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Abstract. In this paper I present an efficient derivative-free line search 

strategy using adaptive orthogonal directions for locating a minimum of multivariable 

box constrained functions. The method which can be considered an advanced 

development of the well known direct search method of Rosenbrock [28] uses an 

advanced inexact line search sequence to improve convergence speed and numerical 

accuracy. Scaled trial steps in every dimension of the search space are considered and 

every iteration the search directions are changed using Palmer’s [24] improved 

orthogonalization procedure. In the numerical evaluation section the algorithm’s 

performance is compared with other search approaches recently evaluated in Hvattum 

and Glover [15]. The numerical results show that the algorithm is very competitive in 

terms of convergence speed. The overall balance between convergence speed, 

reliability and small arithmetic complexity makes the present routine one of the 

methods of first choice for employment as local search procedure inside hybrid 

metaheuristic algorithms. 

 Key words: Continuous optimization, derivative-free methods, metaheuristics, 

local search algorithms. 
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1. Introduction 

 

One of the most important problems in numerical analysis is finding a local 

minimum of a multivariable function inside a bounded search space: 

 

                      
To solve problem (1) two fundamentally different approaches can be 

employed. 

The first and most common approach is to use a gradient based method. The 

most popular among gradient based methods is the Newton class which requires first 

and second order derivatives of the objective function. Methods of this type have very 
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fast local convergence rate to a local minimum if fitted with an appropriate trust region 

scheme or an inexact line search strategy with guaranteed sufficient decrease to ensure 

its global convergence properties. Though these methods are fast and usually good 

implementations yield very good results most of the times in some cases they cannot 

be the methods of choice. Maybe their biggest drawback is the fact that can be used 

only on functions that are at least twice differentiable. In some cases even when this 

property is satisfied the derivatives can be hardly approximated numerically or can be 

very expensive to compute. Another inconvenient is that they can be used only if the 

function has a reasonable degree of smoothness. Since a comprehensive discussion 

about this type of methods is not within the scope of this paper in order to see a proper 

treatment of it the reader is advised to consult Antoniou and Lu [1]. 

The second approach of problem (1) is the employment of a derivative-free 

search algorithm. Methods belonging to this approach are heuristically motivated and 

in order to determine a descent direction use only the ordinal relation between values 

of the objective function evaluated in different points of the search space. Since they 

require no derivatives they can be suited for the minimization of non-smooth and 

highly nonlinear (sometimes multimodal) functions. The easiness of their employment 

in practice can be also considered an advantage since their coding does not require 

knowledge of numerical linear algebra. However not requiring knowledge of numerical 

linear algebra is the only thing these methods have in common since the way they 

determine a descent direction is specific to every algorithm. The convergence speed of 

derivative-free methods is much slower than the speed of the Newton family for 

problems where the latter can be used. Despite their weaknesses not requiring 

derivatives makes them more flexible and this is the reason of their employment as 

local search routines inside hybrid metaheuristic algorithms (see Chelouah and Siarry 

[5], [6], Coelho et al. [7], Hedar and Fukushima  [10], [11], Mladenovic  et al. [19] and 

in Sacco et al. [25]).  

The most popular among the local derivative-free algorithms employed by 

hybrid metaheuristics are the well known Nelder-Mead [23], Rosenbrock [28] and 

Hooke and Jeeves [16] direct search methods. The reason of their popularity is the 

easiness they can be computer programmed. However simplicity is not always the right 

solution since all 3 methods have their limitations. First of all only Rosenbrock’s 

method [24] is somehow theoretically guaranteed to converge to a local stationary 

point of a function (as being a derivation of Cauchy’s method of steepest descent). 

Secondly the most popular direct search algorithm, the nonlinear simplex of Nelder 

and Mead in all its variants [4], [20], [23], [32], has proven in Han and Neumann [10] 

and in Hvattum and Glover [15] to perform very poorly for problems with more than 4 

variables. Therefore it is not recommended for employment when dealing with larger 

problems. On the other hand Rosenbrock’s and Hooke-Jeeves’ methods perform better 

than Nelder-Mead for larger problems as seen in [15] but require a large number of 
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function evaluations to reach reasonable numerical accuracy and their reliability is 

somewhat influenced by the chosen length of the initial trial step. 

Since most of the search inside hybrid metaheuristics is performed by local 

search procedures it is understandable that the overall performance of the algorithm is 

very dependable on the performance of the local subroutine. As a result a derivative-

free procedure capable of dealing efficiently with problem (1) mainly when the 

objective is a high-dimensional function would be of interest of many fields in which 

optimization plays an important role. 

Because of its desirable properties of theoretically guaranteed convergence, 

Rosenbrock’s method for unconstrained optimization was subject of further 

development. In 1964 in an internal research note of Imperial Chemical Industries [30] 

Swann mentioned that by performing a more sophisticated inexact line search sequence 

along each direction of Rosenbrock’s method a new procedure is obtained which 

proves generally superior in practice to both Rosenbrock’s method [24], from which it 

was developed, and Hooke and Jeeves’ pattern search method [13]. In 1965 in a 

comparative analysis made between several top derivative free methods [8], Roger 

Fletcher noted that the modified version Rosenbrock’s method of the Imperial 

Chemical technical staff proves both simple and efficient and wandered if it may have 

any advantages over its competitors using conjugate directions (Powell [22], Zangwill 

[31]) when the number of variables is increasing. Since the improved method was 

considered company’s intellectual property, to my knowledge no implementation of it 

was discussed in a public material. Moreover the method’s vague description given 

recently in Lewis et al. [18] and its absence from the comprehensive comparative study 

between local derivative-free routines made by Hvattum and Glover [15], made me 

believe that a comprehensive treatment of this development would prove beneficial. 

As a result the rest of this paper is organized as follows. In section 2 I present a 

detailed description of the enhanced algorithm along with my implementation scheme. 

In section 3 some numerical examples are used to demonstrate algorithms performance 

compared with the search approaches from [15] and finally in section 4 a short 

discussion is given regarding the conclusions of this paper and directions for further 

research. From the beginning it should be noted that I treat the case of box constrained 

optimization not the unconstrained one treated by Swann [3], [29] and therefore the 

procedure presented here is different to the original in some aspects.   

 

2. DESCRIPTION OF THE ALGORITHM 
 

Let’s reconsider the general box constrained optimization problem (1). Let 

 be a feasible starting point of problem (1).  

Like Rosenbrock’s, the present method employs n orthonormal search 

directions but unlike its predecessor an advanced inexact linear search sequence is 
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carried out once along each direction in turn using the one-dimensional search 

algorithm of Davies, Swann and Campey [3]. After a linear search has been performed 

along each search direction, the distances moved in each them  are compared with  

the trial step lengths in the corresponding direction and if at least one  

the search directions are redefined using Palmer’s [21] improved orthogonalization 

procedure. If all  then the trial step length is multiplied by a 

demultiplication factor K and a further linear search is performed along the n old 

search direction vectors. Convergence of the method is assumed if one of the trial step-

lengths  falls under a predefined value .   

From the functional point of view the present procedure can be divided in 3 

stages: the initialization of the search, the linear approximation of the minimum along 

each search direction and the change of the search vectors by orthogonalization of the 

walked distances. 

The first stage is performed only once as the search process is initiated while 

stages 2 and 3 are repeated inside an outer loop until one of the stopping criteria is met. 

Therefore a standard iteration of the algorithm is formed by a linear search sequence 

and an orthogonalization procedure. 

 

 

Figure 1 - Flowchart of the algorithm 
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STAGE 1: Initialization. 
 The purpose of the stage is to initiate the search sequence. In order do that it is 

necessary to evaluate the objective of the starting point   and to initialize the search 

directions using n mutually orthonormal vectors  . 

 

 
 
STAGE 2: Linear minimization sequence.   
 The goal of this stage is to approximate the distance  that minimizes  

 
in every direction   using an one-dimensional inexact line search algorithm 

that does not assume a priori knowledge of minimum’s bracketing interval.  

 The one-dimensional algorithm of Davies, Swann and Campey as described in 

Box et al. [3] combines a search method with an approximation method, the first being 

used to locate the interval which brackets the minimum and the second to estimate the 

minimum by quadratic interpolation. 

 Starting from  a trial step  is taken in the corresponding direction . If the 

objective of the trial point is less than the initial function value  the step-length is 

doubled and further movement is made in the direction in which the function is 

decreasing. This process is repeated until the minimum has been overshot. Then the 

step-length is halved and smaller step is taken again from the last successful point. 

This will give four points equally spaced along the direction of the search. To reduce 

the uncertainty range the point that is furthest from the point having the smallest 

objective value is rejected and the remaining three points are used to approximate the 

minimum by quadratic interpolation. After one linear search has been performed for all 

, the distance walked in every direction  is compared with the initial step 

length in that direction . If at least one  then search directions are 

changed via orthogonalization, otherwise step-lengts  are decreased by a 

demultiplication factor  . 
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Figure 2 - Pseudo-code of the linear search sequence 
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STAGE 3: Change of the search directions  by orthogonalization 

The purpose of this stage is to generate a new set of n orthogonal vectors 

, such that  lies in the direction of greatest advance from the previous 

stage (along the line joining the first and the last points in the n-dimensional space).  

 The stage consists of 3 steps: the computation of the vectors joining the initial 

and final points by use of different sets of search vectors (4), the total distance moved 

in the corresponding sets of directions (5) and the change of search by Palmer’s [21] 

improved orthogonalization procedure (6). 

 

       

      
 After the orthogonalization process has been finished, the search process is 

resumed from the inexact line search sequence until one of the termination criteria has 

been met. 

 

Figure 3 – Pseudo-code of the direction change sequence 
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3. NUMERICAL EVALUATION 
 The purpose of this section is to demonstrate the performance of the method 

described in the previous section by means of comparison with the other derivative-

free search approaches recently evaluated [15].  For that reason 8 of the test functions 

from there (see appendix for details) were used as benchmarks. Like in Hvattum and 

Glover [15] the functions were shifted such that their global minimum is 0. Also the 

stopping criteria and initial trial step-lengths used here were the same:  

•  

•  

•  

 Therefore the minimization process has been stopped if either the current best 

solution had dropped below 0.001 or the function evaluations counter had exceeded 50 

000. In the tables containing comparisons of the results, the numbers between 

parentheses represent the probabilities of reaching  within the 

permitted number of function evaluations where failed attempts have been recorded. 

For every function I used a sample of 50 randomly generated starting points inside the 

definition box  and two settings for the algorithm’s step 

demultiplication factor . 
Table 1 - Description of the search mechanisms 
Abbreviation Method’s Name Classification References 

NM Nelder-Mead  Nonlinear Simplex Search [20,32] 

MDS Multi-Directional Search Nonlinear Simplex Search/Pattern Search [30] 

CS Compass Search Pattern Search/Generating Set Algorithm [16] 

HJ Hooke and Jeeves Pattern Search [13] 

ROS Rosenbrock 
Direct Search Method with Adaptive Search 

Directions 
[24] 

SW Solis and Wets Stochastic Direct Search Method [26] 

HPS Heuristic Pattern Search 
Derivative-Free Method (not a direct 

search) 
[11] 

SPSA 

Simultaneous 

Perturbation Stochastic 

Approximation 

 

Derivative-Free Method (not a direct 

search) 
[27] 

SSR Scatter Search-Random 
Stochastic Direct Search  with Randomized 

Subset Generation Algorithm 
[15] 

SSC Scatter Search-Clustered 
Stochastic Direct Search  with Clustering 

Subset Generation Algorithm 
[15] 

EDSC1 Present having K=0.2 

EDSC2 Present having K=0.1 

Inexact Line Search with Adaptive Search 

Directions 
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 The overall evaluation results of the present method were quite surprising. It 

was to be expected that it would prove better than older methods like Rosenbrock’s 

and Hooke and Jeeves’ but it managed to outperform all the other search approaches in 

minimizing 7 out of 8 of the test functions. For every instance of the test the numbers 

having no parentheses represent the average number of function evaluations obtained 

by every method during the corresponding test instance. n denotes the number of 

variables for every instance of the test problems used for evaluation.       

Table 2 - Summary of the test results 

Test Test function Winner Runner-Up Comments 

1 Rosenbrock EDSC1,EDSC2 ROS, SSR, SSC 
EDSC methods win  for all n except 

n=64 

2 Zakharov EDSC1,EDSC2 ROS 
EDSC methods win for all 

dimensions 

3 Matyas EDSC1,EDSC2 SSC, SSR 
EDSC methods win for all 

dimensions 

4 Sphere EDSC1,EDSC2 SSR, SSC 
EDSC methods win for all 

dimensions 

5 Sum Squares EDSC1,EDSC2 SSR, SSC 
EDSC methods win for all 

dimensions 

6 Trid EDSC1,EDSC2 ROS 
EDSC methods win for all 

dimensions 

7 Booth EDSC1,EDSC2 SSC, SSR 
EDSC methods win for all 

dimensions 

8 Branin SSC,SSR EDSC1, EDSC2 EDSC methods place   

 
   

 Due to the accelerating effect of the quadratic interpolation step, the present 

method shows remarkable convergence properties when functions are convex or have 

wide convex neighborhoods. When minimizing Zakharov’s function the present 

method is the only one capable to reach s within 50.000 evaluations 

for the 128 variable case and managed that using 3 times less evaluations than the 

runner-up, the classic Rosenbrock method, needed in order to find one in the 64 

variable case.  

 For the 512 variable version of the Matyas function only the variants of the 

present method found  optimal solutions within the allowed number of evaluations. 

Also, for test problems 4 and 5 the difference between the present method and its 

followers is substantial, EDSC being at least 70 % faster in terms evaluations. Another 
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remarkable result is obtained for test problem number 6, EDSC being the only method 

which manages to find  for the 64 variable case. Last but not 

least, for the Branin test function, EDSC finishes second but is the only routine except 

the winners able to find   for all sizes of the problem used in the 

test.  

 

Table 3 - Comparative results in minimizing Rosenbrock function 

 

 
Table 4 - Comparative results in minimizing Zakharov function 

 

Table 5 - Comparative results in minimizing Matyas function 

 

Table 6 - Comparative results in minimizing Sphere function 
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Table 7 - Comparative results in minimizing Sum Squares function 

 

 
Table 8 - Comparative results in minimizing Trid function 

 

 
Table 9 - Comparative results in minimizing Booth function 

 

 
Table 10 - Comparative results in minimizing Branin function 
 

 

 
 

4. CONCLUSIONS AND FUTURE RESEARCH 
 
 In this paper an efficient derivative-free line search strategy using adaptive 

orthogonal search directions for local box constrained optimization was presented 

along with its detailed implementation scheme.  
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 The method was thoroughly evaluated using well known benchmark functions 

and compared with other methods of its kind. The evaluation results prove that the 

presented routine is a very tough contender for the derivative-free search methods 

evaluated in Hvattum and Glover [15].  

 The quadratic interpolation step of the linear search stage has a very powerful 

accelerating effect on the convergence speed especially on neighborhoods where the 

objective function is convex. This is particularly useful when dealing with convex 

functions or with functions having wide convex ranges as it was observed in the cases 

of Zakharov, Matyas, Sphere, Sum Squares and Trid functions. 

 The algorithm’s overall balance between convergence speed, simplicity and 

small arithmetic complexity makes it one of the methods of first choice for 

employment as local search subroutine inside metaheuristic hybrids. 

 The detailed description of the multidimensional linear search stage should 

prove useful in the implementation of other derivative free methods such as conjugate 

direction methods of Powell [22] and Zangwill [31].                     

 I believe that implementations of EDSC using other one-dimensional 

minimization procedures for performing linear search stage and a comparison with the 

present one might lead to interesting findings. 

 Future work consisting in implementations of EDSC as local search subroutine 

inside a metaheuristic hybrid such as generalized variable neighborhood search [19], 

[9] or as tabu search [5], [9] would also confirm the method’s potential.   
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