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SOLVING COMPLEX CARDINALITY CONSTRAINED MEAN-

VARIANCE PORTFOLIO OPTIMIZATION PROBLEMS USING 

HYBRID HS AND TLBO ALGORITHM 
  

Abstract. Aiming to obtain maximum investment returns with minimum risk, 

portfolio selection with diversity is very necessary. However, the portfolio 

optimization selection is complex NP-complete problem. To address the portfolio 
optimization problem, a hybrid swarm intelligent optimization approach that 

combines harmony search (HS) and teaching-learning-based optimization (TLBO) is 

presented in this work. We introduce a Cardinality Constrained Mean-Variance 
(CCMV) model which incorporates the boundary constraints (such as the bound of 

portfolio selection proportion of each asset and the number of assets) and considers 

transaction costs. To enhance the global optimization performance, an improved HS 

and modified TLBO are synergistically performed using a dynamic selection 
strategy for balancing the global exploration power and the local exploitation 

power. The experimental results on five data sets (HangSeng, DAX 100, FTSE 100, 

S&P 100, and Nikkei 225) demonstrate that the proposed algorithm is effective and 
efficient in solving complex portfolio selection problems. 

Keywords: Portfolio optimization problems, Cardinality Constrained Mean-

Variance, Harmony search, Teaching-Learning-Based Optimization. 
 

JEL Classification: G11 
 

1. Introduction 

In recent years, the global economy runs unsteadily owing to the influence 

of financial storm onset in 2008. As rising of prices, devaluing of currency, and very 

low profit in traditional bank storage, organizations and people have begun to seek 
new investments for capital appreciation. In order to obtain high return of investment 

and reduce simultaneously the investment risk, diversifying economic investments, 

such as common stocks, domestic, foreign bond indices, foreign cash, real estate, 
commodities and so on, must be considered by the investors. As a consequence, it is 

of importance for optimizing the selection of portfolio from large amount of 
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investment products in which some of them has high expected return but high risk, 

others has low returns with low risk. On this issue, there are two problems to be 

resolved: first is to establish a feasible portfolio selection model, second is to obtain 
the optimal portfolio selection by solving the portfolio model. For the first problem, 

researchers have put forward many portfolio optimization theory models. Markowitz 

[1] presented the first mathematical model, named Mean-Variance (MV) model, of 

the portfolio optimization problems. Then the MV model is improved to take more 
realistic features into consideration (see [2-5]), the MV model assumes that the 

returns on all assets obey the normal distribution and the investors expect to obtain 

maximum returns with minimum risk, which does not take transaction cost into 
consideration. Recently cardinality constraints mean-variance (CCMV) model (see 

[6-8]) gets attention more and more, which includes the weight constraints of each 

asset and the number of assets selected in a portfolio. 
In reality, most of the available portfolio selection models are large scale 

combination optimization problems, which have enormous computational burden. 

The Markowitz MV portfolio model can be formulated as quadratic programming 

problem which can be solved using quadratic optimization techniques (such as 
quadratic programming). However, the quadratic programming cannot be employed 

to solve the CCMV model owing to including the cardinality constraints, which 

leads to the MV model be a no-convex problem. The CCMV model is NP-complete 
problem whose computation cost has an exponential increase as the increase of the 

number of available assets. Although some improved models aim to decrease the 

computational burden of the Markowitz model, such as mean absolute deviation 

model [9-10], meanwhile the models are simplified, which deviates from the realistic 
application. 

In this work, the goal is to solve complex CCMV models without 

simplification using an intelligent hybrid optimization algorithm, named HS-TLBO, 
which combines harmony search (HS) [11] and teaching-learning-based 

Optimization (TLBO) for improving the global search performance. The HS and 

TLBO are complementary each other, where HS has very strong global exploration 
power; TLBO is very outstanding for finding high-precision globally optimal 

solution when the population has gathered into global optimal region. 

2. CCMV portfolio optimization model 
The CCMV model has two objectives: maximum the investment return and 

minimum the investment risk, as follows. 
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Where  1f x and  2f x  are the objective functions of expected return and 

investment risk, respectively. n is the number of total assets available, 

 1 2, , , nx x xx denotes the vector of portfolio weights that are the percentages of 

wealth invested in every asset.  1,2, ,iu i n represents the expected return rate 

of ith asset.  is a n n  positive semi-definite symmetric matrix in which 

 1,2, , ; 1,2, ,ij i n j n    denotes the covariance between the ith and jth asset 

returns.  i ix  1,2, ,i n is the transaction costs incurred on buying or selling 

in the ith security, and ( ) x  denotes the total transaction costs on the portfolio.K is 

the desired number of assets in the portfolio.
L

ix (0 1)L

ix  and
U

ix (0 1)U

ix 

separately denote the lower bound and upper bound of ix , which are the lowest limit 

and the maximum limit on the proportion of the ith asset. 

 

3. Related work 
CCMV portfolio selection model is a complex two-objective optimization 

problem, which cannot be resolved using traditional mathematical optimization 

methods owing to the cardinality constraints and characteristic of non-convex. Many 

methods have been presented to solve the CCMV model. However, the performance 
of many of them is not satisfactory in solving large scale portfolio selection 

problems. In recent years, heuristic search algorithms and swarm intelligent 

optimization algorithms are applied to address this problem. Bertsimas, D et al. 
employed branch-and-bound technique to decrease the computation burden [13]. 

Bienstock, D used the branch-and-cut method to solve the CCMV model [14]. In 

literature [15], Genetic algorithm (GA), Simulated annealing (SA) and Tabu search 

(TS) are respectively employed into the solving of CCMV portfolio selection 
problems. Soleimani, H. et al adopted GA to address Markowitz-based portfolio 

selection with minimum transaction lost, cardinality constraints. In [17-18], Particle 

swarm optimization (PSO) and improved PSO are used to find optimal portfolio 
selection. Although these methods have demonstrated the effectiveness for solving 

CCMV model, they still have some disadvantages for solving complex CCMV 

models, such as high computation cost, slow speed, trapping into local search easily 
and so on. To tackle these drawbacks, we employ two new intelligent optimization 
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algorithms: harmony search (HS) and teaching-learning-based optimization (TLBO), 

which have strong robustness for solving high-dimensional optimization problems. 

 

4.A Hybrid Optimization Approach To CCMV Portfolio Selection  

4.1 Hybrid HS-TLBO algorithm 

The pseudo code of HS-TLBO algorithm is shown in Fig.1. 

 

 
Figure1. The pseudo code of HS-TLBO 

Harmony search (HS) is proposed in 2001 by Z.W. Geen et al, it mimics the 
improvisation process of jazz musicians [11]. HS has robustly global exploration 

(1) Initializing parameters: 

Population size NP=10. 

Maximum function evaluation timesTmax =2000*NP. 

HMCR =0.98 (HMCR is the harmony memory consideration rate of HS). 

PAR =0.35 (PAR is pitch adjustment rate of HS). 

Current iteration t =1; selection probability SP=0.9 of algorithms (HS and 

TLBO).  

sc1=0, sc2=0, c = 0, C = 1000; 
(2) Initializing the population in feasible space randomly, as follow  

 ( , ) , 1,2,..., ; 1,2,...,L U L

j j j jX i j x r x x i n j n       

Where 
L

jx and
U

jx are the lowest limit and the maximum limit on the proportion 

of the jthasset. 

(3)  (0,1)If rand SP , then  

perform modified HS(see Fig.1), sc1=sc1+1; 

else 
executemodified TLBO (see Fig.2)algorithm, sc2=sc2+1. 

(4) c= c +NP.  

Ifc<C, then t = t+NP.  

else 

c=0, S1 = c1/(SP*C), S2 =c2/((1-SP)*C). 

SP = S1/(S1+S2). 

 

If  t<Tmax/2, then SP = min(max(0.9,SP),0.98), 

else 

SP = min(max(0.3,SP),0.99). 

 

t = t+NP. 

 

(5) If t<Tmax, go to step(3) 

elseend the algorithm. 
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power in solving complex multi-modal optimization problems but low precision of 

optimal solution. Teaching-learning-based optimization (TLBO) [12] imitates the 

learning process of a learner in our life, which consists of two stages: teaching phase 
and learning phase, in which each learner enhances ability by learning from teacher 

in teaching phase and learning from other learners in learning stage. The TLBO has 

very fast speed for solving high-dimensional optimization problems. In this work, 

we aim to integrate the advantages of the two methods together for solving complex 
CCMV portfolio selection problems. 

 

To integrate the HS and the TLBO well, we modify the HS and TLBO 
algorithms, respectively.  

4.2 Modified HS algorithm 
 

In the modified HS algorithm, the parameters PAR and fw are dynamically 

changed with the increase of iteration. The iteration process of modified HS is 

displayed in Fig.2. 
In Fig.2, rand (0, 1) generates a random number of uniform distributions 

between 0 and 1. The idxworst is the index of worst harmony in harmony memory. R 

denotes a random integer in range [1, NP]. In order to balance the exploration power 
and the exploitation power, the parameter PAR(see Equation (3)) and fw(see 

Equation (4) and (5)) in the modified HS are dynamically changed with the 

increasing of iteration, as follows. 
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rand(0,1)<HMCR
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Figure 2.  Flow chart of modified HS algorithm 
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4.3 Modified TLBO algorithm 

 

Unlike the standard TLBO, in the modified TLBO algorithm, each learner 
only selects part of subjects to learn from teacher or other learners in each iteration. 

The iteration process of modified TLBO is shown inFig.3. 

I = 1

j = 1

rand(0,1)<0.5

 is better than a Ix x

(0 ,1)a ra n d N P   
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Figure 3. The flow chart of modified TLBO 
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                 (6) 

In Fig.3, R1 (see equation 6) is the selection probability for learners 

selecting some subjects to learn knowledge from teacher or other learners. The R1 is 

equal to 1 when n<=30, which means that the learner learns from others on all n 

subjects; however, when the number of total assets is larger than 30, the R1 will 
decrease correspondingly, which aims to increase the success rate that new 

generated solution is superior to old solution. 
r

j jM x ( 1,2, , )j n , where r is a 

random integer between 1 and NP. 
 

The primary difference between standard TLBO and modified TLBO is as 

follows. 
(1) In modified TLBO, it is a combination vector in which each subject 

 M i  is randomly chosen from the ith subject of all learners.  

(2) In each iteration. TLBO performs teacher phase and learner phase, 

respectively. The modified TLBO only randomly chooses either teacher phase or 

learner phase to perform.  

(3) In standard TLBO, all dimensions of newx  are produced by learning 

from teacher or other one learner. Whereas, in modified TLBO, only some 

dimensions of newx are generated by learning from teacher or other one learner, and 

other dimensions is inherited from oldx  directly, the reason for this is that an 

excellent learner is also imperfect on some subjects. Therefore, selective learning on 
some subjects is more effective for improving knowledge level of learner than 

learning all subjects from one learner. 

(4) As we known, in our real lives, selective learning from multiple 

excellent learners on some subjects is more effective for improving our knowledge 
level than learning all subjects only from one excellent learner. As a consequence, in 

the modified TLBO, the learner on each subject selects one other learner from class 

for learning new knowledge. 
 

5. Solving CCMV model using hybrid HS-TLBO 

There are two objectives (maximizing the portfolio return and minimizing 

the investment risk) to be considered for the CCMV model. Some algorithms [20-
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21] use the multi-objective optimization technique to solve it. In this work, we 

employ the proposed HS-TLBO to solve the complex CCMV model, and weighted 

single objective CCMV model is used to find the optimal portfolio selection, which 
aims to find the efficient frontier of Pareto optimal selections in terms of weighted 

coefficient [0,1]  . The single objective CCMV model is as equation (7). 

1 2max (x) = (x) - (1- ) (x)f f f                                                  (7) 

In equation (7), the value 1   corresponds to maximize the expected 

return of portfolio selections without the consideration of portfolio risk. The value 

0  means to minimize the portfolio risk without regard to the expected portfolio 

return. The portfolio returns and risks of optimal solutions based on different value 

of  will construct an efficient frontier of optimal portfolio selections.  

In this study, we consider the transaction cost in which the function  i ix  

is defined as equation (8). 

                       

 
0 , 0

, 0

i

i i

i i i i

x
x

F x x





 
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                                                            (8) 

Where iF  (i=1,2,…,n) is the fixed transaction cost that are incurred in any selected 

assets , 
i ix denotes the variable transaction cost for ith selected asset, i is the 

proportional transaction costs of the ith asset. 

In HS-TLBO, the solution
j

1 2x ( , ,..., )j j j

nx x x in population represents an 

investment selection; the objective function is expressed as equation (7). We employ 

the method of literatures [17, 22-23] to handle the constraints. The HS-TLBO flow 
chart for optimizing the portfolio selection is shown in Fig.4. 

In Fig.4, T and Tmax represent the number of current iteration and the 

number of maximum iteration, respectively. step denotes the step of   that 

increases from 0 to 1. For each  , HS-TLBO will obtain an optimal portfolio 

selection that is recorded. 
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Initializing the parameters of HS-TLBO 

algorithm

T<Tmax

Record the optimal portfolio selection for 

current value of λ

Initializing population randomly

0

Perform the HS-TLBO to optimize the objective 

function (see equation (7))

T = 1

1 

T = T + 1

End 

Begin

N

Y

Y

N

step  

 

Figure 4.  The HS-TLBO flow chart for optimizing the portfolio selection. 

6. Numerical experiments 

To investigate the performance of proposed HS-TLBO algorithm, we apply 

it to five real datasets (HangSeng, DAX100, FTSE100, S&P100 and Nikkei) (see 
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html ). The numerical experiments 

are performed on three conditions:  

(1) Unconstraint. The portfolio proportion, desired number of investment 
assets are not constrained, and the transaction costs (TC) are not considered in this 
experiment.  

http://people.brunel.ac.uk/~mastjjb/jeb/orlib/portinfo.html
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(2) Constraint without considering the transaction costs (TC). The 

transaction costs are not considered in this case. 

(2.1) Constraint1: The portfolio proportion of each asset 
L

ix =0.0 and 

U

ix =1; the desired number of portfolio selection assets K =10.  

(2.2) Constraint2: The portfolio proportion of each asset 
L

ix =0.01 

and 
U

ix =1; the desired number of portfolio selection assets K =10.  

(3) Constraint considering the transaction costs. The fixed transaction 
cost are set as one thousandth of one millimeter of mean expected return and the 

variable transaction cost of ith asset is equal to 0.003 i ix m , where im denotes the 

expected return of ith asset. 

（3.1） Constraint1 considering TC: The bound of portfolio 

proportion of each asset 
L

ix =0.0 and 
U

ix =1; the desired number 

of portfolio selection assets K =10.  

（3.2） Constraint2 considering TC: The bound of portfolio 

proportion of each asset 
L

ix =0.0 and 
U

ix =1; the desired number 

of portfolio selection assets equals 10. 

In the experiments with three constraint conditions, the value of  ,expressed 

as j  , 1,2, ,1/j step j step   , increases from 0 to 1 with step=0.05. We 

employ mean Euclidian distance (MED), variance of returns error (VRE), and mean 

return error (MRE) as performance indexes that are defined as equations (9)-(11)[17, 

22-23]. The experimental results of HS-TLBO are compared with those of four state-
of-the-art intelligent algorithms (PSO, GA, SA, TS), which are summarized in Table 

1-Table2. 
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where s

ir and s

iv (i=1,2,…,2000) denote the variance (risk) and mean return 

in the standard efficient frontier without constraint conditions,
h

jv and
h

jr  represent the 

minimum variance and maximum return of optimal portfolio selection obtained by 

search algorithm on j , respectively. N is the number of  . In this work, N=(1/step) 

+ 1.      
2 2

1,2, ,2000

arg min , 0, 2, , 1s h s h

j i j i j
i

i v v r r j N


 
      

 
, which denotes 

the closest point in the standard efficient frontier to the Pareto optimal efficient 

frontier obtained by optimization algorithm. 

In this work, we employ the same method of constraint handle as the 
literature [23] which can handle the boundary constraint of the portfolio proportion 

and the desired number of portfolio selection assets very well. 

To illustrate that constraint of the number of portfolio selection assets 

bounded constraints and considering of transaction costs, we present the comparison 
of efficient frontiers for different constraint conditions in Fig.5 – Fig.9. 

Table 1.The experimental results of 5 algorithms for unconstraint CCMV 

model 

Alg 
HangSeng (31) DAX100 (85) FTSE100 (89) S&P100 (98) Nikkei(225) 

MED VRE MRE MED VRE MRE MED VRE MRE MED VRE MRE MED VRE MRE 

GA 5.9E-04 2.9E-01 1.1E-01 1.2E-03 3.1E-01 1.2E-01 3.0E-04 5.0E-01 5.7E-02 6.2E-04 6.1E-01 2.1E-01 1.5E-03 2.1E-01 9.3E-01 

PSO 7.4E-04 3.9E-01 1.3E-01 1.4E-03 3.9E-01 1.3E-01 3.3E-04 5.4E-01 6.4E-02 7.9E-04 6.9E-01 2.5E-01 2.9E-04 4.3E-01 1.4E-01 

TS 6.0E-04 2.9E-01 1.1E-01 1.2E-03 2.9E-01 1.1E-01 3.2E-04 7.0E-01 5.8E-02 6.2E-04 1.0E+00 1.3E-01 1.5E-04 2.2E-01 7.4E-02 

SA 6.1E-04 2.9E-01 1.1E-01 1.2E-03 2.9E-01 1.1E-01 3.3E-04 6.7E-01 5.8E-02 6.2E-04 9.5E-01 1.5E-01 1.9E-04 2.1E-01 7.2E-02 

HS-TLBO 7.8E-07 1.9E-02 8.9E-03 1.8E-06 9.6E-02 1.0E-02 4.8E-07 2.4E-02 5.9E-03 1.6E-06 7.3E-02 1.1E-02 8.3E-07 6.4E-02 1.3E-02 

 

Table 2.The experimental results of 5 algorithms for constraint CCMV model 

Alg 
HangSeng (31) DAX100 (85) FTSE100 (89) S&P100 (98) Nikkei(225) 

MED VRE MRE MED VRE MRE MED VRE MRE MED VRE MRE MED VRE MRE 

GA for constraint2 3.9E-3 1.7E+0 6.1E-1 7.6E-3 1.8E+0 6.6E-1 2.0E-3 2.9E+0 3.3E-1 4.1E-3 3.5E+0 1.2E+0 9.9E-3 1.2E+0 5.3E+0 

PSO for 

constraint2 
4.9E-3 2.2E+0 7.4E-1 9.0E-3 2.2E+0 7.4E-1 2.2E-3 3.1E+0 3.6E-1 5.2E-3 3.9E+0 1.4E+0 1.9E-3 2.4E+0 8.0E-1 

TS for constraint2 4.0E-3 1.7E+0 6.1E-1 8.2E-3 1.7E+0 6.1E-1 2.1E-3 4.0E+0 3.3E-1 4.1E-3 5.7E+0 7.1E-1 1.0E-3 1.2E+0 4.2E-1 

SA for constraint2 4.0E-3 1.7E+0 6.2E-1 7.8E-3 1.7E+0 6.2E-1 2.2E-3 3.8E+0 3.3E-1 4.1E-3 5.4E+0 8.4E-1 1.2E-3 1.2E+0 4.1E-1 

HS-TLBO for 

constraint1 
7.9E-5 1.7E+0 6.1E-1 1.5E-4 1.3E+0 1.3E+0 3.9E-5 3.1E+0 3.2E-1 1.0E-4 8.2E+0 7.8E-1 6.6E-5 5.2E+0 1.4E+0 

HS-TLBO for 

constraint2  
6.6E-5 4.2E+0 7.5E-1 6.2E-6 2.0E+0 1.3E-2 9.3E-6 2.5E+0 2.4E-2 2.3E-4 1.3E+1 2.0E+0 6.7E-5 4.5E+0 1.4E+0 

HS-TLBO for 

constraint1 

considering 

transaction cost 

1.0E-4 5.5E+0 7.9E-1 7.5E-5 5.5E+0 7.3E-1 7.0E-5 6.2E+0 5.5E-1 3.0E-4 1.6E+1 2.6E+0 1.7E-4 1.5E+1 3.2E+0 

HS-TLBO for 

constraint2 

considering 

transaction cost 

1.1E-4 2.6E+0 9.6E-1 2.0E-4 1.1E+1 1.6E+0 9.3E-5 7.4E+0 7.1E-1 2.0E-4 1.3E+1 1.9E+0 1.6E-4 1.6E+1 7.3E+0 
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Figure 5. Comparison of efficient frontier on HangSengtest data 

 

Figure 6. Comparison of efficient frontier on DAX100 test data 
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Figure 7. Comparison of efficient frontier on FTSE100 test data 

 

Figure 8. Comparison of efficient frontier on S&P100 test data 
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Figure 9. Comparison of efficient frontier on Nikkei225 test data 

From Table1, it can be seen obviously that, for five datasets, our method on 

all the metrics (MED, VRE, MRE) are superior to other four algorithms.  

In Table 2, our method also has evident advantages on MED over other 

algorithms, and the HS-TLBO is superior to comparison methods for most of data 
sets. 

As shown in Fig.5-Fig.9, for unconstrained CCMV model, the efficient 

frontier of our method is overlapped with the standard efficient frontier almost on all 
five datasets, which demonstrates that our method is effective for solving 

unconstrained CCMV models. For constraint1, constraint2, contraint1 considering 

TC and constraint2 considering TC, the proposed HS-TLBO algorithm shows very 
high performance, the corresponding optimal frontiers are very close to the standard 

efficient frontiers obtained without considering any constraints. 

 

 
 

7. CONCLUSION 



 

 
 

 

 

 
 

Shouheng Tuo, Hong He 

______________________________________________________________ 

246 

 

 

 
 

In this work, we focus on solving large scale complex portfolio optimization 

problems which consider the constraint of portfolio selection proportion of each 

asset and the transaction costs. Firstly, we introduce the mathematical model of 
portfolio selection and the CCMV model which considers the constraint of 

transaction cost. Related works for solving the portfolio selection problems are 

analysed. Secondly, we highlight the proposed HS-TLBO algorithm for solving the 

complex portfolio optimization problems. Finally, five experiments are performed to 
investigate the performance of HS-TLBO. The experimental results demonstrate that 

our method has the obvious advantage on solving complex portfolio selection 

problems over four state-of-the-art intelligent algorithms. 
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