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OWA-BASED AGGREGATION OPERATIONS IN MULTI-EXPERT 

MCDM MODEL 
 

 

Abstract. This paper presents an analysis of multi-expert multi-criteria decision 

making (ME-MCDM) model based on the ordered weighted averaging (OWA) 

operators. Two methods of modeling the majority opinion are studied as to 

aggregate the experts’ judgments, in which based on the induced OWA operators. 

Then, an overview of OWA with the inclusion of different degrees of importance is 

provided for aggregating the criteria. An alternative OWA operator with a new 

weighting method is proposed which termed as alternative OWAWA (AOWAWA) 

operator. Some extensions of ME-MCDM model with respect to two-stage 

aggregation processes are developed based on the classical and alternative 

schemes. A comparison of results of different decision schemes then is conducted. 

Moreover, with respect to the alternative scheme, a further comparison is given for 

different techniques in integrating the degrees of importance. A numerical example 

in the selection of investment strategy is used as to exemplify the model and for the 

analysis purpose. 

 

Keywords: multi-expert MCDM; OWA operator; IOWA operator; majority 

concept; weighting methods, financial decision making. 
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1. Introduction 

In the past, various multi-criteria decision making models have been developed as 

tools for modeling human decision making and reasoning (see, Figueira et al., 

2005). The models have been extensively used in numerous applications to deal 
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with the ranking and selection of option (or alternative). In complex decision 

making problems, normally a group of experts (or decision makers) involved in 

which each of them offsets and/or support the others for an exhaustive judgment. 

Since then, the expansion of such models to multi-expert MCDM (ME-MCDM) 

problems has become the main focus in the literature (see, for example, in Taib et 

al., 2016). 

Central to the ME-MCDM problems, aggregation process plays a crucial role in 

obtaining the final decision, either to synthesize the criteria or to fuse the overall 

judgment of experts. An overview of the main aggregation operators and their 

properties can be referred, for instance, in Beliakov et al. (2007) and Grabisch et al. 

(2009). The weighted arithmetic mean (WA) and the ordered weighted averaging 

(OWA) operators are among the most widely used aggregation operators in the 

decision making models. The OWA (Yager, 1988) provides a general class of 

mean-type aggregation operators which can be ranged from two extreme cases, i.e., 

‘and’ (min) and ‘or’ (max) operators. It modifies the basic aggregation process 

used in decision making model by applying the concept of fuzzy set theory, 

precisely, using the fuzzy linguistic quantifiers (Zadeh, 1983) for a soft 

aggregation process. In comparison to the WA which represents the degrees of 

importance associated with particular criteria, the weights in OWA reflect the 

importance or satisfaction of values with respect to ordering. By appropriately 

selecting the weighting vector, different kinds of relationships between the criteria 

can be modeled. In certain cases, the WA is necessary in representing the MCDM 

problems. For example, some experts may prefer to associate a specific weight for 

each criterion based on its degree of importance. Hence, considering the 

advantages of both WA and OWA in modeling the real applications, Yager (1988) 

then proposed the inclusion of unequal degrees of importance in OWA as an 

integrated approach. Consequently, a number of other techniques to deal with the 

same problem have been developed. The integration of these weighting methods 

has been formalized in two different approaches. In the first approach, the relative 

weights are only used to modify the argument values to be aggregated, specifically 

without the direct integration with ordered weights. Examples in this category 

include the method based on max-min and product (Yager, 1988), fuzzy system 

modeling (Yager, 1998) and hybrid weighted average (Xu and Da, 2003). On the 

other hand, in the second approach, the relative weights and ordered weights are 

directly integrated as a new set of weights, e.g., method based on linguistic 

quantifiers (Yager, 1996), weighted OWA (WOWA) (Torra, 1997), OWAWA 

(Merigó, 2012) and immediate WA (IWA) (Llamazares, 2013). 

Another important variant of OWA is the induced OWA (IOWA) operator 

(Yager and Filev, 1999). Generally, it is an extension of the OWA which involves 

a pair of values, such as, the additional parameter (order-inducing variables) used 

to induce the argument values to be aggregated. Analogously, with respect to a 

group decision making, the majority agreement among experts can be implemented 

using the IOWA operators, which synthesizes the opinions of the majority of 

experts. In this case, the majority opinion refers to a consensual judgment of 
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majority of experts who have similar opinions. In general, the OWA and IOWA 

operators provide a more flexible model for combining the information in decision 

making problems, specifically in the complex environment where the attitudinal 

character of experts is considered. 

On the basis of previous discussion, the purpose of this study is on extending 

and analyzing the ME-MCDM model with respect to two-stage aggregation 

processes, notably, the fusion of criteria and the aggregation of experts’ judgments. 

Firstly, two models based on majority concept for aggregating the experts’ 

judgments are reviewed. In particular, the methods as introduced by Pasi and 

Yager (2006) and its extension by Bordogna and Sterlacchini (2014). Pasi and 

Yager (2006) proposed the method in case of the weights between experts are 

considered as identical (homogeneous group decision making) and employed a 

support function based on distance measure to compute the majority agreement 

between experts. Besides, the support between experts is calculated with respect to 

the final rankings of options which derived primarily by each expert (classical 

scheme). On the contrary, Bordogna and Sterlacchini (2014) then extended this 

idea to include the case where the experts are assigned with different degrees of 

importance (heterogeneous group decision making) and utilized the similarity 

measure based on Minkowski OWA (MOWA) to calculate the support between 

experts. Instead of focusing on the individual ranking on options of each expert, 

they provide the similarity measure with respect to each specific criterion 

(alternative scheme). In this study, for the purpose of comparison, some 

modifications have been made to both methods. In specific, the extension of Pasi-

Yager method from the classical scheme to the alternative scheme has been made. 

Likewise, the Bordogna-Sterlacchini method has been modified to deal with the 

classical scheme. Hence, these methods with the existing original methods are 

applied in the ME-MCDM model and then a comparison as to examine the results 

of different schemes is conducted.  

Secondly, some methods based on the integration of OWA and WA for the 

purpose of aggregating the criteria are presented. In addition, an alternative 

OWAWA (AOWAWA) operator which combines the characteristics of IWA and 

OWAWA using the idea of geometric mean is proposed. As a comparison, the 

ME-MCDM model with respect to Bordogna-Sterlacchini approach on the 

alternative scheme is applied as to observe the results of distinct weighting 

techniques in the aggregation process. The outline of this paper is as follows. In 

Section 2 the definitions of OWA, IOWA and MOWAD operators are presented. 

In Section 3 the aggregation techniques for modeling the majority opinion are 

discussed. Then, Section 4 reviews the integrated weighting methods based on WA 

and OWA as well as the proposed AOWAWA operator. In Section 5, the general 

frameworks of ME-MCDM model based on classical and alternative schemes are 

outlined. Then, a numerical example in a selection of investment strategy is 

provided in section 6. 
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2. Preliminaries 

This section provides the definitions and basic concepts related to OWA, IOWA 

and MOWAD aggregation operators that will be used throughout the study. 

 

2.1 OWA operator 

Definition 1. (Yager, 1988). An OWA operator of dimension 𝑛 is a mapping 

𝑂𝑊𝐴:ℝ𝑛 → ℝ that has an associated weighting vector 𝑊 = (𝑤1, 𝑤2, … , 𝑤𝑛) of 

dimension 𝑛, such that 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 , given by the following 

formula:  

 
𝑂𝑊𝐴𝑊(𝑎1, … , 𝑎𝑛) =∑ 𝑤𝑗𝑎𝜎(𝑗)

𝑛

𝑗=1
   (1) 

where 𝑎𝜎(𝑗) is the argument value 𝑎𝑗 being ordered in non-increasing order 

𝑎𝜎(1) ≥ 𝑎𝜎(2) ≥ ⋯ ≥ 𝑎𝜎(𝑛). 
 

Note that, the reordering process makes the OWA operator is no longer a standard 

linear combination of weighted arguments, but it is rather a piecewise linear 

function (Beliakov and James, 2011).  

Given that a function 𝑄: [0,1] → [0,1] as a regular monotonically non-

decreasing fuzzy quantifier and it satisfies: i) 𝑄(0) = 0, ii) 𝑄(1) = 1, iii) 𝑎 > 𝑏 

implies 𝑄(𝑎) ≥ 𝑄(𝑏), then the associated OWA weights can be derived using this 

function as follows (Yager, 1988): 

 
𝑤𝑗 = 𝑄 (

𝑗

𝑛
) − 𝑄 (

𝑗 − 1

𝑛
) , 𝑗 = 1,2,… , 𝑛 

   (2) 

 

such that 𝑤𝑗 ∈ [0,1] and ∑ 𝑤𝑗 = 1
𝑛
𝑗=1 . 

 

The linguistic quantifier 𝑄(Zadeh, 1983) can be presented in the form of 𝑄(𝑟) =
𝑟𝛾 , 𝛾 > 0 with the main characteristics such that: 𝛾 → 0, then 𝑊 = 𝑊∗, where 

𝑊∗ = (1,0, … ,0); 𝛾 = 1 then 𝑊 = 𝑊1/𝑛, where 𝑊1/𝑛 = (1/𝑛, 1/𝑛,… ,1/𝑛); and 

𝛾 → ∞ then 𝑊 = 𝑊∗, where 𝑊∗ = (0,0,… ,1).  
 

2.2 IOWA operator 

Definition 2. (Yager and Filev, 1999). An IOWA operator of dimension 𝑛 is 

mapping 𝐼𝑂𝑊𝐴:ℝ𝑛 → ℝ that has an associated weighting vector 𝑊 such that 𝑤𝑗 ∈
[0,1] and ∑ 𝑤𝑗 = 1

𝑛
𝑗=1 , given by the following formula:  

 
𝐼𝑂𝑊𝐴𝑊(〈𝑢1, 𝑎1〉, 〈𝑢2, 𝑎2〉,… , 〈𝑢𝑛, 𝑎𝑛〉) =∑ 𝑤𝑗𝑎𝜎(𝑗)

𝑛

𝑗=1
    (3) 

where 𝑎𝜎(𝑗) is the argument value of pair 〈𝑢𝑗 , 𝑎𝑗〉 of order-inducing variable 𝑢𝑗, 

reordered such that 𝑢𝜎(1) ≥ 𝑢𝜎(2) ≥ ⋯ ≥ 𝑢𝜎(𝑛) and the convention that if𝑢𝜎(𝑗) are 
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tied, i.e., 𝑢𝜎(𝑗) = 𝑢𝜎(𝑗+1), then, the value 𝑎𝜎(𝑗) is given as their average  (see, 

Yager and Filev, 1999; Beliakov and James, 2011).  

 

2.3 Minkowski OWA distance 

Definition 3. (Merigó and Gil-Lafuente, 2008). A MOWAD operator of dimension 

𝑛 is a mapping 𝑀𝑂𝑊𝐴𝐷: ℝ𝑛 × ℝ𝑛 → ℝ that has an associated weighting vector W 

of dimension n such that ∑ 𝑤𝑗
𝑛
𝑗=1 = 1 with 𝑤𝑗 ∈ [0,1] and the distance between 

two sets 𝐴 and 𝐵 is given as follows: 

 
𝑀𝑂𝑊𝐴𝐷𝑊(𝑑1, 𝑑2, … , 𝑑𝑛) = (∑ 𝑤𝑗𝑑𝜎(𝑗)

𝜆
𝑛

𝑗=1
)

1/𝜆

,    (4) 

where 𝑑𝜎(𝑗) is the component of 𝑑𝑗 being ordered in non-increasing order 𝑑𝜎(1) ≥

𝑑𝜎(2) ≥ ⋯ ≥ 𝑑𝜎(𝑛) and 𝑑𝑗is the individual distance between 𝐴 and 𝐵, such that 

𝑑𝑗 = |𝑎𝑗 − 𝑏𝑗| with 𝜆 is a parameter in a range 𝜆 ∈ ℝ ∖ {0}. 

 

By setting different values for the norm parameter 𝜆, some special distance 

measures can be derived. For example, if 𝜆 = 1, then the Manhattan OWA 

distance can be obtained, if𝜆 = 2 then the Euclidean OWA distance can be 

acquired, 𝜆 = ∞ then Tchebycheff OWA is derived, etc. Equivalently, OWA and 

IOWA operators can be generalized in the similar way (see, Merigó and Gil-

Lafuente, 2009; Merigó and Yager, 2013; Yager, 2004).The OWA, IOWA and 

MOWAD operators are all satisfying commutative, monotonic, bounded and 

idempotent properties. 

  

3. Aggregation Methods based on Majority Concept 

In this section, the methods for aggregating experts’ judgments by the inclusion of 

majority concept are presented. In particular, the method by Pasi and Yager (2006) 

and its extension by Bordogna and Sterlacchini (2014) are studied.  

 

3.1 Pasi-Yager approach 

In the following, a brief description of the mentioned methods is given. Two 

fundamental steps in both methods are on determining the order-inducing variable 

and on deriving the associated weights of experts. The methodology used to obtain 

the majority opinion based on Pasi and Yager (2006) can be expressed as the 

following. 

Suppose that a set of individual opinions of ℎexperts (ℎ = 1,2,… , 𝑘) is given as 

the vector 𝑃𝑖
ℎ = (𝑝𝑖

1, 𝑝𝑖
2, … , 𝑝𝑖

𝑘), i.e., with respect to each option 𝑖, (𝑖 = 1,2,… ,𝑚). 

For a simple notation, 𝑃ℎ can be used instead of𝑝𝑖
ℎ since each option can be 

evaluated independently using the same formulation. For a single option, the 

similarity of each expert can be calculated using the support function as follows: 

 𝑠𝑢𝑝𝑝(𝑝𝑙 , 𝑝ℎ) = {
  1     𝑖𝑓 |𝑝𝑙 − 𝑝ℎ| < 𝛽,
0              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 
(5) 
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The support function represents the similarity or dissimilarity between expert 𝑙 
with each of the other experts ℎ, (ℎ = 1,2, … , 𝑘) (not include himself/herself), such 

that 𝑙 ∈ ℎ. Then the overall support for each individual expert 𝑙 can be given as: 

 
𝑢𝑙 =∑ 𝑠𝑢𝑝𝑝(𝑝𝑙 , 𝑝ℎ)

𝑘

ℎ=1
ℎ≠𝑙

, 
(6) 

where 𝑢𝑙 constitute the values of order-inducing variable 𝑈 = (𝑢𝜎(1), … , 𝑢𝜎(𝑘)) 

which ordered in non-decreasing order, such that 𝑢𝜎(1) ≤ 𝑢𝜎(2) ≤ ⋯ ≤ 𝑢𝜎(𝑘).  

In consequence, to compute the weights of the weighting vector, define the 

values 𝑡𝑙 based on an adjustment of the 𝑢𝑙 values, such that: 𝑡𝑙 = 𝑢𝑙 + 1 (including 

himself/herself:𝑠𝑢𝑝𝑝(𝑝𝑙 , 𝑝𝑙) = 1). The 𝑡𝑙 values are in non-decreasing order, 𝑡1 ≤
𝑡2 ≤ ⋯ ≤ 𝑡𝑘. On the basis of 𝑡𝑙 values, the weights are computed as follows: 

 
𝑤𝑙 =

𝑄(𝑡𝑙 𝑘⁄ )

∑ 𝑄(𝑡𝑙 𝑘⁄ )
𝑘
𝑙=1

. 
(7) 

The value 𝑄(𝑡𝑙 𝑘⁄ ) denotes the degree to which a given member of the considered 

set of values represents the majority. The quantifier 𝑄 with semantic ‘most’ for the 

majority opinion of experts can be given as follows: 

 

 

𝑄(𝑟) = {

1        𝑖𝑓 𝑟 ≥ 0.9,
2𝑟 − 0.8      𝑖𝑓 0.4 < 𝑟 < 0.9,

0        𝑖𝑓 𝑟 ≤ 0.4,
 (8) 

where 𝑟 = 𝑡𝑙 𝑘⁄ . As can be seen, the weight of experts here is derived based on the 

arithmetic mean (AM) where each expert is considered as having an equal degree 

of importance or trust, e.g., reflect the average of the most of the similar 

values..Then, the final evaluation is determined using the IOWA operators. Note 

that, here the values of order-inducing variable are reordered in non-decreasing 

order instead of non-increasing order as in the original IOWA, such in Eq. (3). This 

type of ordering reflects the conformity of quantifier ‘most’ as to model the 

majority concept (see, Pasi and Yager, 2006) for detailed explanation. Note also 

that, the quantifier 𝑄 here is an alternative representation of 𝑄(𝑟) = 𝑟𝛾. For 

representing the majority opinion of experts, this type of quantifier will be used 

throughout the study. 

However, the vector 𝑃𝑖
ℎ = (𝑝𝑖

1, 𝑝𝑖
2, … , 𝑝𝑖

𝑘), that derived after the first stage of 

aggregation process shows a slight different between its values due to the 

normalization process. This condition then leads to the values of |𝑝𝑙 − 𝑝ℎ| less 

differentiable and cause a difficulty in assigning a value for 𝛽. Hence, in this study, 

a slight modification to the support function in Eq. (6) is suggested and the 

formulation is given as follows: 
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𝑠𝑢𝑝𝑝(𝑝𝑙 , 𝑝ℎ) = {
  1     𝑖𝑓 

|𝑝𝑙 − 𝑝ℎ|

max
𝑙∈ℎ
|𝑝𝑙 − 𝑝ℎ|

< 𝛽,

0        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.          

 (9) 

where max
𝑙∈ℎ
|𝑝𝑙 − 𝑝ℎ| is the maximum distance between all experts. 

 

Example 1: Suppose that a set of individual opinion of experts is given as𝑃ℎ =
(𝑝1, 𝑝2, … , 𝑝5) = (0.7, 0.86, 0.76, 0.72, 0.6) with respect to each option, 𝐴𝑖. Then, 

the final majority opinion of experts can be computed as the following. 

 
𝐴𝑖 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 

 

𝐸1 𝐸2 𝐸3 𝐸4 𝐸5 

𝑃𝑖
ℎ 0.7 0.86 0.76 0.72 0.6 

divided by 

→ 

max
ℎ
|𝑝𝑙 − 𝑝ℎ| 

 

 

0.7 0.86 0.76 0.72 0.6 

𝑠𝑢𝑝𝑝1,ℎ - 0.16 0.06 0.02 0.1 - 0.62 0.23 0.08 0.39 

𝑠𝑢𝑝𝑝2,ℎ 0.16 - 0.1 0.14 0.26 0.62 - 0.39 0.54 1 

𝑠𝑢𝑝𝑝3,ℎ 0.06 0.1 - 0.04 0.16 0.23 0.39 - 0.15 0.62 

𝑠𝑢𝑝𝑝4,ℎ 0.02 0.14 0.04 - 0.12 0.08 0.54 0.15 - 0.46 

𝑠𝑢𝑝𝑝5,ℎ 0.1 0.26 0.16 0.12 - 

 

0.39 1 0.62 0.46 - 

 

By setting 𝛽 = 0.4, the overall support for each expert can be obtained, such as: 

𝑠1 = 3, 𝑠2 = 1, 𝑠3 = 3, 𝑠4 = 2, and 𝑠5 = 1. In case of ‘ties’, the stricter 𝛽 can be 

imposed (𝛽 = 0.1,in this example), to order the 𝑝ℎ values. The vector of order-

inducing variable then can be given as 𝑈 = (𝑢𝜎(1), … , 𝑢𝜎(5)) = (1,1, 2, 3, 3) and 

the weighting vector can be obtained as 𝑊𝑀𝑎𝑗 = (𝑤1, … , 𝑤5) =
(0, 0 , 0.2, 0.4, 0.4). The final majority opinion of experts can be calculated as 

follows:  

𝐼𝑂𝑊𝐴(〈1, 0.6〉, 〈1, 0.86〉, 〈2, 0.72〉, 〈3, 0.76〉, 〈3, 0.7〉) = (0 × 0.6) +
(0 × 0.86) + (0.2 × 0.72) + (0.4 × 0.76) + (0.4 × 0.7) = 0.73. 

 

3.2 Bordogna-Sterlacchini approach 

In the following, the method based on Bordogna and Sterlacchini (2014) is 

presented. Contrary to the previous method, here the majority opinion of experts 

with respect to each specific criterion is considered. Suppose that a collection of 

judgment of ℎexperts is given as vector 𝑃𝑗
ℎ = (𝑝𝑗

1, 𝑝𝑗
2, … , 𝑝𝑗

𝑘) for criterion 𝑗, (𝑗 =

1,2,… , 𝑛). In this method, instead of using the support function based on distance 

measure, they used the Minkowski OWA-based similarity measure to obtain the 

𝑄𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 for the order-inducing variable. The 𝑄𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 of each expert 𝑙 can be 

defined as follows: 
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𝑢𝑙 = 𝑄𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑃𝑙 , 𝑃ℎ) = 𝑀𝑂𝑊𝐴(𝑠1, … , 𝑠𝑘) = (∑𝜔ℎ𝑠𝜎(ℎ)
𝜆

𝑘

ℎ=1

)

1/𝜆

 , (10) 

where 𝑠𝑙 = 𝑠(𝑝𝑙 , 𝑝ℎ) = 1 − |𝑝𝑙 − 𝑝ℎ| is a similarity measure between expert 𝑙 with 

each of the other experts ℎ (includes himself), given that 𝑙 ∈ ℎ and 𝑠𝜎(ℎ)are 

ordering of (𝑠1, … , 𝑠𝑘) in non-increasing order (𝑠𝜎(1) ≥ 𝑠𝜎(2) ≥ ⋯ ≥ 𝑠𝜎(𝑘)). 

Meanwhile 𝜔ℎ are the ordered weights with the inclusion of importance degrees of 

experts 𝑡ℎ, ℎ = 1,2, … , 𝑘, given as 𝜔ℎ = 𝑄(∑ 𝑡𝜎(𝑖)
ℎ
𝑖=1 ) − 𝑄(∑ 𝑡𝜎(𝑖)

ℎ−1
𝑖=0 ),  such 

that𝜔ℎ , 𝑡ℎ ∈ [0,1] and (∑ 𝜔ℎ
𝑘
ℎ=1 = ∑ 𝑡ℎ

𝑘
ℎ=1 = 1). The norm parameter 𝜆 ∈ ℝ ∖

{0} provides a generalization of the model. Here the quantifier 𝑄(𝑟) = 𝑟𝛾 is 

employed. The OWA weights 𝜔ℎ will be explained in great detail in the next 

section. 

With respect to the Eq. (10), the order inducing vector can be given as: 

 𝑈 = (𝑢1, … , 𝑢𝑘) = (𝑄𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑃1, 𝑃ℎ),… , 𝑄𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑃𝑘, 𝑃ℎ)), (11) 

Moreover, 𝑄 as the generalized quantifiers can take any semantics to modify the 

weights of experts (or trust degrees) for different strategies. When 𝑄(𝑡ℎ) = 𝑡ℎ as 

for (𝛾 = 1) , then 𝑄𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 is reduced to: 

 

𝑢𝑙 = 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑃𝑙 , 𝑃ℎ) = (∑ 𝑡ℎ𝑠ℎ
𝜆

𝑘

ℎ=1

)

1 𝜆⁄

, (12) 

which is the Minkowski WA-based similarity measure. Formally, 𝑄𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 can 

be ranged in between 𝑄∗(𝑡ℎ) for 𝛾 → 0, to 𝑄∗(𝑡ℎ)for 𝛾 → ∞. 

Afterwards, the weights for the IOWA operator can be derived using the 

following formula: 

 
𝑚ℎ =

𝑎𝑟𝑔𝑚𝑖𝑛ℎ(𝑢1 ∙ 𝑡1, … , 𝑢𝑘 ∙ 𝑡𝑘)

∑ 𝑎𝑟𝑔𝑚𝑖𝑛𝑖(𝑢1 ∙ 𝑡1, … , 𝑢𝑘 ∙ 𝑡𝑘)
𝑘
ℎ=1

, (13) 

where 𝑚ℎ are reordered in non-decreasing order. Analogously, given the quantifier 

𝑄 as in Eq. (8) for the majority opinion, the weighting vector 𝑊𝑀𝑎𝑗 = (𝑤1, … , 𝑤𝑘) 
can be computed as follows: 

 
𝑤ℎ =

𝑄(𝑚ℎ)

∑ 𝑄(𝑚ℎ)
𝑘
ℎ=1

 .  (14) 

Note that, the general weights 𝑤ℎ represent the quantification of majority of 

experts for the final agreement on each criterion, whilst the weights 𝜔ℎ reflect 

𝑄𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 for deriving the order-inducing values. 

Next, the overall aggregation process can be computed using the IOWA such in 

Eq. (3). Similarly, the non-decreasing inputs 〈𝑢ℎ , 𝑝ℎ〉 is implemented as explained 
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in previous sub-section. It can be shown that, the coherence function Eq. (12) can 

be represented as the dual of similarity measure, which is the distance measure: 

 

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒(𝑃𝑙 , 𝑃ℎ) = (∑ 𝑡ℎ(1 − |𝑝𝑙 − 𝑝ℎ|)
𝜆

𝑘

ℎ=1

)

1/𝜆

= 1 − (∑𝑡ℎ|𝑝𝑙 − 𝑝ℎ|
𝜆

𝑘

ℎ=1

)

1/𝜆

, 

 (15) 

such that for any 𝑝𝑙 and 𝑝ℎ with 𝑠(𝑝𝑙 , 𝑝ℎ) ∈ [0,1], the properties: i)𝑠(𝑝𝑙 , 𝑝𝑙) = 1 

(reflexive) and, ii) 𝑠(𝑝𝑙 , 𝑝ℎ) = 𝑠(𝑝ℎ , 𝑝𝑙) (symmetric) are fulfilled for each single 

value of 𝑙 and ℎ. 

Analogously, to more differentiate between the values and to avoid the ‘ties’ 

problem, a simple modification to the similarity measure is suggested as follows:  

 
𝑠(𝑝𝑙 , 𝑝ℎ) = 1 − (

|𝑝𝑙 − 𝑝ℎ|

max
𝑙∈ℎ
|𝑝𝑙 − 𝑝ℎ|

), (16) 

where max
𝑙∈ℎ
|𝑝𝑙 − 𝑝ℎ| is the maximum distance between all experts.  

Correspondingly, the weights for IOWA aggregation process Eq. (13) can also 

be modified to the following formula: 

 
𝑚ℎ =

𝑎𝑟𝑔𝑚𝑖𝑛ℎ(𝑢1 ∙ 𝑡1, … , 𝑢𝑘 ∙ 𝑡𝑘)

𝑀𝑎𝑥ℎ(𝑢1 ∙ 𝑡1, … , 𝑢𝑘 ∙ 𝑡𝑘)
. (17) 

 

Example 2: Suppose that a set of opinion of experts on a single criterion  

𝐶𝑗is given as𝑃𝑗
ℎ = (𝑝1, 𝑝2, … , 𝑝𝑘) = (0.31, 0.34, 0.30, 0.28, 0.11). The majority 

agreement of experts can be calculated as follows: 

 
𝐶𝑗 𝐸1 𝐸2 𝐸3 𝐸4 𝐸5        

𝑃𝑗
ℎ 0.31 0.34 0.3 0.28 0.11  𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑈 

𝑠𝑢𝑝𝑝1ℎ 1 0.85 0.96 0.90 0.15  

 
𝑠ℎ×𝑡ℎ
→    

0.3 0.3 0.2 0.1 0.1 0.85 

𝑠𝑢𝑝𝑝2,ℎ 0.85 1 0.87 0.75 0 0.3 0.3 0.2 0.1 0.1 0.79 

𝑠𝑢𝑝𝑝3,ℎ 0.96 0.81 

 

0.94 0.19 0.3 0.3 0.2 0.1 0.1 0.84 

𝑠𝑢𝑝𝑝4,ℎ 0.9 0.75 0.94 1 0.26 0.3 0.3 0.2 0.1 0.1 0.81 

𝑠𝑢𝑝𝑝5,ℎ 0.15 0 0.19 0.26 1 0.3 0.3 0.2 0.1 0.1 0.21 

 

where 𝑈 = ∑ 𝑠ℎ𝑡ℎ
𝑘
ℎ=1 . In this case, for 𝑄(𝑡ℎ) = 𝑡ℎ and by setting 𝜆 = 1, the vector 

of order-inducing variables can be determined, specifically𝑈 = (𝑠𝜎(1), … , 𝑠𝜎(5)) =

(0.21, 0.79, 0.81, 0.84, 0.85). Next, by using the quantifier 𝑄 with semantics 

‘most’ for majority, the weighting vector 𝑊𝑀𝑎𝑗 = (𝑤1, … , 𝑤5) =
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(0, 0, 0.20, 0.40, 0.40) can be obtained. The final majority opinion of experts can 

be given as the following: 

𝐼𝑂𝑊𝐴(〈0.21, 0.11〉, 〈0.79, 0.34〉, 〈0.81, 0.28〉, 〈0.84, 0.30〉, 〈0.85, 0.31〉) = 0.30. 

 

4. OWA Operators with inclusion of the Degrees of Importance 

In this section, some OWA aggregation operators with their weighting methods are 

reviewed, in particular, the weighting methods based on the inclusion of WA. In 

addition, an alternative weighting method with its respective aggregation operator 

called as alternative OWAWA operator is proposed. 

 

4.1 Some of the existing methods 

Prior to the definition of integrated weighting methods, the general definition of 

WA is given as the following. 

 

Definition 4. Let 𝑉 = (𝑣1, 𝑣2, … , 𝑣𝑛) be a weighting vector (degrees of 

importance) of dimension 𝑛 such that 𝑣𝑗 ∈ [0,1] and ∑ 𝑣𝑗
𝑛
𝑗=1 = 1, then a mapping 

𝑊𝐴:ℝ𝑛 → ℝ is a weighted arithmetic mean (WA) if 𝑊𝐴𝑉(𝑎1, 𝑎2, … , 𝑎𝑛) =
∑ 𝑣𝑗𝑎𝑗
𝑛
𝑗=1 . 

 

The WA satisfies monotonic, idempotent and bounded properties, but it is not 

commutative (Beliakov et al., 2007; Grabisch et al., 2009; Torra, 1997).  

There are a number of methods in the literature which have been proposed for 

obtaining weights for the OWA aggregation operators (see, Xu, 2005). One of 

them is by using the linguistic quantifiers as defined in the preliminaries section, 

refer to Eq. (2). Throughout the study, the OWA weighting vector 𝑊is exclusively 

referred to this type of weights, specifically to be integrated with the weighting 

vector, 𝑉 (except for the methods in Definitions 8 and 9 as will be explained later). 

 

Definition 5. (Yager, 1988). Let 𝑉 and 𝑊 be two weighting vectors of dimension 

𝑛, then a mapping𝑂𝑊𝐴: ℝ𝑛 → ℝ isan OWA-MP operator of dimension 𝑛 if: 

 
𝑂𝑊𝐴𝑉,𝑊(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑗𝑎̌𝜎(𝑗)

𝑛

𝑗=1
, (18) 

where 𝑎̌𝜎(𝑗)is the value𝑎̌𝑗being ordered in non-increasing order 𝑎̌𝜎(1) ≥ 𝑎̌𝜎(2) ≥

⋯ ≥ 𝑎̌𝜎(𝑛) such that 𝑎̌𝑗 = 𝐻(𝑎𝑗, 𝑣𝑗) = (𝑣𝑗 ∨ 𝛼̅) ∙ (𝑎𝑗)
𝑣𝑗∨𝛼

 and 𝛼 is the orness 

measure and  𝛼̅ = 1 − 𝛼 is its complement.  

This is the unified formulation of the methods which proposed earlier in Yager 

(1978) and Yager (1987), specifically based on the max-min and product 

approaches. In this study, it is denoted as OWA-MP. Notice that in the special 

cases: if 𝛼 = 0, then it can be reduced to a pure ‘and’ operator. Specifically, given 

that 𝑎̌𝑗 = 𝑎𝑗
𝑣𝑗

 with 𝑊 = 𝑊∗, then 𝑎̌𝜎(𝑛) is generated, which is the smallest value of 
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𝑎̌𝜎(𝑗). Conversely, if 𝛼 = 1, then it can be reduced to a pure ‘or’ operator. Given 

that 𝑎̌𝑗 = 𝑣𝑗𝑎𝑗 with 𝑊 = 𝑊∗, then 𝑎̌𝜎(1) is generated, which is the largest value of 

𝑎̌𝜎(𝑗). The OWA-MP operators meet monotonic and idempotent properties, 

however they are not commutative as involve WA. Moreover they are also not 

bounded, as in the case of argument value, 𝑎𝑗 ∈ [0,1], the modified argument 

values 𝑎̌𝑗 are always greater than or equal to the argument values, 𝑎𝑗. 

 

Definition 6. (Yager, 1998). Let 𝑉 and 𝑊 be two weighting vectors of dimension 

𝑛, then a mapping𝑂𝑊𝐴: ℝ𝑛 → ℝ is an OWA-FSM operator of dimension 𝑛 if: 

 
𝑂𝑊𝐴𝑉,𝑊(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑗𝑎̂𝜎(𝑗)

𝑛

𝑗=1
, (19) 

where 𝑎̂𝜎(𝑗)is the value of 𝑎̂𝑗being ordered in non-increasing order 𝑎̂𝜎(1) ≥

𝑎̂𝜎(2) ≥ ⋯ ≥ 𝑎̂𝜎(𝑛) given that  𝑎̂𝑗 = 𝐻(𝑎𝑗 , 𝑣𝑗) = 𝛼̅𝑣̅𝑗 + 𝑣𝑗𝑎𝑗 and  𝛼̅ = 1 − 𝛼, that 

is the complement of orness.  

This method is based on fuzzy system modeling and is termed as OWA-FSM in 

this study. Notice that in the special cases: if 𝛼 = 0, then it reduces to a pure ‘and’ 

operator. Specifically, given that 𝑎̂𝑗 = 𝑣̅𝑗 + 𝑣𝑗𝑎𝑗 and 𝑤𝑛 = 1, then 𝑎̂𝜎(𝑛) is 

generated, which is the smallest value of 𝑎̂𝜎(𝑗). Whilst, if 𝛼 = 1, then it is a pure 

‘or’ operator. Given that 𝑎̂𝑗 = 𝑣𝑗𝑎𝑗 and 𝑤1 = 1, then 𝑎̂𝜎(1) is generated, which is 

the largest value of 𝑎̂𝜎(𝑗). The OWA-FSM operators meet monotonic and 

idempotent properties, but, they are not commutative as involve WA. Moreover, 

they are also not bounded, as in the case of 𝑎𝑗 ∈ [0,1], then 𝑎̂𝑗  ≥ 𝑎𝑗. 

Definition 7. (Xu and Da, 2003). Let 𝑉 and 𝑊 be two weighting vectors of 

dimension 𝑛, then a mapping𝐻𝐴: ℝ𝑛 → ℝ is a hybrid averaging operator of 

dimension 𝑛 if: 

 
𝐻𝐴𝑉,𝑊(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝑤𝑗𝑎́𝜎(𝑗)

𝑛

𝑗=1
, (20) 

where 𝑎́𝜎(𝑗) is the argument value 𝑎́𝑗being ordered in non-increasing order 𝑎́𝜎(1) ≥

𝑎́𝜎(2) ≥ ⋯ ≥ 𝑎́𝜎(𝑛) given that 𝑎́𝑗 = 𝑛𝑣𝑗𝑎𝑗 and 𝑛 is the balancing coefficient. 

It can be shown that when 𝑊 = (1/𝑛, 1/𝑛,… ,1/𝑛), then the HA operator reduces 

to the WA, whilst when 𝑉 = (1/𝑛, 1/𝑛,… ,1/𝑛), the HA operator reduces to the 

OWA. The HA operators meet monotonic property, however, they are neither 

idempotent nor bounded. As can be seen, the Definitions 5-7 are based on the 

approach where the degrees of importance, 𝑣𝑗 are used to modify the argument 

values to be aggregated. In the following, the approaches based on the direct 

integration between 𝑣𝑗 and 𝑤𝑗 are presented. 

 



 

 

 

 

 

 

 

Binyamin Yusoff, Jose Maria Merigó, David Ceballos 
________________________________________________________________________ 

222 

 

 

 

 

Definition 8. (Torra, 1997). Let 𝑉 and 𝑊 be two weighting vectors of dimension 

𝑛, then a mapping 𝑊𝑂𝑊𝐴: ℝ𝑛 → ℝ is a weighted ordered weighted averaging 

(WOWA) operator of dimension 𝑛 if: 

 
𝑊𝑂𝑊𝐴𝑉,𝑊(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝜔𝑗𝑎𝜎(𝑗)

𝑛

𝑗=1
, (21) 

where 𝑎𝜎(𝑗) is the argument value of 𝑎𝑗being ordered in non-increasing order 

𝑎𝜎(1) ≥ 𝑎𝜎(2) ≥ ⋯ ≥ 𝑎𝜎(𝑛)and 𝜔𝑗 = 𝑓(∑ 𝑣𝜎(𝑘)
𝑗
𝑘=1 ) − 𝑓(∑ 𝑣𝜎(𝑗)

𝑗−1
𝑘=0 )with 𝑓 being 

a monotonic non-decreasing function that interpolates the points ((𝑗/𝑛),∑ 𝑤𝑗
𝑗
𝑘=1 ) 

together with the point (0,0). The function  𝑓 required to be a straight line when 

the points interpolated in this way.  

It can be demonstrated that when 𝑊 = (1/𝑛, 1/𝑛,… ,1/𝑛), then WOWA operator 

reduces to WA, whilst when 𝑉 = (1/𝑛, 1/𝑛,… ,1/𝑛), WOWA operator reduces to 

OWA. Moreover, they are monotonic, idempotent, and bounded. Equivalently, the 

WOWA operator can be transformed to the OWA operator with the inclusion of 

degrees of importance (Yager, 1996), if a regular monotonically non-decreasing 

fuzzy quantifier 𝑄 is used as the function 𝑓 and it can be defined as the following. 

 

Definition 9. (Yager, 1996). Let𝑉 and 𝑊 be two weighting vectors of dimension 

𝑛, then a mapping 𝑂𝑊𝐴: ℝ𝑛 → ℝ is an OWA operator of dimension 𝑛 if : 

 
𝑂𝑊𝐴𝑉,𝑊(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝜔𝑗𝑎𝜎(𝑗)

𝑛

𝑗=1
, (22) 

where 𝑎𝜎(𝑗) is the argument value 𝑎𝑗 being ordered in non-increasing order 

𝑎𝜎(1) ≥ 𝑎𝜎(2) ≥ ⋯ ≥ 𝑎𝜎(𝑛)and 𝜔𝑗 = 𝑄(∑ 𝑣𝜎(𝑘)
𝑗
𝑘=1 ) − 𝑄(∑ 𝑣𝜎(𝑘)

𝑗−1
𝑘=0 ) such that 

𝜔𝑗 ∈ [0,1] and ∑ 𝜔𝑗 = 1
𝑛
𝑗=1 . 

 

Definition 10.(Llamazares, 2013). Let 𝑉 and 𝑊 be two weighting vectors of 

dimension 𝑛, then a mapping𝐼𝑊𝐴: ℝ𝑛 → ℝ is an immediate weighted averaging 

(IWA) operator of dimension 𝑛 if: 

 
𝐼𝑊𝐴𝑉,𝑊(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝜋𝑗𝑎𝜎(𝑗)

𝑛

𝑗=1
, (23) 

where 𝑎𝜎(𝑗) is the argument value 𝑎𝑗being ordered in non-increasing order 𝑎𝜎(1) ≥

𝑎𝜎(2) ≥ ⋯ ≥ 𝑎𝜎(𝑛)and  𝜋𝑗 = 𝑤𝑗𝑣𝑗/∑ 𝑤𝑗𝑣𝑗
𝑛
𝑗=1 . 

As can be seen, the IWA is a manipulation of immediate probability (Engemann et 

al., 1996; Merigó, 2012; Yager et al., 1995) by using the WA instead of the 

probability distribution. The IWA operators satisfy the generalization properties as 

𝑉 = (1/𝑛, 1/𝑛, … ,1/𝑛), it reduces to OWA and when 𝑊 = (1/𝑛, 1/𝑛,… ,1/𝑛), 
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the IWA reduces to the WA (Llamazares, 2013). The IWA operators meet 

monotonic, idempotent, bounded properties. 

 

Definition 11. (Merigó, 2012). Let 𝑉 and 𝑊 be two weighting vectors of 

dimension 𝑛, then a mapping𝑂𝑊𝐴𝑊𝐴: ℝ𝑛 → ℝ is an ordered weighted averaging-

weighted average (OWAWA) operator of dimension 𝑛 if: 

 
𝑂𝑊𝐴𝑊𝐴𝑉,𝑊(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝜑𝑗𝑎𝜎(𝑗)

𝑛

𝑗=1
, (24) 

where 𝑎𝜎(𝑗) is the argument value of 𝑎𝑗being ordered in non-increasing order 

𝑎𝜎(1) ≥ 𝑎𝜎(2) ≥ ⋯ ≥ 𝑎𝜎(𝑛)and  𝜑𝑗 = 𝛽𝑤𝑗 + (1 − 𝛽)𝑣𝜎(𝑗) with 𝛽 ∈ [0,1]. 

 

OWAWA operators satisfy monotonic, idempotent, bounded properties. Moreover, 

the value returned by the OWAWA operator lies between the values returned by 

the WA and OWA, and coincides with them when both are equal. 

In addition, by taking the advantages of the IWA and the OWAWA operators, a 

new weighting method can be derived as in the next sub-section. 

 

4.2 Alternative OWAWA operator 

Definition 12.Let 𝑉 and 𝑊 be two weighting vectors of dimension 𝑛, then a 

mapping𝐴𝑂𝑊𝐴𝑊𝐴: ℝ𝑛 → ℝ is an alternative ordered weighted averaging-

weighted average (AOWAWA) operator of dimension 𝑛 if: 

 
𝐴𝑂𝑊𝐴𝑊𝐴𝑉,𝑊(𝑎1, 𝑎2, … , 𝑎𝑛) =∑ 𝜑̂𝑗𝑎𝜎(𝑗)

𝑛

𝑗=1
, (25) 

where 𝑎𝜎(𝑗) is the argument value of 𝑎𝑗being ordered in non-increasing order 

𝑎𝜎(1) ≥ ⋯ ≥ 𝑎𝜎(𝑛)and  𝜑̂𝑗 = (𝑤𝑗
𝛽 ∙ 𝑣𝜎(𝑗)

(1−𝛽)) ∑ (𝑤𝑗
𝛽 ∙ 𝑣𝜎(𝑗)

(1−𝛽))𝑛
𝑗=1⁄ with 𝛽 ∈

[0,1], by convention that (00 = 0). 
 

The AOWAWA operator are monotonic, bounded, idempotent. However, it is not 

commutative because the AOWAWA operator includes the WA. The AOWAWA 

operators generalized to WA and OWA when 𝛽 = 0 and 𝛽 = 1, respectively. 

Theorem 1(Monotonicity) Assume that 𝑓 is the AOWAWA operator, let 𝐴 =
(𝑎1, 𝑎2, … , 𝑎𝑛) and 𝐵 = (𝑏1, 𝑏2, … , 𝑏𝑛) be two sets of arguments. If 𝑎𝑗 ≥ 𝑏𝑗, ∀𝑗 ∈
(1,2,… , 𝑛), then:  

𝑓(𝑎1, 𝑎2, … , 𝑎𝑛) ≥ 𝑓(𝑏1, 𝑏2, … , 𝑏𝑛). 
Proof. It is straightforward and thus omitted. 

Theorem 2 (Idempotency) Assume 𝑓 is the AOWAWA operator, if 𝑎𝑗 = 𝑎, ∀𝑗 ∈
(1,2,… , 𝑛), then: 

𝑓(𝑎1, 𝑎2, … , 𝑎𝑛) = 𝑎. 
Proof. It is straightforward and thus omitted. 
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Theorem 3(Bounded) Assume 𝑓 is the AOWAWA operator, then: 

 

𝑀𝑖𝑛{𝑎𝑗} ≤ 𝑓(𝑎1, 𝑎2, … , 𝑎𝑛) ≤ 𝑀𝑎𝑥{𝑎𝑗} 

 

Proof. It is straightforward and thus omitted. 

 

5. ME-MCDM Model based on Different Decision Schemes 

In this section, the general frameworks of ME-MCDM model based on the 

classical and alternative schemes are presented. In addition to the original methods 

by Pasi and Yager (2006) and Bordogna and Sterlacchini (2014), some extensions 

have been made as the following. First, the majority concept of Pasi-Yager method 

which is originally based on the classical scheme is extended to the case of 

alternative scheme. Secondly, the Bordogna-Sterlacchini method which is based on 

the alternative scheme is modified to the case of the classical scheme. These 

methods are used for the comparison purpose in the next section. The algorithms 

for the model are structured as in the following. 

 

5.1  Classical scheme 

 Stage I: Internal aggregation (Local aggregation) 

Step 1: First, a decision matrix for each expert 𝐷ℎ, ℎ = 1,2,… , 𝑘, is constructed as 

follows: 

 𝐶1 …   𝐶𝑛 

𝐷ℎ =
𝐴1
⋮
𝐴𝑚

(
𝑎11
ℎ ⋯ 𝑎1𝑛

ℎ

⋮ ⋱ ⋮
𝑎𝑚1
ℎ ⋯ 𝑎𝑚𝑛

ℎ
), 

(26) 

where 𝐴𝑖 indicates the option/alternative 𝑖(𝑖 = 1,2,… ,𝑚) and 𝐶𝑗 denotes 

the criterion 𝑗 (𝑗 = 1,2,… , 𝑛). Meanwhile the 𝑎𝑖𝑗
ℎ  represents the preference 

for option 𝐴𝑖 with respect to criterion 𝐶𝑗, such that 𝑎𝑖𝑗
ℎ ∈ [0,1]. 

Step 2: Next, determine the weighting vector for all the expert using one of the 

available methods, such as in Eqs. (18-25). Note that, in this case, the 

proportion of criteria to be considered is subject to the attitudinal character 

of individual experts. Hence, each expert can provide distinct decision 

strategies separately. 

Step 3: Aggregate the judgment matrix of each expert by the weighting vector as 

determined in Step 2. At this stage, each expert derives the ranking of all 

options individually. 

 

 Stage II: External aggregation (Global aggregation) 

With respect to the type of aggregation methods, the consensus measure for the 

majority of experts can be calculated as follows:  



 

 

 

 

 

 

 

OWA-based Aggregation Operations in Multi-Expert MCDM Model 

__________________________________________________________________ 

225 

 

 

 

 

(P-Y*) The Pasi-Yager method (Homogeneous group decision making): 

Step 4: Determine the order-inducing variable using the Eqs. (5-6) or in the case 

where the argument values are very close to each other, use the modified 

support function such in Eq. (9). 

Step 5: Calculate the weighting vector which represents the majority of experts 

using the Eq. (7) based on quantifier ‘most’ as in Eq. (8). In this case, the 

weight of each expert is considered as equal. 

(B-S*) The modified version of Bordogna-Sterlacchini method (Heterogeneous 

group decision making): 

Step 4: Determine the order-inducing variable using the Eqs. (10-12) or in the 

case where the argument values are very close to each other, then use the 

modified similarity measure such in Eq. (16). 

Step 5: Calculate the weighting vector using the Eq. (14) and Eq. (17). In this 

case, the weight or trust degree is associated to each expert.  

 

5.2  Alternative scheme 

 Stage I: External aggregation 

Step 1:  By the similar way, a decision matrix for each expert is constructed such 

in Eq. (26). Then, the aggregation based on majority concept can be 

implemented using one of the following methods: 

(B-S**)  The Bordogna-Sterlacchini method (Heterogeneous GDM):  

Step 2: Determine the order-inducing variable such in Step 4(B-S*) of the 

classical scheme. But, instead of aggregate the opinion of experts with 

respect to each option, here, the aggregation process is conducted on each 

criterion. 

Step 3: Calculate the weighting vector such in Step5(B-S*) of the classical 

scheme using the values of the order-inducing variable in the previous 

step. 

(P-Y**)  The extension of Pasi-Yager method (Homogeneous GDM): 

Step 2: Determine the order-inducing variable as in Step4(P-Y*) of the classical 

scheme. But, instead of aggregate the opinion of experts with respect to 

each option, here, the aggregation process is conducted on each criterion. 

Step 3: Calculate the weighting vector such in Step5(P-Y*) of the classical 

scheme using the order-inducing variable derived in the previous step. 

 Stage II: Internal aggregation (Global aggregation) 

Step 4: Determine the weighting vector using one of the methods as shown in 

Eqs. (18-25).  

Step 5: Finally, aggregate the judgment matrix of the majority of experts with 

respect to the weighting vector derived in Step 4. Note that here, the 

proportion of criteria is subject to the attitudinal character of the majority 

of experts. 
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6. Numerical Example 

In this section, an investment selection problem is studied where a group of experts 

or analysts are assigned for the selection of an optimal strategy. Assume that a 

company plans to invest some money in a region. Primarily, they consider five 

possible investment options as follows: 𝐴1 = invest in the European market, 

𝐴2 =American market, 𝐴3 =Asian market, 𝐴4 =African market, 𝐴5 = do not 

invest money. In order to evaluate these investments, the investor has brought 

together a group of experts. This group considers that each of investment options 

can be described with the following characteristics: 𝐶1 = benefits in the short term, 

𝐶2 = benefits in the mid-term, 𝐶3 = benefits in the long term, 𝐶4 = risk of the 

investment, 𝐶5 = other variables. The available investment strategies depending on 

the characteristic 𝐶𝑗 and the option 𝐴𝑖 for each expert are shown in Table 1. 

 

Table 1. Available investment strategies of each expert, 𝑬𝒉 

 

 

 

 

 

 

 

 

 

 

 

In this study, two analyses are conducted. First is to analyze the effect of 

different decision schemes for the homogeneous and heterogeneous cases. The 

aggregated results of analysis are presented in Table2. Note that, for the 

heterogeneous case, the weights(0.3, 0.1, 0.1, 0.4, 0.1)represent the expert 𝐸1, 𝐸2, 

𝐸3, 𝐸4 and 𝐸5, respectively. As can be seen, there is a slight difference between the 

results that derived from both majority aggregation approaches with respect to 

different decision schemes. The majority opinion of experts with respect to the 

classical scheme provides  𝐴4, 𝐴2, 𝐴1, 𝐴5 and 𝐴3as the final ranking for both 

methods. While the majority opinion of experts computed with respect to 

alternative scheme exhibits the ranking of 𝐴4, 𝐴1, 𝐴5, 𝐴2 and 𝐴3 (also for both 

  𝐸1      𝐸2      𝐸3   

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 
 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 
 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

0.7 0.6 0.7 0.6 0.9 

 

0.6 0.9 1 0.9 0.9 

 

0.5 0.7 0.9 0.8 0.9 

0.8 1 0.2 1 0.6 

 

1 0.7 0.1 1 0.8 

 

0.9 0.9 0.2 1 0.7 

0.6 0.7 0.6 0.6 0.5 

 

0.4 0.9 0.8 0.7 0.6 

 

0.8 0.8 0.7 0.7 0.6 

0.9 0.6 0.8 1 0.9 

 

0.9 0.5 0.7 1 0.9 

 

0.9 0.5 0.8 1 0.7 

0.3 0.7 0.7 0.8 0.9 

 

0.7 0.7 0.9 0.9 0.9 

 

0.8 0.7 0.8 0.9 0.8 

  𝐸4        𝐸5    

 

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 
 

  

𝐶1 𝐶2 𝐶3 𝐶4 𝐶5 

𝐴1 0.4 0.7 0.9 0.8 0.8  

 

𝐴1 0.5 0.6 0.7 0.6 0.8 

𝐴2 0.9 0.7 0.1 0.9 0.6  

 

𝐴2 0.9 0.8 0.4 0.9 0.5 

𝐴3 0.6 0.6 0.5 0.8 0.4  

 

𝐴3 0.6 0.6 0.5 0.8 0.7 

𝐴4 0.7 0.5 0.7 0.7 0.9  

 

𝐴4 0.8 0.7 0.6 0.9 0.8 

𝐴5 0.4 0.6 0.7 0.8 0.9  

 

𝐴5 0.2 0.6 0.8 0.6 0.8 
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methods). Hence, the aggregated results demonstrated the effect on different 

decision schemes in ranking the options. 

 

Table 2. The aggregated results 
 

 Homogeneous case, 𝑡ℎ =

1/𝑛 

Heterogeneous case, 

𝑡ℎ ≠ 1/𝑛 

 ME-MCDM-

PY* 

ME-MCDM-

PY** 

ME-MCDM-

BS* 

ME-MCDM-

BS** 

𝐴1 0.7143 (R3) 0.7726 (R2) 0.7169 (R3) 0.7989 (R2) 

𝐴2 0.7178 (R2) 0.6992 (R4) 0.7200 (R2) 0.6580 (R4) 

𝐴3 0.6280 (R5) 0.6361 (R5) 0.5952 (R5) 0.6057 (R5) 

𝐴4 0.7886 (R1) 0.8027 (R1) 0.7800 (R1) 0.8000 (R1) 

𝐴5 0.7029 (R4) 0.7225 (R3) 0.6800 (R4) 0.6969 (R3) 

Note: ‘*’ refers to the classical scheme and ‘**’ refers to the alternative 

scheme;   R = ranking. 

 

Secondly, as a further analysis, the method of ME-MCDM-BS** based on the 

integration of WA and OWA weights is conducted. Table 3 shows the aggregated 

results of the model based on different weighting techniques. 

 

Table 3. The aggregated results with respect to ME-MCDM-BS** model 

 

OWA 

(Q) 
WOWA IWA 

OWA-

WA 

AOWA 

-WA 

OWA 

(FSM) 

OWA 

(MP) 
HA 

0.6957 0.6992 0.6972 0.7526 0.7076 0.9177 0.9053 0.3598 

0.1543 0.1147 0.1207 0.3866 0.2124 0.7325 0.5319 0.1672 

0.4837 0.5080 0.4988 0.5547 0.5158 0.8564 0.8279 0.2455 

0.5227 0.5217 0.5302 0.6563 0.5736 0.8791 0.8493 0.4504 

0.4185 0.4946 0.4472 0.5685 0.5085 0.8926 0.8742 0.2215 

 

The weights 𝑣𝑗for the criteria are given as 0.1, 0.2, 0.3, 0.3, 0.1 and the ordered 

weights, 𝑤𝑗 are represented as ‘most’ (𝛾 = 10), i.e., “most of the criteria have to 

be satisfied”. As can be noticed, the proposed AOWAWA operator with 𝛽 =
0.5indicates the similar ranking as the WOWA and IWA methods, 𝐴1, 𝐴4, 𝐴3, 𝐴5 

and 𝐴2. Concurrently, the rest weighting techniques show slightly different results. 

Note that in this case, the decision strategy is subject to the attitudinal character 

of the majority of experts. By selecting any parameter 𝛾 to represent the linguistic 
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quantifier, various decision strategies can be derived. Specifically for 𝛾 → 0 (at 

least one criteria is considered), 𝛾 = 1 (averagely all) and 𝛾 → ∞ (all criteria are 

considered). The aggregated results of AOWAWA operator with different decision 

strategies are presented in Tables 4.  

 

Table 4. Decision strategies based on AOWAWA operator 

At least one 

𝛾 → 0 

Few 

𝛾 = 0.1 

Some 

𝛾 = 0.5 

Half (average) 

𝛾 = 1 

Many 

𝛾 = 2 

Most 

𝛾 = 10 

All 

𝛾 → ∞ 

0.8989 0.8463 0.8202 0.8038 0.7801 0.7076 0.6945 

0.9976 0.8397 0.7188 0.6375 0.5249 0.2124 0.1000 

0.6994 0.6628 0.6354 0.6169 0.5908 0.5158 0.4727 

0.9986 0.9071 0.8379 0.7926 0.7320 0.5736 0.5000 

0.8976 0.7871 0.7367 0.7084 0.6695 0.5085 0.3846 

 

In addition, the rankings of AOWAWA operator with different values of 𝛽 can 

be seen in Table 5. These values show the effect of the selection WA and OWA in 

the final evaluation process. For example, if only WA is applied, then 𝛽 = 0, 

whilst 𝛽 = 1 implies only OWA is used.  

 

Table 5. Aggregated results of AOWAWA operator based on 𝛽 values 

𝛽 = 0 𝛽 = 0.2 𝛽 = 0.4 𝛽 = 0.6 𝛽 = 0.8 𝛽 = 1 

0.6957 0.6975 0.7024 0.7160 0.7493 0.8094 

0.1543 0.1699 0.1942 0.2376 0.3338 0.6190 

0.4837 0.4925 0.5065 0.5270 0.5590 0.6257 

0.5227 0.5370 0.5589 0.5916 0.6459 0.7900 

0.4185 0.4426 0.4816 0.5410 0.6223 0.7185 

 

7.  Conclusion 

In this paper, the analysis on extensions of ME-MCDM model based on the OWA 

operators has been conducted. The focus is given on the aggregation operation, 

specifically with respect to the fusions of criteria and experts' judgments. The 

majority concept based on the IOWA and linguistic quantifiers to aggregate the 

experts’ judgments is analyzed, in which concentrated on the classical and 

alternative schemes of group decision making model. Then, a review on the 

weighting methods related to the integration of WA and OWA is provided. 

Correspondingly, the alternative weighting technique is proposed which is called 

as the AOWAWA operator. The ME-MCDM model based on two-stage 

aggregation processes then is developed. A comparison is conducted to see the 

effect of different weighting techniques in aggregating the criteria and the results 

of using different decision schemes for the fusion of majority opinion of experts. A 
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numerical example in the selection of investments then has been used for the 

comparison purpose. In general, the conclusion which can be made from the 

analysis and comparison is that, the selection of decision schemes as well as the 

weighting methods employed in the aggregation process shown different rankings 

for the options. Moreover, each of the decision schemes represents the decision 

strategy (i.e., with respect to criteria) in a different way, whether as an individual 

expert decision strategy or as group/majority decision strategy. Hence, the 

selection of both approaches reflects different results. 
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