only for the most 

subordinate tranche. This tranche was quoted and traded as an up-front fee, 

expressed in percentage points, while all the others were quoted as a spread that 

would be applicable to all future periodic payments. After the crisis all tranches, 

including the super senior, are quoted as up-front fees expressed in percentage 

points with different fixed running-spreads expressed in basis points. This follows 
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the same reasoning of making the future payments independent of the spread at the 

time of the transaction. 

 

In the following setup we assume an equally weighted CDO portfolio consisting of 

 reference entities,  tranches and maturity . The payment schedule 

 denotes the specific dates on which the premium 

payments are made. Taking account of the changes described above, we define 

 as the expected principal of tranche at time  expressed as a percentage of 

initial tranche principal. The discount factors of the form , where  is 

the continuously compounded interest rate, give the present value of  received at 

time . The spread  is the number of basis points paid per year in order to buy 

protection on tranche . 

A reference entity  is deemed to default before time , 

if . Then the loss variable is defined as: 

 

  (5) 

 

The portfolio loss process at time  is the average of all losses: 

 

  (6) 

 

where  is the deterministic recovery rate applicable to all companies. 

Alternatively,  can be replaced with LGD (loss given default) as an 

equivalent measure of loss severity.   

The losses are absorbed by tranches in order of seniority. The losses 

incurred by a particular tranche , at time  are determined by the 

attachment point, , and detachment point . Therefore the remaining principal of 

tranche  at time  is given by: 

  (7) 

 

The defaults may happen anywhere in  however, in order to simplify 

the computation we discretize the time frame according to the payment schedule 

and defer all defaults that happen on or before time  to the middle of the interval 

. Assuming defaults occur on continuous time may seem a more realistic 

assumption however it does not materially affect the results and serve only to 

clutter the notation.  
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The value of a contract is the present value of the expected cash flows. 

This is also the case with CDO tranches, and this present value involves three 

terms. The present value of the expected regular spread payments is given by: 

 

  (8) 

 

where . 

 

The regular payments from the buyer of protection to the seller cease in 

case of a credit event. However, due to the fact that the payments are made in 

arrears, a final accrual payment is required. The present value of the expected 

accrual payments is:  

 

 (9) 

 

The present value of the expected payoffs caused by defaults is given by: 

 

 (10) 

 

A remark about the recovery rate 

Provided that the same recovery rate is used both for estimating default 

probabilities and CDS valuation, the value of a CDS contract is not sensitive to the 

recovery rate because the default probability is proportional to  and the 

payoffs in case of default are proportional to . However this is not the case 

with synthetic CDO tranches. By applying the methodology described above, every 

time a default occurs the total notional of the CDO portfolio on which the 

payments are made is reduced by  whereas the total notional of the CDSs 

underlying the CDO portfolio reduces by . In practice the notional of the most 

senior tranche is reduced by  every time there is a loss that affects junior 

tranches and directly by  every time there is a default affecting the senior 

tranche. In this way the outstanding notional of the CDO is synchronized to the 

sum of the notional of the underlying CDSs. 

 

2.3 CDO Pricing 

Pricing a CDO involves determining the breakeven spread or up-front fee 

that would make the present value of the payments equal to the present value of the 

payoffs. In case the tranche is quoted as an up-front fee pricing implies determining 
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the up-front fee that would compensate for the arbitrary running-spread. From the 

perspective of the protection buyer the breakeven up-front payment is given by: 

 

  (11) 

 

where the superscript in  and   denote that  has been replaced by 

the specific running-spread, , according to the specification of the deal. 

Assuming deterministic discount factors, Equation (11) only requires the 

computation of the portfolio loss at each point of the payment schedule. 

Unfortunately, as can be seen from Equation (7), the loss affecting a certain tranche 

and therefore the remaining principal  is not a linear function of the individual 

loss variables . As a consequence the expected trance principal cannot be 

determined analytically and has to be computed via simulation.  

In the following we present the Monte Carlo routine for pricing CDO 

tranches: 

Step 1. Provide all inputs that specify the model: maturity , the payment schedule 

, number of companies , hazard rates , discount factors , recovery 

rate , the set of attachment and detachment points  for each tranche, 

number of simulation runs , a copula  for the default triggers  and the 

vector  that parameterizes the copula. 

Step 2. Given   and  compute the survival probabilities  as indicated in 

Equation (2). 

Step 3. For each of the  iterations sample  from the chosen copula as 

described in Section 3. Then compute the default times  according to Equation 

(3) and based on them compute the portfolio loss  for each of the points in the 

payment schedule as indicated in Equation (6). Having the portfolio loss profile, 

for each tranche  and each  compute the remaining tranche principal  as 

described in Equation (7). 

Step  4. Having  for each of the  iterations compute the present value of the 

regular spread payments, the accrual payment and the payoffs in case of default as 

in Equations (8), (9), (10) and take the expectation as their sample means. 

Step 5. Compute the up-front fees as in Equation (11) but using the sample means 

generated at Step 4. The results would have the following form for the breakeven 

up-front fee:  

 

  (12) 

 

Step 6. Repeat Steps 3-5 and search for copula parameters  that minimize the 

objective function . 
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2.4 Objective function 

The purpose of the model is to calibrate the copula so that the computed 

breakeven up-front fees would reproduce as accurately as possible the values 

observed on the market. The main goal of the calibration is to minimize de 

cumulative absolute deviations of the computed up-front fees  from the 

market up-front fees  with respect to the copula parameter : 

 

  (13) 

 

3 Specifying the dependence structure 

We specify the dependence structure among default triggers using Gauss, 

Student’s t and 5 families of Archimedean copulas. In this section we will point out 

the relevant characteristics of these copulas and present efficient sampling 

algorithms. 

  

3.1 Elliptical and Archimedean Copulas 

Elliptical copulas are derived from the elliptical distributions using Sklar’s 

theorem (1959). The most prominent versions are Gauss and t-copula. These 

copulas have been extensively studied in the literature and we will not continue 

with their description however, we point out that Gauss copula has evolved as the 

market standard for CDO valuation and despite its critiques we will use it as a 

benchmark. 

Archimedean copulas are related to the Laplace transforms of univariate 

distribution functions. According to Joe (1997) if we denote by  the class of 

Laplace transforms that consist of strictly decreasing differentiable functions than 

the function  defined as: 

 

  (14) 

 

is a d-dimensional exchangeable Archimedean copula where  is called the 

generator function and  is the copula parameter. For a comprehensive description 

of copulas we refer to Nelsen (2006). Table 1 presents the selected Archimedean 

copulas and parameters relevant to this study. 
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Table 1: Parameter space, generator functions and Kendall’s  coefficients. 

 

Family    

Gumbel    

Clayton    

Frank    

Joe    

A-M-H    

 

Nested Archimedean copulas provide an efficient way to recursively define 

the dependence structure. However, fitting a fully nested structure to a large data 

set is unfeasible. As an alternative to the fully nested model, we can consider 

copula functions with arbitrary combinations at each level. The high 

dimensionality of our data set and the knowledge about sectorial repartition of the 

companies made us particularly interested in nested structures given by the 

following form: 

 

 

 

(15) 

 

where  is the generator function, ,  is the 

dimension of the outer copula and  with  is the dimension of the  

inner copulas.  This copula has  margins and it is easier to model because the 

number of parameters  is much smaller than . As demonstrated by McNeil 

(2008) a sufficient condition for this structure to be a copula function is that the 

parameters satisfy  for any . Okhrin, Okhrin and Schmid 

(2012) provide several methods for determining the optimal structure. 

 

3.2 Sampling algorithms 
Algorithm 1 - Sampling from Gauss copula 

(1) Perform a Cholesky decomposition on the correlation matrix  to obtain the 

factor  that satisfies   

(2)  Sample   

(3)  Compute  

(4)  Return   
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Algorithm 2 – Sampling from  copula 

(1)  Sample , as  was generated in Algorithm 1 

(2)  Sample  independent of  and compute  

(3)  Compute  

(4)  Return  

 

Archimedean copulas are convenient to work with as they are fully 

specified by some generator function. For the purpose of simulating from an 

exchangeable Archimedean copula Marshall and Olkin (1988) proposed a method 

that is extremely efficient for large samples. The idea behind this approach is based 

on the fact that Archimedean copulas are derived from Laplace transforms.  

 

Algorithm 3 – Sampling from exchangeable Archimedean copula 

(1)  Sample from inverse Laplace transform  of  i.e .  

(2)  Sample independent  

(3)  Return  where  

 

As long as the distribution function  can be sampled the 

Marshal – Olkin algorithm becomes very fast even for large dimensions. This 

major advantage comes from the fact that it suffices to know the inverse Laplace – 

Stieltjes transform of the copula generator. For the specific case of the Gumbel 

copula we generate a positive stable variable  where 

 and . For the Clayton case we generate a variable 

 with . 

In particular the contributions of McNeil (2008), Hofert (2008) and Hofert 

(2011) provide the theoretical foundations to efficiently sample random vectors 

from nested Archimedean copulas.  

 

Algorithm 4 – Sampling from nested Archimedean copula (Hofert and Mächler 

(2011)). Let  be a nested Archimedean copula with root copula  generated by 

 and let  be a vector of the same dimension as . 

(1)  Sample from inverse Laplace transform  of  i.e .  

(2)  For all components  of  that are nested Archimedean copula repeat: 

 a) set  with generator to the nested Archimedean copula  

 b) sample  

 c) set ,  and  

(3) For all other components  of  repeat: 

 a) sample  

 b) set the component of  corresponding to  to  

(4) Return   

Sampling from nested Archimedean copulas when all generators belong to 

the same parametric family only require to know: 
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 ,  (16) 

 

as all distribution functions  have the same form as , but with different 

parameters. The algorithm goes through the recursively determined structure of the 

nested copula and samples from  and . Hofert and Mächler (2011) provide the 

theoretical foundation for this algorithm and tables with analytical forms for the 

inverse Laplace transforms of different classes of copulas. 

 

4 Implementation of the model and calibration 

We calibrate our model following a two steps process. First we construct a 

credit curve by fitting a step function of hazard rates to match market quotes of 

CDS spreads under the risk neutral measure. Second, the dependence structure is 

determined by calibrating the parameters of the copula from which the default 

triggers  are sampled. We also calibrate so as to determine the market 

implied LGD. An important advantage of this method is that default probabilities 

are specified and modeled independently of the dependence structure. 

 

4.1 Data 

The empirical part of this study was carried out on the iTraxx Europe index 

which is comprised of the most liquid 125 CDSs referencing European investment 

grade credits. The constituents of the index are changed every six months in a 

process known as rolling the index that is meant to replace the companies that are 

no longer investment grade. Every time the index in rolled a series is created and 

for the time until the next roll it is called the on-the-run series. The index trades 

with maturities of 3,5,7 and 10 years. The market has used the portfolios 

underlying this index to define standardized tranches that cover losses in the ranges 

of  and . For this 

analysis we have used Series 15, that initiated on March 20
th
, 2011, with a maturity 

of 5 years because it had the highest liquidity among all traded tranches on series 

issued after the crisis. For the reasons outlined in the remark about recovery rate in 

Section 2.2 we calibrate our model to match the up-front fees of the first 5 

tranches. Consequently, the number of companies , the number of tranches 

 and the attachment and detachment points  are set according to the 

loss ranges provided by the first 5 tranches. The recovery rate is , a 

commonly accepted assumption. The iTraxx series impose quarterly payments in 

arrears and therefore we set the payment schedule  to match the regular payment 

dates with  and . In order to test the consistency in time we have 

calibrated the model on the following 5 days: 2011-06-01, 2011-06-22, 2011-07-

21, 2011-08-10, 2011-09-30. For each of these days we took the observed market 

up-front fees  for each of the tranches and the zero interest rates needed to 

compute the discount factors . As described in Section 2.2 tranche quotes 

imply an up-front fee and a running-spread. For the particular case of Series 15 the 

first 5 tranche running-spreads expressed in basis points are 
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. For the calculation of discount factors we have 

used the standard ISDA Curve for Euro which is comprised of EONIA and 

EURIBOR rates on the short end and the average of interest rate swap fixings for 

maturities greater than one year. For all calculations requiring present values we 

used the  time convention. The model evolves around the Monte Carlo 

routine presented in Section 2.3 and up to this point we have defined all the 

variables required by Step 1 except for the term structure of the hazard rates and 

copula specification that will be presented in the next sections.  All data was 

retrieved from the Bloomberg Database. 

 

4.2 Fitting the default intensities 

In order to model the loss process we consider an inhomogenous portfolio 

by letting default intensities vary both across companies and time. To determine 

the step function of hazard rates we have used the term structure of CDS spreads 

up to 5 years. The idea behind this procedure is that given the term structure of the 

hazard rate that is complete up to time , find the hazard rate at time  that is 

consistent with de CDS spread at time . To implement this procedure we have 

used a numerical root-finding algorithm based on Newton-Raphson method. The 

spread is an increasing function of hazard rate and we also assumed that this 

relation is linear.  In general the algorithm is very fast because the convergence is 

quadratic, however the execution time is significantly influenced by the initial 

guess from which the algorithm starts. We mentioned this aspect because there is 

significant variability in CDS spreads across companies.  

To determine the unconditional default probabilities (PD) at each  we 

numerically integrated over the term structure of the hazard rates. Figures 1 and 2 

present the results and give a clear indication that in order for a copula to 

accurately describe the dependence structure it should provide enough tail 

dependency to catch the extreme co-movement of the variables.  

  

  
Figure 1. Distribution of cumulative 

PDs for all companies in the portfolio  

as seen from 2011-06-01 
 

Figure 2. Distribution of cumulative 

PDs for all companies in the portfolio as  

seen from 2011-09-30 
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4.3 Calibration of the dependency structure 
The choice of the copula in of crucial importance for the final result 

because in our model the dependence inherits the structure of the copula from 

which default triggers  are drawn. The model can contain up to 

1/2 parameters if we assume a Gauss or t-copula and −1 parameters in the case 

of Archimedean copulas. For such high dimensionality calibration is unfeasible and 

therefore we introduce the following dimension reduction technique.  

 

Empirical evidence has shown that companies in the same industry sector 

tend to have correlated performances. We have assigned the 125 companies in the 

index in the following  sectors: Consumer Non-Cyclical (25), Financial (25), 

Consumer Cyclical (12), Basic Materials (11), Industrial (13), Communications 

(20), Energy (4) and Utilities (17).  

In the case of elliptical copulas the simplest way to reduce dimensionality 

is to assume that all credits equally influence each other. In this case the copula 

would have only one parameter. However, having knowledge of sectorial 

composition of the index we introduced a second parameter to differentiate 

between intra and inter sector correlations. Therefore, in a first stage we calibrated 

the Gauss and t-copula with one correlation parameter. In a second stage we 

parameterized so that companies in the same sector would have correlation  and 

companies in different sectors correlation . In both cases we assumed 4 degrees 

of freedom for the t-copula as in Hull and White (2004).  

In the case of Archimedean copulas the information about sectorial 

composition can be used via nested copulas of the form in Equation (15). Using a 

partially nested copula we describe the dependency within the sector with a copula 

 with parameter and then joined all the sectors with an outer copula  with 

parameter .Therefore, we calibrated all the copulas listed in Table 1 both in their 

exchangeable (one parameter) and nested forms (two parameters). 

Model calibration was performed with respect to the Kendall’s tau 

parameter because it was efficient to minimize over a bounded parameter space. In 

case of the nested copulas we calibrated over 2 parameters when LGD was 

considered fixed and over 3 parameters when the LGD was implied by market 

quotes. Minimization of the objective function with respect to one parameter was 

performed using the Brent algorithm, described Nocedal and Wright (2006), that 

uses a combination of golden section and parabolic interpolation. For the two and 

three parameter copulas the multi-dimensional minimum of the objective function 

was computed using a box constraint optimization algorithm based on BFGS 

methodology and implemented by Nocedal and Wright (2006). Our choice for the 

method is supported by the fact that it is a direct-search algorithm that uses only 

function values, does not require calculation of derivatives and admits linear 

constraints on parameters. At each iteration we performed  simulations. 
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5 Results of calibration 

Our objective was to replicate all tranche prices simultaneously by 

calibrating over the parameter space of the copula in order to minimize the measure 

D. Results generated after calibrating for all types of copulas indicated that the 

model is consistent across time despite the significant changes in the credit market. 

Credit conditions worsened during 2011 on the background of stagnating European 

economy and deteriorated perception on sovereign creditworthiness. While Series 

15 was on the run the CDS index for 5 year maturity increased from 102.96 to 

202.45 bp. Tables 2 and 3 present the estimated tranche up-front fees and measure 

D for 2011-06-01 and 2011-09-30 respectively. We chose to present these dates in 

detail as they clearly reflect model consistency through different market conditions. 
Conclusions were drawn based on results generated for all calibrated days. 

A crucial aspect regarding calibration is that up-front payments for junior 

tranches are inversely correlated with the dependence among firms. However, this 

is exactly the opposite with senior tranche as their up-front fees are positively 

correlated with the dependence among firms. This induces a tendency for the 

model to overprice senior tranches for which we found several justifications. First, 

we calibrate the copula so as to reflect the overall portfolio credit dependency. 

Since the highest up-front fee is paid for tranches 0-3% and 3-6% it is normal that 

they would have the highest influence in determining the credit dependence. This 

overestimation of default dependence induced by the first two tranches extrapolates 

by increasing the risk, and therefore the price, for the senior tranches. Second, the 

periodic payments for all tranches are arbitrarily determined by the running-spread. 

Since superior tranches have significantly lower running-spreads than junior 

tranches it is normal for the model to compensate by increasing the up-front fee.  

 

Table 2. Calibrated tranche up-front fees and  measure for selected copula 

classes. The indicators listed after the names of the copulas indicate whether 

the calibration was performed over 1 or 2 parameters. 

 

2011-06-01 Trance up-front fees (%) 

  Kendall’s 

tau 
0-3% 3-6% 6-9% 9-12% 12-22% 

Market 
 

38.25 4.60 1.87 1.94 0.91  

Gauss 1 0.28 39.79 4.73 6.05 7.59 2.42 13.00 

Gumbel 1 0.31 37.68 3.00 3.42 3.26 2.04 6.15 

Gumbel 2 0.24    0.39 37.69 4.91 2.45 3.38 1.75 3.72 

Gumbel 2 

0.58 LGD 
0.22    0.41 38.05 4.19 2.43 3.22 0.98 2.52 

Rotated 

Clayton 1 
0.14 36.98 9.86 6.68 6.08 2.09 16.65 

Rotated 

Clayton 2 
0.12    0.21 36.25 9.01 6.32 5.53 2.22 15.75 
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Frank 1 0.43 37.67 8.04 5.95 8.83 2.61 16.68 

Frank 2 0.42    0.45 38.09 8.25 6.01 8.84 2.36 16.28 

AMH 1 0.33 47.04 18.92 7.83 6.46 1.69 34.36 

AMH 2 0.30    0.33 48.16 17.6 7.91 5.85 1.90 33.84 

Joe 1 0.24 39.35 4.35 2.76 5.16 2.16 6.71 

Joe 2 0.17    0.32 37.91 4.03 1.20 4.42 1.16 4.31 

 

Table 3. Calibrated tranche up-front fees and  measure for selected copula 

classes.  

 

2011-09-30 Trance up-front fees (%) 

  Kendall’s 

tau 
0-3% 3-6% 6-9% 9-12% 12-22% 

Market 
 

61.44 27.65 19.14 4.91 2.34  

Gauss 1 0.40 59.63 28.41 24.07 14.01 9.62 23.87 

Gumbel 1 0.39 62.20 27.03 21.92 6.70 5.29 8.89 

Gumbel 2 0.34    0.48 61.24 27.83 19.73 6.24 4.72 4.67 

Gumbel 2 

0.64 LGD 
0.33    0.45 61.08 27.62 19.33 6.43 4.77 4.52 

Rotated 

Clayton 1 
0.26 54.54 27.69 22.81 20.32 13.73 37.40 

Rotated 

Clayton 2 
0.22    0.28 58.27 31.16 24.70 16.99 11.5 33.47 

Frank 1 0.43 62.76 30.56 24.22 23.98 13.65 39.68 

Frank 2 0.42    0.5 58.80 30.01 24.36 24.31 10.77 38.04 

AMH 1 0.30 77.14 33.53 24.51 17.93 9.78 47.40 

AMH 2 0.30    0.33 76.99 32.50 25.42 19.06 10.03 48.51 

Joe 1 0.35 61.30 28.53 21.51 10.51 5.35 11.99 

Joe 2 0.24    0.52 61.55 27.05 20.17 7.74 5.97 8.19 

 

Third, the market itself may be inefficient in pricing superior tranches. This 

belief is based on the fact that investors are more concerned with correctly pricing 

junior tranches as these have a higher probability of being hit by defaults and don’t 

manifest the same diligence when pricing superior tranches. Therefore, we may 

conclude that the model performs consistently across tranches. 

Among all tested copula families the two parameter Gumbel copula 

performed best. This was also our a priori expectation because Gumbel copula 

exhibits upper tail dependence, that is, it is more suitable to describe outcomes that 

simultaneously produce upper tail values. Joe copula performed well and close to 

Gumbel and therefore we consider it suitable for this type of analysis. This 

consideration is intuitive as they have the same tail characteristics and parameters 

spaces. Except for the Gumbel copula, all the copula classes do not materially 

improve the performances of the model by calibrating over 2 parameters instead of 
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one. This provides a solid reason to conclude that it is the structure of (tail) 

dependence that matters most and not a particular value of the parameter. Clayton 

copula, even though it was used in the rotated form showed weak performance and 

therefore sustains the fact that it is not suitable in this modeling context. This is 

also the only copula that has a tendency to fit in between, that is, to underprice 

junior tranches and overprice senior ones. AMH and Frank copulas, as expected, 

performed worst due to their lack of tail dependence. In addition AMH has a 

restricted parameter space which prevents it from capturing enough dependence. 

This is the reason why calibrated parameters for the AMH copula came very close 

to the upper limit of the parameter space.  

Even though calibrations for exchangeable and nested copulas were 

independent the parameter calibrated in the exchangeable form always fell between 

the parameters calibrated for the nested form. This leads us to conclude that 

information about sectorial repartition has a significant influence on the 

dependence structure. Even more so, for every copula and every calibrated day the 

inter sector parameter was lower than the intra sector one. This reinforces our 

belief that dependence among companies is clustered according to industry sectors. 

The naïve Gaussian model does not properly capture the dependence characteristics 

of the portfolio. What is even more discouraging to using this type of copula is that 

its performance decreases with the strength of dependence. This finding is 

supported by the fact that it performed worst in relative terms during the analyzed 

time period that exhibited worsening credit conditions and increasing dependence. 

Since the Gumbel copula provided the best results we calibrated this model 

over 3 parameters in order to determine a market implied LGD. Our results support 

the empirical findings namely that the LGD is positively correlated with the 

dependence among companies. However, we cannot make inferences about 

whether the LGD is statistically different from the commonly accepted value of 

0.6. We may also note that the computational complexity implied by deriving LGD 

in such a manner undermines the relevancy of the results.  

While performing calibration for the 2 and 3 parameter copulas we have 

encountered various numerical issues. Repeated calibration over the same data and 

parameter space returned different minimum values for the objective function. This 

was due to the fact that the optimizer is sensitive to the initial value of the 

parameters and according to where it starts on the parameter space it might get 

stuck into a local minimum. In order to overcome this numerical issue we 

performed the minimization of the objective function in two steps. First we 

evaluated the function on a loose grid of points spanning the initial parameter space 

and determined a restrained interval for the parameters. Second, we ran the 

optimizer over the restricted interval and set up the starting point in the middle of 

the constraint interval. In some cases unrestricted optimization performed with the 

Nelder-Mead downhill simplex algorithm starting from the centroid of the 

restricted interval returned the global minimum. 
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All programs developed for this study were implemented in Matlab and ran 

on a shared server with 16 processors and 64GB of RAM. We followed most of the 

best practices in Matlab programming such as parallel computing, vectorization 

and memory pre-allocation.  

 

6 Conclusion 

We proposed a CDO pricing model that used default intensities calibrated 

to CDS spreads and 7 copula functions to describe the dependence structure. For 

each of the copula types we calibrated the model so that it simultaneously 

reproduces the quoted up-front fees for all tranches. We made use of the fact that 

default correlation tends to be higher for the companies pertaining to the same 

industry sector. We showed that, given the changes that affected the credit market, 

the CDO pricing model for which the dependency structure is given by a nested 

two parameter Gumbel copula yields the smallest pricing errors.    
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