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AN EFFICIENT STRATEGY WITHOUT DERIVATIVES FOR BOX
CONSTRAINED OPTIMIZATION USING ORTHOGONAL
DIRECTIONS

Abstract. In this paper I present an efficient derivative-free line search
strategy using adaptive orthogonal directions for locating a minimum of multivariable
box constrained functions. The method which can be considered an advanced
development of the well known direct search method of Rosenbrock [28] uses an
advanced inexact line search sequence to improve convergence speed and numerical
accuracy. Scaled trial steps in every dimension of the search space are considered and
every iteration the search directions are changed using Palmer’s [24] improved
orthogonalization procedure. In the numerical evaluation section the algorithm’s
performance is compared with other search approaches recently evaluated in Hvattum
and Glover [15]. The numerical results show that the algorithm is very competitive in
terms of convergence speed. The overall balance between convergence speed,
reliability and small arithmetic complexity makes the present routine one of the
methods of first choice for employment as local search procedure inside hybrid
metaheuristic algorithms.
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1. Introduction

One of the most important problems in numerical analysis is finding a local
minimum of a multivariable function inside a bounded search space:

ﬂ%‘%f(xi:xz: X1 xﬂ}

L=x,=u,i=1n w
To solve problem (1) two fundamentally different approaches can be
employed.
The first and most common approach is to use a gradient based method. The
most popular among gradient based methods is the Newton class which requires first

and second order derivatives of the objective function. Methods of this type have very
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fast local convergence rate to a local minimum if fitted with an appropriate trust region
scheme or an inexact line search strategy with guaranteed sufficient decrease to ensure
its global convergence properties. Though these methods are fast and usually good
implementations yield very good results most of the times in some cases they cannot
be the methods of choice. Maybe their biggest drawback is the fact that can be used
only on functions that are at least twice differentiable. In some cases even when this
property is satisfied the derivatives can be hardly approximated numerically or can be
very expensive to compute. Another inconvenient is that they can be used only if the
function has a reasonable degree of smoothness. Since a comprehensive discussion
about this type of methods is not within the scope of this paper in order to see a proper
treatment of it the reader is advised to consult Antoniou and Lu [1].

The second approach of problem (1) is the employment of a derivative-free
search algorithm. Methods belonging to this approach are heuristically motivated and
in order to determine a descent direction use only the ordinal relation between values
of the objective function evaluated in different points of the search space. Since they
require no derivatives they can be suited for the minimization of non-smooth and
highly nonlinear (sometimes multimodal) functions. The easiness of their employment
in practice can be also considered an advantage since their coding does not require
knowledge of numerical linear algebra. However not requiring knowledge of numerical
linear algebra is the only thing these methods have in common since the way they
determine a descent direction is specific to every algorithm. The convergence speed of
derivative-free methods is much slower than the speed of the Newton family for
problems where the latter can be used. Despite their weaknesses not requiring
derivatives makes them more flexible and this is the reason of their employment as
local search routines inside hybrid metaheuristic algorithms (see Chelouah and Siarry
[5], [6], Coelho et al. [7], Hedar and Fukushima [10], [11], Mladenovic et al. [19] and
in Sacco et al. [25]).

The most popular among the local derivative-free algorithms employed by
hybrid metaheuristics are the well known Nelder-Mead [23], Rosenbrock [28] and
Hooke and Jeeves [16] direct search methods. The reason of their popularity is the
easiness they can be computer programmed. However simplicity is not always the right
solution since all 3 methods have their limitations. First of all only Rosenbrock’s
method [24] is somehow theoretically guaranteed to converge to a local stationary
point of a function (as being a derivation of Cauchy’s method of steepest descent).
Secondly the most popular direct search algorithm, the nonlinear simplex of Nelder
and Mead in all its variants [4], [20], [23], [32], has proven in Han and Neumann [10]
and in Hvattum and Glover [15] to perform very poorly for problems with more than 4
variables. Therefore it is not recommended for employment when dealing with larger
problems. On the other hand Rosenbrock’s and Hooke-Jeeves’ methods perform better
than Nelder-Mead for larger problems as seen in [15] but require a large number of
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function evaluations to reach reasonable numerical accuracy and their reliability is
somewhat influenced by the chosen length of the initial trial step.

Since most of the search inside hybrid metaheuristics is performed by local
search procedures it is understandable that the overall performance of the algorithm is
very dependable on the performance of the local subroutine. As a result a derivative-
free procedure capable of dealing efficiently with problem (1) mainly when the
objective is a high-dimensional function would be of interest of many fields in which
optimization plays an important role.

Because of its desirable properties of theoretically guaranteed convergence,
Rosenbrock’s method for unconstrained optimization was subject of further
development. In 1964 in an internal research note of Imperial Chemical Industries [30]
Swann mentioned that by performing a more sophisticated inexact line search sequence
along each direction of Rosenbrock’s method a new procedure is obtained which
proves generally superior in practice to both Rosenbrock’s method [24], from which it
was developed, and Hooke and Jeeves’ pattern search method [13]. In 1965 in a
comparative analysis made between several top derivative free methods [8], Roger
Fletcher noted that the modified version Rosenbrock’s method of the Imperial
Chemical technical staff proves both simple and efficient and wandered if it may have
any advantages over its competitors using conjugate directions (Powell [22], Zangwill
[31]) when the number of variables is increasing. Since the improved method was
considered company’s intellectual property, to my knowledge no implementation of it
was discussed in a public material. Moreover the method’s vague description given
recently in Lewis et al. [18] and its absence from the comprehensive comparative study
between local derivative-free routines made by Hvattum and Glover [15], made me
believe that a comprehensive treatment of this development would prove beneficial.

As a result the rest of this paper is organized as follows. In section 2 I present a
detailed description of the enhanced algorithm along with my implementation scheme.
In section 3 some numerical examples are used to demonstrate algorithms performance
compared with the search approaches from [15] and finally in section 4 a short
discussion is given regarding the conclusions of this paper and directions for further
research. From the beginning it should be noted that I treat the case of box constrained
optimization not the unconstrained one treated by Swann [3], [29] and therefore the
procedure presented here is different to the original in some aspects.

2. DESCRIPTION OF THE ALGORITHM

Let’s reconsider the general box constrained optimization problem (1). Let
Xog=1(x1 xz - Xp1 X,)7 bea feasible starting point of problem (1).

Like Rosenbrock’s, the present method employs n orthonormal search
directions but unlike its predecessor an advanced inexact linear search sequence is
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carried out once along each direction in turn using the one-dimensional search
algorithm of Davies, Swann and Campey [3]. After a linear search has been performed
along each search direction, the distances moved in each them d; are compared with &;
the trial step lengths in the corresponding direction and if at least one |d;| = &;i=1,n
the search directions are redefined using Palmer’s [21] improved orthogonalization
procedure. If all |d,| < &,i =1,n then the trial step length is multiplied by a
demultiplication factor K and a further linear search is performed along the n old
search direction vectors. Convergence of the method is assumed if one of the trial step-
lengths &; falls under a predefined value &.

From the functional point of view the present procedure can be divided in 3
stages: the initialization of the search, the linear approximation of the minimum along
each search direction and the change of the search vectors by orthogonalization of the
walked distances.

The first stage is performed only once as the search process is initiated while
stages 2 and 3 are repeated inside an outer loop until one of the stopping criteria is met.
Therefore a standard iteration of the algorithm is formed by a linear search sequence
and an orthogonalization procedure.

imput : Xy, £, MAXEVAL
output: X*.f*, EVAL
1 begin
2 INITIALIZATION
3 while EVAL< MAXEVAL || CONVERGENCE=FALSE do

4 while EVAL<MAXEVAL || |d;| < |4;],i =1,n do

5 _ INEXACT LINEAR SEARCH SEQUENCE

6 if CONVERGENCE=FALSE || EVAL<=MAXEVAL then
T CHANGE SEARCH DIRECTIONS

Figure 1 - Flowchart of the algorithm
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STAGE 1: Initialization.
The purpose of the stage is to initiate the search sequence. In order do that it is
necessary to evaluate the objective of the starting point X and to initialize the search

directions using n mutually orthonormal vectors & f' ,i=1n

g =Moo - - 0 0
=01 - « 00"
: S (2)
fa-e = [0 0 - 107
g =m0 0 - - 0 1]

STAGE 2: Linear minimization sequence.
The goal of this stage is to approximate the distance d; that minimizes

f(Xo+dg?), i=1n 3
in every direction & E’,i = 1, n using an one-dimensional inexact line search algorithm

that does not assume a priori knowledge of minimum’s bracketing interval.

The one-dimensional algorithm of Davies, Swann and Campey as described in
Box et al. [3] combines a search method with an approximation method, the first being
used to locate the interval which brackets the minimum and the second to estimate the
minimum by quadratic interpolation.

Starting from X; a trial step &; is taken in the corresponding direction ;. If the

objective of the trial point is less than the initial function value f{X;) the step-length is

doubled and further movement is made in the direction in which the function is
decreasing. This process is repeated until the minimum has been overshot. Then the
step-length is halved and smaller step is taken again from the last successful point.
This will give four points equally spaced along the direction of the search. To reduce
the uncertainty range the point that is furthest from the point having the smallest
objective value is rejected and the remaining three points are used to approximate the
minimum by quadratic interpolation. After one linear search has been performed for all
£2, the distance walked in every direction d;,i = 1,1 is compared with the initial step

length in that direction &, i = 1,n. If at least one |d;| = &; then search directions are

Er
changed via orthogonalization, otherwise step-lengts (5;,i = 1,n) are decreased by a
demultiplication factor 0 =~ K = 1.
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while EVAL=MAXEVAL || Convenpener= False do

Kiot=XFearz fivt— FBeati o

while EVAL<MWAXEVAL ||{]d:] < |80 = 1,0} || Converpenees False do
Copube §s—e fu=0 1

foreach £ do

= 85 plk XX pear+6-El: Xoat=Xpear—FEl; fra—F{ Xk

EVAL +— EVAL +1;
iF Soastu || Noa feasible then
| Set pe-1
o s
F-i=FX )
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alse
No seareh fign cage;

Kopeat Xt b Ittty e fe [{ Xepiat):
EVAL + EVAL+ 1;

i it < Sieat || Xeriaa feieszble then

|_ Kiers i=Kirriat! Siese = Frrint: d-*—ﬁ'mi—'_ﬂ-;-.—_,{fﬁm'ﬂ'-'
it pi then

rapaat

Xyowt— X1 i) + pefis =28 X=Xy + p-igls
if X, feosible then

| FaeflXo); EVAL—EVAL + 1;

wntil £ oo || X winfeasible | [ EVA L= MAXEVAL);
if X, fewaabie then

if fun = Mooy then
XKyt iy
i [ < fii-1 then

|_ Kooy = X i + prdox

Xpemt—Xn—| foee + fu-1i
else

ru g Jog—fm oL e T a7
'\ 1_'}{"' +IJI5 =T Jmt fuk E:::l: "r *_j—[x }
EVAL+—EVAL+1;
if [* < fiy then

else
|_ le l‘_}irru: I'-';. - r&i T 's: _rn.- 1% ,Ilhl-l
K pom X1} Faew +— fa-1

Figure 2 - Pseudo-code of the linear search sequence

B X=Xy + pifls frt—f{X)i EVAL - EVAL 4 1;

| .15,._14—.3'1'.": d" l—1£l+P'l§'q'.Ur%L:m: Iu—] & f'.
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STAGE 3: Change of the search directions #,,i = 1, n by orthogonalization

The purpose of this stage is to generate a new set of n orthogonal vectors
1 gl ... 51 such that £ lies in the direction of greatest advance from the previous
2 n g p

stage (along the line joining the first and the last points in the n-dimensional space).

The stage consists of 3 steps: the computation of the vectors joining the initial
and final points by use of different sets of search vectors (4), the total distance moved
in the corresponding sets of directions (5) and the change of search by Palmer’s [21]
improved orthogonalization procedure (6).

Ay =di ) + dy 8]+ +d,_15h_1 + duFp

A = Ay 8] + oo +dy 180 1 + dyfy
)
4,4, = dy_1 5y + dody
a,= dn &3
|I n
= ) & k=T (s)
*Ji:k
dpd,— &p_y|AL1% —
&= btk if gl 1Al 20,k =2
|Ak—1|' |Ak| (ﬁ}
g =L
174,

After the orthogonalization process has been finished, the search process is
resumed from the inexact line search sequence until one of the termination criteria has

been met.
for i +— 1 to n do

1
2 | Ain 4 dn-£3

3 for j+— n—1to1ldo

4 for i «+ 1 to n do

5 L AiJ — Ai‘jm;.] +dj {é
for i<+ n—1to 1 do

L |A1| — |Ai+]‘ -+ d?
for i < n to 2 do

\; if ‘/]Ai| = |A;.;_'|| % 0 then

© ® N o

1

=]

gi o di—l'A1,J*§(l)7]'|Az|
L VAT TA
L A
12 R =
&1 V1AL

Figure 3 — Pseudo-code of the direction change sequence
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3. NUMERICAL EVALUATION

The purpose of this section is to demonstrate the performance of the method
described in the previous section by means of comparison with the other derivative-
free search approaches recently evaluated [15]. For that reason 8 of the test functions
from there (see appendix for details) were used as benchmarks. Like in Hvattum and
Glover [15] the functions were shifted such that their global minimum is 0. Also the
stopping criteria and initial trial step-lengths used here were the same:

of = 0001, frou <
oEVAL = MAXEVAL = 50 000
o5, =5%-(u; —1),i=1n
Therefore the minimization process has been stopped if either the current best
solution had dropped below 0.001 or the function evaluations counter had exceeded 50

000. In the tables containing comparisons of the results, the numbers between
parentheses represent the probabilities of reaching £ — optimal solutions within the

permitted number of function evaluations where failed attempts have been recorded.
For every function I used a sample of 50 randomly generated starting points inside the
definition box [l,u;], i=1,n and two settings for the algorithm’s step
demultiplication factor K.

Table 1 - Description of the search mechanisms

Abbreviation Method’s Name Classification References
NM Nelder-Mead Nonlinear Simplex Search [20,32]
MDS Multi-Directional Search| Nonlinear Simplex Search/Pattern Search [30]
CS Compass Search Pattern Search/Generating Set Algorithm [16]
HJ Hooke and Jeeves Pattern Search [13]
ROS Rosenbrock Direct Search Meti'tod v‘vzth Adaptive Search [24]
Directions
Sw Solis and Wets Stochastic Direct Search Method [26]
HPS Heuristic Pattern Search Derivative-Free Method (not a direct (1]
search)
Simultaneous
SPSA Perturbatlor} Sto'chasnc Derivative-Free Method (not a direct [27]
Approximation search)
Stochastic Direct Search with Randomized
SSR Scatter Search-Random Subset Generation Algorithm (13]
) ) Stochastic Direct Search with Clustering
SSC Scatter Search-Clustered Subset Generation Algorithm [15]
EDSC1 Present having K=0.2 | [Inexact Line Search with Adaptive Search
EDSC2 Present having K=0.1 Directions
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The overall evaluation results of the present method were quite surprising. It
was to be expected that it would prove better than older methods like Rosenbrock’s
and Hooke and Jeeves’ but it managed to outperform all the other search approaches in
minimizing 7 out of 8 of the test functions. For every instance of the test the numbers
having no parentheses represent the average number of function evaluations obtained
by every method during the corresponding test instance. # denotes the number of
variables for every instance of the test problems used for evaluation.

Table 2 - Summary of the test results

Test  Test function Winner Runner-Up Comments
1| Rosenbrock | EDSCLEDSC2 | ROS,SSR,ssc | EP5C me’hOdSnvfg f oralln except

2| Zakharov EDSC1,EDSC2 ROS EDSC ’ZefthOdS. win for all
imensions

3| Matyas EDSCLEDSC? SSC, SSR EDSC ’Z?’hOd? win for all
imensions

4| Sphere EDSCLEDSC2 SSR, SSC EDSC ’Z?’hOd? win for all
imensions

5| Sum Squares | EDSCLEDSC? SSR, SSC EDSC ’Zef’h"df win for all
imensions

6 Trid EDSCL,EDSC2 ROS EDSC methods win for all
dimensions

7 Booth EDSCL,EDSC2 SSC, SSR EDSC methods win for all
dimensions

8 Branin SSC,SSR EDSCI1, EDSC2 EDSC methods place 2™

Due to the accelerating effect of the quadratic interpolation step, the present
method shows remarkable convergence properties when functions are convex or have
wide convex neighborhoods. When minimizing Zakharov’s function the present
method is the only one capable to reach £ — optimal values within 50.000 evaluations

for the 128 variable case and managed that using 3 times less evaluations than the
runner-up, the classic Rosenbrock method, needed in order to find one in the 64
variable case.

For the 512 variable version of the Matyas function only the variants of the
present method found £ optimal solutions within the allowed number of evaluations.
Also, for test problems 4 and 5 the difference between the present method and its
followers is substantial, EDSC being at least 70 % faster in terms evaluations. Another
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remarkable result is obtained for test problem number 6, EDSC being the only method
which manages to find £ — optimal solutions for the 64 variable case. Last but not

least, for the Branin test function, EDSC finishes second but is the only routine except
the winners able to find £ — optimal solutions for all sizes of the problem used in the

test.

Table 3 - Comparative results in minimizing Rosenbrock function
R | N MBS | e | W | ROS W | HPH | EP¥A | SSR SEC | EDSCE | EDSOCR

2 LEcE] (4] | EToeal | {7y | daTH UL | i) ey (WMD) JIJ 4 1TH.1Z 184.68
4 e EINIR} LILE] LR Y 112540 hned | o] REELH] Lagnas . AELLE 46474
1 HITIH EIE] IR ] Gy | ATHIA (1A 1] (i} [[IE 4] AhRE1 A 1317.6T | A6d04.07
AROL.3H BOST

[{IRE]] 1y [EIR ]

14 0 AT CILIE] {{SRAY THAL2 |
a3 I . (D] oy | 211431 (n| |y RIS | 182692 | 20a7a.9
k4 [RIR1K AL L] SR H .1l [{REL]] [LAE LK) JHuE (0,a) (LU
128 KRN 1L 1H] [0y Ay R 1] [ET [RCRH] i ||'| | (0,07 (ORI
Table 4 - Comparative results in minimizing Zakharov function
m | NM | MDS | CF Bl | ROS | SW | HPS | SPSA | SSR | SSC | EDSCI | EDSCR
X REA 453.H [[HA H TLT A7 LT 403 4. 24 LW
4 ] 1 1614 2L HE Ly EGTA 168.1 173.2 B3 BT.B
= HET.T LN 1 IT7.0 LR [ LLE K] (ELCIR] LLIEL L 171.4 1TBG
it (LLEre aAITA ITedL2 FHTY [ELUELH] UB2T.B ANG 5 Bl L
J2a II'I-.IW- [y (ILIF TRIHLIE | 2IETG [LIELN] J362H.A4 | LRIAT 19R2.2 2010,
B4 ek} RIRIN] |II II:| {ILIK) b | qin} [LIEIY] (LR 1] (kL) TOZE.5 Tia0.8
1ZH | [AE14] [EIE K] [LIALH] CLLLR) [ LUK A0} It l.l'.l,- [RLETH] .1 LIELE ATHILO | ZBAF1.A

Table 5 - Comparative results in minimizing Matyas function

n | NM | MDY¥ | €8 | W' | RS | EW | HNPF SPEA | X8R | SEC | EDRC1 | EDECE
3 355 | 2914 i Tid W2 0. TR ({5 A] ik, IT5 Shd afil
A DG | DO Fa4.4 G 415 S LALTR LA 1] d0 IT.2 idi.e8 i39.8

H | amLd AT T RTHET] ES2A T'II i {1 And RET Ehd.4 3T4.2
O OO 1 P O 511 LD (BT k i LLIMLE g [ HER | BHT.3
32 (EIRIN] (IR} Ml LETTRG 2R bR (I 1] pIVEN. 15k IHET.H b iR R
Gd [EIRIH] (i [T P ) SN A BissA [EIA 1] J854.9 =T [ETEN] AGZESR R
138 | (i [{1%1]] ERaEl 1 Friaah | SEcEtd 1817340 (LIEIN] K] AT DEAT. Hx3. 1 103374
06 | fiLLH LRI oG 0} {0y HHE [LIKIN] [RIA) HT.00 | ZAIMELT 2019=8.F | JILET.H
B1Z | (0 e (LEAE] [{ERE]] [ERAH] LIE{}] (EIRIN] CHLLE {0} ({EAE] AGIAT.L | ATUEL.A

Table 6 - Comparative results in mmlmlzmg Sphere function
n | NM | MPS | o5 | HI | ROF | 5W HP§ | SPSA | S8R | S5C | EDSCI | FOSCE

32 7.2 | L .|J|..| xd i pbd | &hR2 o7l L & I8 LiLa
4 263.2 | .0 i rms LR = L. 1 L1 ELE Lo ML.T 0.7
4 (e | a2l FELd e B 15 1724 I7T.4 (TEA 12006 4404 Ad
it (0.2 LRI SR L L 3TE AT HHL YR FAYS. Lo LR ]
33 iy | MR I3 TEGE INEEA TR K 12 R L 48R3 1505 165
4 {i.im) i1 ITE.D [eEi}] 1iWI2.2 | 384dT.2 SGa.D | wERa a18.3 318.3

wEe | i) | s | s | sses | o | osana | s | o WA | RLT | cana LR
TAG | (0A0 | 01 | Eniag | iEens | [y | TS {011 (K] | AEMRE | fEss | 13670 | 1267
B12 ] o | (e | cEmTRa | EEaEs | o | 1sTmw | o () | mamkd | sma0z | 2neda | 25m6.1




An Efficient Strategy without Derivatives for Box Constrained Optimization

Table 7 - Comparative results in minimizing Sum Squares function
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Table 8 - Comparative results in minimizing Trid function

n | Ny M oF | W | RS | SW | HFPS SPSA | SR | 580 | ER§CT | EDSCE
a HEA T 1A 8 a0 Bl O] ! 1k (R AN] 30 a%.3
A4 THELA LIRS 172:2 TR 1852 135,32 2114 4 | LA Ih IBET 1154 1332
E | [k} LdHiAl | 23R4 [ELN) ] L ek 182 IR [iLik) BT SiELE 4374 4504
113 [aidny (IR | BRLLG | =Sl AR LIS [EIRTH} LRI LIATE [ AT 1THH EHEH.A
33 | 100 RN ] ) JEELF | [N AN (LR (L& 0%} TIHELA w1
LiE ] [RLELH] (EINI] [TkIK) | ([ENEY (LRI 1.m CILIE) LN Ao ATRAT.AN | 3R6TEO
Table 9 - Comparative results in minimizing Booth function
n | MW | MDS | COF | M | ROF | SW | PS5 | 5PSA | S8R | BRSO
H 4.3 s L (LR | vhd 10k = Wi waadl LR
A A 177 (o ] 2544 LRiLE | i ] 11551 i 12668
] (K] T o1s 1 HARIR! Ak R 17014 4234 HiE. B
15 [{ERE]] mTa 1168 15415, T U164 | LIHAK L{EL L ALY M2 LN i ]
a2 [ALLL ] 1-#ak A MR 28722 46123 | 247HA 40Ty B3TE4 15524 1E0%,5
i [N ) Era [at] HEM BeTaAN | al48.4 0T 15065 d1054 .8 e L
18 [AEAE] {ERAH 15300t 5 LiDEGT O (L] EAMHL LA {5} 411750 HTAT.H haRD.O
206 [{HAE]] AL 29719 f11s7 LK TTUG 400} IR LF] [EiRE LGELE. 119631 130509
3 ] [ H] ALALL LLRAH] RLRIN] (KL L8] F{N) [LLRIH] MRELE | O8RAGA | 260181 2F2E1.0
Table 10 - Comparative results in minimizing Branin function
n | M | MDS | OF | HJ Ros | HFS | 8P5A | 38R | 3§C EDsCi | EDSCE
3 A gt 3 LT | 4.9 4] LI42T L 2 38.2 LA
E | XL == s IT1.5 (WETR] 1 ETE A 14135 2.7 10A_4 128
] [{ERH]] GELT 205 s 2HLY 2T 1584 1471 134 FEE R 260
1% LRI MLRT LCo iR} uraa Mk 1EETGS L] TiT2 4803 472
ax [{LTH] T150RE 1R5GT [EURIH] §E| 10T THLT 1Rz 0 125 16
ad | (o) | 4ETELT | omEmsd | Pl BRLG 0.Th 1EBEAL | 91485 | 20AZD | IR24.4
18 [{LX ]} jy ) {8} BHGHG.T FAE A {00k HelEs ThiGaa BT3B SOG4
il [AEAH] ALLLT 181TES [RIRH] (013 I4IMELG s} {RRSH] TITdA RN AR 139152 131814
512 Y] g {[1RH] PLT) {11} ({181 i) |1y 1530 | ARGASA | IRA1E | ZHGHLE
4. CONCLUSIONS AND FUTURE RESEARCH

In this paper an efficient derivative-free line search strategy using adaptive
orthogonal search directions for local box constrained optimization was presented
along with its detailed implementation scheme.



Andrei Padureanu

The method was thoroughly evaluated using well known benchmark functions
and compared with other methods of its kind. The evaluation results prove that the
presented routine is a very tough contender for the derivative-free search methods
evaluated in Hvattum and Glover [15].

The quadratic interpolation step of the linear search stage has a very powerful
accelerating effect on the convergence speed especially on neighborhoods where the
objective function is convex. This is particularly useful when dealing with convex
functions or with functions having wide convex ranges as it was observed in the cases
of Zakharov, Matyas, Sphere, Sum Squares and Trid functions.

The algorithm’s overall balance between convergence speed, simplicity and
small arithmetic complexity makes it one of the methods of first choice for
employment as local search subroutine inside metaheuristic hybrids.

The detailed description of the multidimensional linear search stage should
prove useful in the implementation of other derivative free methods such as conjugate
direction methods of Powell [22] and Zangwill [31].

I believe that implementations of EDSC using other one-dimensional
minimization procedures for performing linear search stage and a comparison with the
present one might lead to interesting findings.

Future work consisting in implementations of EDSC as local search subroutine
inside a metaheuristic hybrid such as generalized variable neighborhood search [19],
[9] or as tabu search [5], [9] would also confirm the method’s potential.
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APPENDIX
Test Problem 1 — Rosenbrock function
n—1
2
ﬂ%’-&z [100' {xi+i_x?} +Q _xi}z]
i=1

—-10=x=10,i=1..n
Global Minimum
X=(1 1 - 1), ff{(x)=0
n=2481632,64 128

Test Problem 2: Zakharuv function

n 4
mE z+( USLx)+( U.S-i-xi)
E‘-i.“ =

i=

—-10=x,=10,i=1.n
lobal and Local Mininuim
¥*=0@© 0 - 0) ffX)=0
n=2428,1632,64,128

Test Problem 3 — Matyas function
n—1

mmz 0.26- {x + x1+1} 0.48 - x;x;24
i=1

—10=x=10,i=1..n
Global and Local Minimum
=0 0 - 0, FrX)=0
n=242381632,64, 128254512
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Test Problem 4 — Sphere function

"n
mian?
XcRR
i=1 -
—L12 =x,=512,i=1..n
Global and Local Minimum
X={0 0 - 0], f*(X} =0
n=2,458 16, 32, 64,128,256,512
Test Problem 5 — Sum Squares function

"n
minZi x?
XcRR
i=1
“-W0=x;=10,i=1.n
Global and Local Minimum
=0 0 - 0), Fr(X)=0
n=2448a,16,32,64,123,255,512

Test Problem 6 — Trid function

min E (x;— 1)%— E XiXi—1
i=1

S
—ni=x;=n%i=1l.n
Shifted Global and Local Minimum
Fr0=0
n=242816 32,64

Test Problem 7 — Booth function

n

2
ﬂ%’%Z[(xZi-i +2x9;— 7)2 + (2x34-1 + X2 — 5)7]
=T

—-10=x=10,i=1..n
Global Minimum
X={1 3 - 1 3), fx)=0
n =2,4,8,16,32,64,128,256,512
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Test Problem 8 — Branin function

"
: 5 5 2 1
: E z —
min _ [(xﬁ - ( z)xﬁ_i + (E) Xogj_q— ﬁ) + 10 (1 - ETE) COSXp; 4+ 10]

0.397887357729738-n
B 2
—S=x,=10,i=1.n
Multiple Global Minimum
0 =0
n=2428,16,32,64,125,256,512




