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PRICING VULNERABLE OPTIONS WITH CONSTANT ELASTICITY 

OF VARIANCE VERSUS STOCHASTIC ELASTICITY OF VARIANCE  

 

Abstract. In order to handle option writer’s credit risk, a different underlying price 

model is required beyond the well-known Black-Scholes model. This paper adopts a 

recently developed model, which characterizes the 2007-2009 global financial crisis in 

a unique way, to determine the no-arbitrage price of European options vulnerable to 

writer’s default possibility. The underlying model is based on the randomization of the 

elasticity of variance parameter capturing the leverage or inverse leverage effect. We 

obtain an analytic formula explicitly for the stochastic elasticity of variance correction 

to the Black-Scholes price of vulnerable options and show how the correction effect is 

compared with the one given by the constant elasticity of variance model. The result 

can help to design a dynamic investment strategy reducing option writer’s credit risk 

more effectively.  

Keywords: Vulnerable option, Default risk, Stochastic elasticity of variance, 

Ornstein-Uhlenbeck process, Monte-Carlo simulation. 
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 1. Introduction  

Since the Global Financial Crisis of 2007-2008, the pricing of financial derivatives 

subject to credit risk has become one of more interesting subjects in mathematical 

finance. Options subject to credit default risk, called vulnerable options, have been 

studied by researchers already after Black & Scholes (1973) and Merton (1974) 
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established the well-known seminal work on the classical European options. A brief 

review of the studies of vulnerable options is as follows. Johnson &Stulz (1987) first 

proposed an option pricing formula for a vulnerable European option. They assumed 

that the liability of the counterparty is just the option. Hull & White (1995) considered 

that the option writer has the other liabilities and the payment is decided by a 

proportion of the nominal claim for the option if default occurs. However, they did not 

consider the existing dependence between the asset of the option writer and the asset 

itself underlying the option and so Jarrow& Turnbull (1995) presented a new approach 

for the pricing and hedging of derivative securities with credit risk. Rich (1996) 

considered the timing of default and an uncertain recovery value to price an European 

option subject to an intertemporal default risk. Klein (1996) extended Johnson &Stulz 

(1987) by allowing the option writer to have other liabilities and considered the 

correlation between the option writer’s assets and an asset underlying the option. Klein 

& Yang (2010) extended Johnson &Stultz (1987) and Klein (1996) to price American 

vulnerable options. Wang & Wang (2010) employed the regime switching Esscher 

transform to study the European vulnerable options under a Markov-modulated jump-

diffusion model. Liu & Liu (2011)studied the pricing of vulnerable options by using 

the conditional binomial tree algorithm and the binomial pyramid algorithm. Xuet al. 

(2012)showed numerical results for vulnerable options under the assumption that the 

underlying asset and the counterparty’s asset follow jump-diffusion processes. Yang et 

al. (2014) adopts a fast mean-reverting stochastic volatility model proposed in 

Fouqueet al. (2000) to price vulnerable options and obtain the stochastic volatility 

effect on the Black-Scholes price.  

This paper adopts an underlying model recently developed by Kim et al. (2014). 

The model extends the well-known and practically popular constant elasticity of 

variance (CEV) model introduced in Cox & Ross (1976) by randomizing the constant 

elasticity and it is called the stochastic elasticity of variance (SEV) model. It attempts 

to capture the stochastic leverage or inverse leverage effect and discovers a singular 

behavior of the S&P market during the Global Financial Crisis as shown in Kim et al. 

(2015). Also, Yoon et al. (2015) shows that the SEV model with stochastic interest 

rates gives a more accurate fit of implied volatility to a market data set as time-to-

maturity becomes shorter. This paper applies the SEV model to the work of Klein 

(1996) and its CEV extension and investigates the stochastic elasticity of variance 

correction effect to the price of vulnerable options.  

The rest of the paper is organized as follows. Section 2 obtains a singularly perturbed 

partial differential equation (PDE) problem for the vulnerable option price based on the 

SEV model. Section 3 derives an analytic formula for the approximation of the PDE 

problem solution. Section 4 provides a comparison analysis of three different prices 
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given by Klein (1996), the CEV model and the SEV model, respectively. Finally, 

section 5 concludes.  

2. Formulation  
Economically markets are assumed to be frictionless, i.e., there are no transaction 

cost, no taxes, and no constraining regulations and all assets are perfectly divisible and 

marketable. Let𝑆𝑡be the value of asset underlying a European option and𝑌𝑡a mean-

reverting Ornstein-Uhlenbeck (OU) process whose distribution is Gaussian with mean 

𝑚and variance 𝑢2such that the dynamics of 𝑆𝑡and 𝑌𝑡  are given by the stochastic 

differential equations (SDEs)  

                                             𝑑𝑆𝑡 = 𝜇𝑠𝑆𝑡𝑑𝑡 + 𝜎𝑠𝑆𝑡
𝛾𝑡𝑑𝑊𝑡

𝑠,    𝛾𝑡 ≔ √𝛿𝑓(𝑌𝑡),   (1)        

                                             𝑑𝑌𝑡 =
1

𝜀
(𝑚 − 𝑌𝑡)𝑑𝑡 +

𝑢√2

√𝜀
𝑑𝑍̂𝑡 ,    (2) 

respectively. Here, 𝜇𝑠  denotes the instantaneous expected return of the asset, 

𝜎𝑠denotes the instantaneous standard deviation of the return of the asset,𝑚and 𝑢 (> 0) 
are constants, and 𝑊𝑡

𝑠 and 𝑍̂𝑡 are standard Brownian motions with correlation 

coefficient 𝜌𝑠𝑦 so that 𝑍̂𝑡 = 𝜌𝑠𝑦𝑊𝑡
𝑠 +√1 − 𝜌𝑠𝑦

2𝑍𝑡 for some Brownian motion 

𝑍𝑡independent of 𝑊𝑡
𝑠.Based on the real market data traded in finance, the results of 

empirical performance give that the elasticity parameter 𝛾𝑡is close to 1. Refer to Chen 

et al. (2009). So,𝑓is chosen to be a function satisfying−∞ < 𝑐1 ≤ 𝑓 ≤ 𝑐2 < ∞ for 

some constants𝑐1and𝑐2. The parameters𝜀 and 𝛿are assumed to satisfy 0 < 𝜀, 𝛿 ≪ 1. 

On the other hand, let 𝑉𝑡denote the market value of the assets of the option writer 

which is given by the SDE  

                                                               𝑑𝑉𝑡 = 𝜇𝑣𝑉𝑡𝑑𝑡 + 𝜎𝑣𝑉𝑡𝑑𝑊𝑡
𝑣 ,                                   (3) 

where𝑊𝑡
𝑣is the standard Brownian motion satisfying 𝑑 < 𝑊𝑡

𝑠,𝑊𝑡
𝑣 >𝑡= 𝜌𝑠𝑣𝑑𝑡and 𝑑 <

𝑍̂𝑡 ,𝑊𝑡
𝑣 >𝑡= 𝜌𝑣𝑦𝑑𝑡.  Here, the instantaneous expected return 𝜇𝑣and the instantaneous 

variance 𝜎𝑣
2of the return are assumed to be constants. Then, by the Girsanov theorem 

(cf. Fouque et al., 2011), under the equivalent martingale measure ℚ∗, the above SDE 

(1)-(3) become  

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡 + 𝜎𝑠𝑆𝑡
1+√𝛿𝑓(𝑌𝑡)𝑑𝑊𝑡

𝑠∗, 

𝑑𝑌𝑡 = (
1

𝜀
(𝑚 − 𝑌𝑡)𝑑𝑡 +

𝑢√2

√𝜀
Λ(𝑆𝑡, 𝑌𝑡))𝑑𝑡 +

𝑢√2

√𝜀
𝑑𝑍̂𝑡

∗
, 

𝑑𝑉𝑡 = 𝑟𝑉𝑡𝑑𝑡 + 𝜎𝑣𝑉𝑡𝑑𝑊𝑡
𝑣∗, 



 

 

 

 

Min-Ku Lee, Sung-Jin Yang, Jeong-Hoon Kim 

___________________________________________________________________ 

236 

 

 

 

where 𝑊𝑡
𝑠∗ , 𝑍̂𝑡

∗
 and 𝑊𝑡

𝑣∗  are the standard Brownian motions satisfying 𝑑 <

𝑊𝑡
𝑠∗,𝑊𝑡

𝑣∗ >𝑡= 𝜌𝑠𝑣𝑑𝑡 , d < 𝑊𝑡
𝑠∗, 𝑍̂𝑡

∗
>𝑡= 𝜌𝑠𝑦𝑑𝑡  and d < 𝑊𝑡

𝑣∗, 𝑍̂𝑡
∗
>𝑡= 𝜌𝑣𝑦𝑑𝑡 , and 

Λ is the risk premium of the elasticity risk. 

At time 𝑡 = 𝑇, a payoff function of a vulnerable European call option depending 

upon the financial distress circumstance can be defined by 

ℎ(𝑆𝑇 , 𝑉𝑇) = (𝑆𝑇 − 𝐾)
+ (1{𝑉𝑇≥𝐷∗} + 1{𝑉𝑇<𝐷∗}

(1 − 𝛼)𝑉𝑇
𝐷

), 

where 𝐾is the option’s strike price and the value𝐷∗is the other liabilities of the option 

writer. If the asset value of the option writer at the maturity𝑇is below the default level 

𝐷∗, default occurs and the option writer pays out the proportion 
(1−𝛼)𝑉𝑇

𝐷
of (𝑆𝑇 − 𝐾)

+, 

whereas if the assets of the option writer are above the default level, the entire nominal 

claim is paid out. Here, 𝛼 denotes the deadweight bankruptcy/reorganization cost of 

default event and is given as a percentage of the asset value of the option writer. 𝐷is 

the amount of 𝐷∗plus an additional liability produced by the possibility of the option 

writer’s continuation in operation even while 𝑉𝑇is less than 𝐷∗. 
Using the Markov property of the joint process (𝑆𝑡, 𝑉𝑡, 𝑌𝑡) the value of the 

vulnerable call option is given by  

𝑃𝜀,𝛿(𝑡, 𝑠, 𝑣, 𝑦) 

∶= Ε∗ [𝑒−𝑟(𝑇−𝑡) (𝑆𝑇 − 𝐾)
+ (1{𝑉𝑇≥𝐷∗} + 1{𝑉𝑇<𝐷∗}

(1 − 𝛼)𝑉𝑇
𝐷

)|𝑆𝑡 = 𝑠, 𝑉𝑡 = 𝑣, 𝑌𝑡 = 𝑦] 

under the risk neutral measureℚ∗. Then the Feynman-Kac theorem (cf. Fouque et al., 

2011) allows 𝑃𝜀,𝛿(𝑡, 𝑥, 𝑣, 𝑦)  to satisfy the singularly perturbed partial differential 

equation (PDE) given by 

𝜕𝑃𝜀,𝛿

𝜕𝑡
+ 𝑟𝑠

𝜕𝑃𝜀,𝛿

𝜕𝑠
+
1

2
𝜎𝑠
2𝑠2+2√𝛿𝑓(𝑦)

𝜕2𝑃𝜀,𝛿

𝜕𝑠2
+ (

1

𝜀
(𝑚 − 𝑦) −

𝑢√2

√𝜀
Λ)

𝜕𝑃𝜀,𝛿

𝜕𝑦
 

                 +
𝑢2

𝜀

𝜕2𝑃𝜀,𝛿

𝜕𝑦2
 + 𝑟𝑣

𝜕𝑃𝜀,𝛿

𝜕𝑣
+
1

2
𝜎𝑣
2𝑣2

𝜕2𝑃𝜀,𝛿

𝜕𝑣2
+ 𝜌𝑠𝑦𝜎𝑠𝑠

1+√𝛿𝑓(𝑦)
𝑢√2

√𝜀

𝜕2𝑃𝜀,𝛿

𝜕𝑠𝜕𝑦
 

                 +𝜌𝑠𝑣𝜎𝑠𝜎𝑣𝑣𝑠
1+√𝛿𝑓(𝑦)

𝜕2𝑃𝜀,𝛿

𝜕𝑠𝜕𝑣
 + 𝜌𝑣𝑦𝜎𝑣𝑣

𝑢√2

√𝜀

𝜕2𝑃𝜀,𝛿

𝜕𝑦𝜕𝑣
− 𝑟𝑃𝜀,𝛿 = 0     (4) 

with the terminal condition  

𝑃𝜀,𝛿(𝑇, 𝑠, 𝑣, 𝑦) = (𝑠 − 𝐾)+ (1{𝑣≥𝐷∗} + 1{𝑣<𝐷∗}
(1−𝛼)𝑣

𝐷
). 

3. Analysis  
In this section, we derive a pricing formula for the vulnerable option by using the 

asymptotic analysis of Fouqueet al. (2011). First, we arrange the PDE (4) as  

1

𝜀
(𝑢2

𝜕2

𝜕𝑦2
+ (𝑚 − 𝑦)

𝜕

𝜕𝑦
)𝑃𝜀,𝛿 
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+
1

√𝜀
(√2𝜌𝑠𝑦𝑢𝜎𝑠𝑠

1+√𝛿𝑓(𝑦)
𝜕2

𝜕𝑠𝜕𝑦
+ √2𝜌𝑣𝑦𝑢𝑣𝜎𝑣

𝜕2

𝜕𝑦𝜕𝑣
(𝑚 − 𝑦) − √2𝑢Λ

𝜕

𝜕𝑦
)𝑃𝜀,𝛿 

+[
𝜕

𝜕𝑡
+
1

2
𝜎𝑠
2𝑠2+2√𝛿𝑓(𝑦)

𝜕2

𝜕𝑠2
+
1

2
𝜎𝑣
2𝑣2

𝜕2

𝜕𝑣2
+ 𝜌𝑠𝑦𝜎𝑠𝜎𝑣𝑣𝑠

1+√𝛿𝑓(𝑦)
𝑢√2

√𝜀

𝜕2

𝜕𝑠𝜕𝑣
 

+𝑟(𝑠
𝜕

𝜕𝑠
+ 𝑣

𝜕

𝜕𝑠
−∙)] 𝑃𝜀,𝛿 = 0                        (5) 

and then from the Taylor series expansion in the small parameter δ, the PDE (5) 

becomes 
1

𝜀
ℒ00𝑃

𝜀,𝛿 +
1

√𝜀
(ℒ10 + √𝛿ℒ11 +  𝛿ℒ12 + 𝛿√𝛿ℒ13 +⋯)𝑃

𝜀,𝛿 

                                   +(ℒ20 + √𝛿ℒ21 + 𝛿 ℒ22 + 𝛿√𝛿ℒ23 +⋯)𝑃
𝜀,𝛿 = 0,       (6) 

where 

ℒ00 = 𝑢
2 𝜕

2

𝜕𝑦
+ (𝑚 − 𝑦)

𝜕

𝜕𝑦
, 

ℒ10 = √2𝜌𝑠𝑦 𝑢𝜎𝑠 𝑠
𝜕2

𝜕𝑠 𝜕𝑦
+√2𝜌𝑣𝑦 𝑢𝑣𝜎𝑣 

𝜕2

𝜕𝑦 𝜕𝑣
− √2 𝑢Λ

𝜕

 𝜕𝑦
, 

ℒ1𝑖 = √2𝜌𝑠𝑦 𝑢𝜎𝑠 𝑠
(𝑓(𝑦) ln 𝑠)𝑖

𝑖!

𝜕2

𝜕𝑠 𝜕𝑦
,   𝑖 = 1, 2,⋯, 

ℒ20 =
𝜕

𝜕𝑡
+
1

2
𝜎𝑠
2𝑠2

𝜕2

𝜕𝑠2
+
1

2
𝜎𝑣
2𝑣2

𝜕2

𝜕𝑣2
+ 𝜌𝑠𝑣𝜎𝑣 𝜎𝑠𝑣𝑠

𝜕2

𝜕𝑠 𝜕𝑣
+ 𝑟 (𝑠

𝜕

𝜕𝑠
+ 𝑣

𝜕

𝜕𝑣
−∙), 

ℒ2𝑖 =
1

2
𝜎𝑠
2𝑠2

(2𝑓(𝑦) ln 𝑠)𝑖

𝑖!

𝜕2

𝜕𝑠2
+ 𝜌𝑠𝑣𝜎𝑠 𝜎𝑣𝑠𝑣

(𝑓(𝑦) ln 𝑠)𝑖

𝑖!

𝜕2

𝜕𝑠 𝜕𝑣
, 𝑖 = 1, 2,⋯. 

We are interested in a solution of PDE (6) of the form 

𝑃𝜀,𝛿(𝑡, 𝑠, 𝑣, 𝑦) = ∑ 𝜀𝑖/2𝛿𝑗/2𝑃𝑖𝑗(𝑡, 𝑠, 𝑣, 𝑦)
∞
𝑖=0,𝑗=0 .                  (7) 

So, if we substitute the expansion (7) into (6), then we obtain 
1

𝜀
(ℒ00𝑃00 + √𝛿ℒ00𝑃01 + 𝛿ℒ00𝑃02 +⋯) 

+
1

√𝜀
(ℒ00𝑃10 + ℒ10𝑃00 + √𝛿(ℒ00𝑃11 + ℒ10𝑃01 + ℒ11𝑃00)

+ 𝛿(ℒ00𝑃12 + ℒ10𝑃02 + ℒ11𝑃01 + 𝐿12𝑃00) +⋯ ) 

+(ℒ00𝑃20 + ℒ10𝑃10 + ℒ20𝑃00 + √𝛿 (ℒ00𝑃21 + ℒ10𝑃11 + ℒ11𝑃10 + ℒ20𝑃01 + ℒ21𝑃00)

+ 𝛿(ℒ00𝑃22 + ℒ10𝑃12 + ℒ11𝑃11 + ℒ12𝑃10 + ℒ20𝑃02 + ℒ21𝑃01
+ ℒ22𝑃00) + ⋯  ) 
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+√𝜀(ℒ00𝑃30 + ℒ10𝑃20 + ℒ20𝑃10

+ √𝛿 (ℒ00𝑃31 + ℒ10𝑃21 + ℒ11𝑃20 + ℒ20𝑃11 + ℒ21𝑃10)
+ 𝛿(ℒ00𝑃32 + ℒ10𝑃22 + ℒ11𝑃21 + ℒ12𝑃20 + ℒ20𝑃12 + ℒ21𝑃11
+ ℒ22𝑃10) + ⋯  ) 

+𝜀 (ℒ00𝑃40 + ℒ10𝑃30 + ℒ20𝑃20

+ √𝛿 (ℒ00𝑃41 + ℒ10𝑃31 + ℒ11𝑃30 + ℒ20𝑃21 + ℒ21𝑃20)
+ 𝛿(ℒ00𝑃42 + ℒ10𝑃32 + ℒ11𝑃31 + ℒ12𝑃30 + ℒ20ℒ22 + ℒ21𝑃21
+ ℒ22𝑃20) + ⋯  ) 

= 0.                                    (8)   

In the following asymptotic analysis, the so-called centering (or solvability) 

condition on a Poisson equation is crucial, where the Poisson equation is given by 

ℒ00𝐻 + 𝑔 = 0for some function 𝑔. If the function 𝑔 is smooth enough to satisfy 𝑔 ∈
 𝐶2(𝑅)such that a solution 𝐻 of the Poisson equation exists, then the condition〈𝑔〉 = 0, 

which is called the centering condition, has to be satisfied, where〈·〉denotes average 

with respect to the invariant distribution of the process𝑌𝑡, i.e., 

〈𝑔〉 =
1

√2𝜋𝑢2
∫ 𝑔(𝑦)𝑒

−
(𝑦−𝑚)2

2𝑢2 𝑑𝑦.
∞

−∞

 

Refer to the Fredholm alternative theorem (cf. Ramm, 2001) or Fouque et al. (2011) 

for more details.  

The following theorem states that the leading order term 𝑃00 and the correction terms 

𝑃10, 𝑃01, 𝑃20 , 𝑃11 , 𝑃02, 𝑃30  and 𝑃12 are independent of the variable 𝑦 . This fact 

becomes an important tool to derive each of the terms.  

Theorem 3.1.Assume that 𝑃𝑖𝑗does not grow as much as 
𝜕𝑃𝑖𝑗

𝜕𝑦
~𝑒

𝑦2

2 as 𝑦 goes to infinity 

for each𝑖, 𝑗 = 0, 1, 2,⋯. Then 𝑃00, 𝑃10, 𝑃01, 𝑃20, 𝑃11, 𝑃02, 𝑃30and 𝑃12  are independent 

of the variable 𝑦. 

Proof. From the order 
1

𝜀
,
√𝛿

𝜀
and 

𝛿

𝜀
terms in (8), 𝑃00, 𝑃01and 𝑃02are solutions for the 

Poisson equation 

ℒ00𝑃𝑖𝑗(𝑡, 𝑠, 𝑣, 𝑦) = 0, 𝑖𝑗 = 00, 01, 02. 

Solving this equation for𝑃𝑖𝑗, we obtain 

𝑃𝑖𝑗(𝑡, 𝑠, 𝑣, 𝑦) = 𝑘1(𝑡, 𝑠, 𝑣)∫ 𝑒
(𝑧−𝑚)2

2𝑢2 𝑑𝑧
𝑦

−∞

+ 𝑘2(𝑡, 𝑠, 𝑣) 

for some 𝑦-independent functions 𝑘1and 𝑘2 . From the assumed growth condition, 

𝑘1 = 0must hold. So, 𝑃𝑖𝑗 is independent of the 𝑦 variable. This can be expressed as 

𝑃𝑖𝑗 = 𝑃𝑖𝑗(𝑡, 𝑠, 𝑣), where 𝑖𝑗 = 00, 01, 02. From the order
1

√𝜀
,
√𝛿

√𝜀
and

𝛿

√𝜀
 terms in (8) and 

the 𝑦 -independence of 𝑃00, 𝑃01 and 𝑃02 which has been just derived, the 𝑦 -
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independence of 𝑃10, 𝑃11 and 𝑃12 can be also derived similarly. Also, the 𝑦 -

independence of 𝑃10and 𝑃00 leads to the 𝑦-independence of 𝑃20 from the order𝑂(1) 

term. Lastly, the 𝑦 -independence of 𝑃20 yields that the order √𝜀  term becomes 

ℒ00𝑃30 + ℒ20𝑃10 = 0.By applying the centering condition for a Poisson equation and 

the y-independence of 𝑃10 to this equation, we have 

                                                       ℒ20𝑃10 = 〈ℒ20𝑃10〉 = 0       (9) 

Thus the order√𝜀 termisreducedtoℒ00𝑃30 = 0,andso 𝑃30isindependentonthevariable 𝑦. 

■ 

Next,we derive PDEs for the leading order and correction terms𝑃𝑖𝑗, 𝑖𝑗 =

00, 01, 10, 20, 11, 02. 
Theorem 3.2.𝑃𝑖𝑗 ′s ( 𝑖𝑗 = 00, 10, 01, 20, 11, 02) satisfy the following PDEs 

ℒ20𝑃𝑖𝑗(𝑡, 𝑠, 𝑣) =

{
 

 
                      0                                ∶ 𝑖𝑗 = 00, 10, 20  

−ℒ̅21𝑃00                         ∶ 𝑖𝑗 = 01
    ℋ𝑃00                            ∶ 𝑖𝑗 = 11

−(ℒ̅21𝑃01 + ℒ̅22𝑃00 )    ∶ 𝑖𝑗 = 02,

   (10) 

respectively, where 

ℋ = √2𝜌𝑠𝑦 𝑢𝜎𝑠 𝑠 [𝜎𝑠
2〈𝜓′〉 (2𝑠 ln 𝑠

𝜕2

𝜕𝑠2
+ 𝑠

𝜕2

𝜕𝑠2
+ 𝑠2 ln 𝑠

𝜕3

𝜕𝑠3
)    

+ 𝜌𝑠𝑣𝜎𝑠 𝜎𝑣〈𝜓
′〉𝑣 (ln 𝑠

𝜕2

𝜕𝑠 𝜕𝑣 
+

𝜕2

𝜕𝑠 𝜕𝑣 
+ 𝑠 ln 𝑠

𝜕3

𝜕𝑠2 𝜕𝑣 
)] 

         +√2𝜌𝑣𝑦 𝑢𝜎𝑣𝑣 [𝜎𝑠
2〈𝜓′〉𝑠2 ln 𝑠

𝜕3

𝜕𝑠2 𝜕𝑣 

+ 𝜌𝑠𝑣𝜎𝑠𝜎𝑣〈𝜓
′〉𝑠 ln 𝑠 (

𝜕2

  𝜕𝑠 𝜕𝑣 
+                                          𝑣 

𝜕3

 𝜕𝑠 𝜕𝑣2
)] 

                 −√2𝑢 [𝜎𝑠
2〈Λ𝜓′〉𝑠2 ln 𝑠

𝜕2

𝜕𝑠2
+ 𝜌𝑠𝑣𝜎𝑠𝜎𝑣〈Λ𝜓

′〉𝑣𝑠 ln 𝑠
𝜕2

  𝜕𝑠 𝜕𝑣 
], 

ℒ̅2𝑖 =
1

2
𝜎𝑠
2𝑠2

〈𝑓𝑖〉(2 ln 𝑠)𝑖

𝑖!

𝜕2

𝜕𝑠2
+ 𝜌𝑠𝑣𝜎𝑠𝜎𝑣𝑠𝑣

〈𝑓𝑖〉(ln 𝑠)𝑖

𝑖!

𝜕2

𝜕𝑠 𝜕𝑣
, 𝑖 = 1, 2. 

Here, 𝜓 denotes the solution ofℒ00𝜓(𝑦) = 𝑓(𝑦) − 〈𝑓〉. 
Proof. The proof of Theorem 3.1 has already produced a PDE for𝑃00 which is 

                          ℒ20𝑃00(𝑡, 𝑠, 𝑣) = 0.                  (11) 

From (9), we also haveℒ20𝑃10(𝑡, 𝑠, 𝑣) = 0. 

Next, from the 𝑦-independence of𝑃11and 𝑃10, the order√𝛿terms in (8) lead to 

                                 ℒ00𝑃21 + ℒ20𝑃01 + ℒ21𝑃00 = 0.                      (12) 

Then, applying the centering condition to this Poisson equation, we obtain the PDE 
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                                                         𝑃01(𝑡, 𝑠, 𝑣) = −ℒ̅21𝑃00.                      (13) 

From the 𝑦 -independenceof 𝑃12, 𝑃11 and 𝑃10 , theorder δ termsin(8)givesℒ00𝑃22 +
ℒ20𝑃02 + ℒ21𝑃01 + ℒ22𝑃00 = 0.Then, again by applying the centering condition to 

this Poisson equation, we obtain a PDE for 𝑃02 given by 

                                               ℒ20𝑃02(𝑡, 𝑠, 𝑣) = −(ℒ̅21𝑃01. + ℒ̅22𝑃00.).                (14) 

The 𝑦-independence of 𝑃30 and the centering condition lead to 

                                                            ℒ20𝑃20 = 0                             (15) 

from the order 𝜀term. 

Note that the PDEs (9) and (15) have vanishing solutions once the terminal 

conditions 𝑃10(𝑇, 𝑠, 𝑣) = 0 and𝑃20(𝑇, 𝑠, 𝑣)are imposed. In fact, this result could be 

expected from the scale structure of the underlying model (1)-(2). 

It remains to derive a PDE for 𝑃11(𝑡, 𝑠, 𝑣). First, we define a function ψ by the solution 

of 

ℒ00𝜓(𝑦) = 𝑓(𝑦) − 〈𝑓〉. 
Subtracting (13) from (12), we obtainℒ00𝑃21 = −(ℒ21 − ℒ̅21)𝑃00, that is, 

ℒ00𝑃21 = −𝜎𝑠
2(𝑓(𝑦) − 〈𝑓〉)𝑠2 ln 𝑠

𝜕2𝑃00
𝜕𝑠2

− 𝜌𝑠𝑣𝜎𝑠𝜎𝑣(𝑓(𝑦) − 〈𝑓〉)𝑣𝑠 ln 𝑠
𝜕2𝑃00
   𝜕𝑠𝑣 

. 

Then, using the function 𝜓, the solution 𝑃21 can be expressed as 

𝑃21(𝑡, 𝑠, 𝑣, 𝑦) = −𝜎𝑠
2(𝜓(𝑦) + 𝑐(𝑡, 𝑠, 𝑣))𝑠2 ln 𝑠

𝜕2𝑃00

𝜕𝑠2
                                                 −

                                    𝜌𝑠𝑣𝜎𝑠𝜎𝑣(𝜓(𝑦) + 𝑐(𝑡, 𝑠, 𝑣))𝑣𝑠 ln 𝑠
𝜕2𝑃00

   𝜕𝑠𝑣 
.           (16) 

for some function𝑐(𝑡, 𝑠, 𝑣) independentof 𝑦 . On the other hand, applying the 𝑦 -

independence of 𝑃20  and the fact𝑃10 = 0 to the order √𝜀𝛿  terms in (8) leads to 

ℒ00𝑃31 + ℒ10𝑃21 + ℒ20𝑃11 = 0.Then the centering condition for this Poisson equation 

yieldsℒ20𝑃11 = −〈ℒ10𝑃21〉. Substituting (16) into this PDE, we obtain a PDE for 𝑃11 

given by 

                                        ℒ20𝑃11(𝑡, 𝑠, 𝑣) = ℋ𝑃00(𝑡, 𝑠, 𝑣),                     (17) 

whereℋ  is given in the theorem. The results (11), (9), (13), (15), (17) and (14) 

obtained above are put together and lead to (10).■ 

Next, we solve the PDEs obtained above inTheorem3.2 explicitly. First, nothing that 

the leading order term 𝑃00 is exactly the same as the price corresponding to the Black-

Scholes model which was driven by Klein (1996), we quote the formula in terms of our 

notation as follows. 

Theorem 3.3.The solution 𝑃00(𝑡, 𝑠, 𝑣)of the PDE problemℒ20𝑃00(𝑡, 𝑠, 𝑣) = 0with the 

terminal condition𝑃00(T, s, v) = (𝑠 − 𝐾)
+ (1{𝑣≥𝐷∗} + 1{𝑣<𝐷∗}

(1−𝛼)𝑣

𝐷
)is given by 
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𝑃00(𝑡, 𝑠, 𝑣) = 𝑠𝑁2(𝑎1, 𝑎2, 𝜌𝑠𝑣) − 𝑒
−𝑟(𝑇−𝑡)𝐾𝑁2(𝑏1, 𝑏2, 𝜌𝑠𝑣)

+
(1 − 𝛼)𝑣

𝐷
(𝑠𝑒(𝑟+𝜌𝑠𝑣𝜎𝑠𝜎𝑣)(𝑇−𝑡)𝑁2(𝑐1, 𝑐2, −𝜌𝑠𝑣)

− 𝐾𝑁2(𝑑1, 𝑑2, −𝜌𝑠𝑣)), 

where𝑁2 is the bivariate normal cumulative distribution function and 

𝑎1 =
ln (

𝑠

𝐾
) + (𝑟 +

𝜎𝑠
2

2
) (𝑇 − 𝑡)

𝜎𝑠√𝑇 − 𝑡
, 𝑎2 =

ln (
𝑣

𝐷∗
) + (𝑟 −

𝜎𝑣
2

2
+ 𝜌𝑠𝑣𝜎𝑠𝜎𝑣) (𝑇 − 𝑡)

𝜎𝑣√𝑇 − 𝑡
, 

𝑏1 =
ln (

𝑠

𝐾
) + (𝑟 −

𝜎𝑠
2

2
) (𝑇 − 𝑡)

𝜎𝑠√𝑇 − 𝑡
,  𝑏2 =

ln (
𝑣

𝐷∗
) + (𝑟 −

𝜎𝑣
2

2
) (𝑇 − 𝑡)

𝜎𝑣√𝑇 − 𝑡
, 

𝑐1 =
ln(

𝑠

𝐾
)+(𝑟+

𝜎𝑠
2

2
+𝜌𝑠𝑣𝜎𝑠𝜎𝑣)(𝑇−𝑡)

𝜎𝑠√𝑇−𝑡
, 𝑐2 = −

ln(
𝑣

𝐷∗
)+(𝑟+

𝜎𝑣
2

2
+𝜌𝑠𝑣𝜎𝑠𝜎𝑣)(𝑇−𝑡)

𝜎𝑣√𝑇−𝑡
, 

𝑑1 =
ln (

𝑠

𝐾
) + (𝑟 −

𝜎𝑠
2

2
+ 𝜌𝑠𝑣𝜎𝑠𝜎𝑣) (𝑇 − 𝑡)

𝜎𝑠√𝑇 − 𝑡
, 𝑑2 = −

ln (
𝑣

𝐷∗
) + (𝑟 +

𝜎𝑣
2

2
) (𝑇 − 𝑡)

𝜎𝑣√𝑇 − 𝑡
. 

Proof. Refer to Klein (1996). ■ 

The correction terms 𝑃𝑖𝑗 of the PDE problem(10)with 𝑃𝑖𝑗(T, s, v) = 0  for 𝑖𝑗 =

01, 10, 20, 11, 02 are given by the following theorem, respectively. 

Theorem 3.4.The solutions 𝑃𝑖𝑗 of the PDE problem (10) with𝑃𝑖𝑗(𝑇, 𝑠, 𝑣) = 0 for 𝑖𝑗 =

10, 01, 20, 11, 02 are given by 

𝑃𝑖𝑗 = {
               0                             ∶ 𝑖𝑗 = 10, 20

𝑒𝛼𝑦+𝛽𝑧+𝛾𝜏𝑄𝑖𝑗(𝜏, 𝑦/ 𝑚2, 𝑧/ 𝑛2)   ∶ 𝑖𝑗 = 01, 11, 02,
 

respectively, where 

𝜏 = 𝑇 − 𝑡, 𝑦 = 𝜌𝑠𝑣𝜎𝑣 ln 𝑣 ,    𝑧 = 𝜌𝑠𝑣𝜎𝑠 ln 𝑣 − 𝜎𝑣 ln 𝑠,   

α = −
𝑚1

2𝑚2
2
, 𝛽 = −

𝑛1
2𝑛2

2
 , γ = −

1

4
(
𝑚1

2

𝑚2
2
+
𝑛1

2

𝑛2
2
+ 4𝑟), 

𝑄𝑖𝑗(𝜏, 𝑦̃, 𝑧̃) = ∫ ∫ ∫
1

4𝜋(𝜏−𝑠)
𝑒
−
(𝑦̃−𝜉)2+(𝑧̃−𝜂)2

4(𝜏−𝑠)
∞

𝜂=−∞

∞

𝜉=−∞

∞

𝑠=0
𝑔̃𝑖𝑗(𝜏, 𝜉, 𝜂)𝑑𝜂𝑑𝜉𝑑𝑠,’ 

𝑔̃𝑖𝑗(𝜏, 𝜉, 𝜂) = −𝑒
𝛼𝑚2𝜉+𝛽𝑛2𝜂+𝛾𝜏𝑔𝑖𝑗(𝑇 − 𝜏, 𝑒

𝜎𝑠

𝜎𝑣
2𝑚2𝜉−

1

𝜎𝑣
𝑛2𝜂
, 𝑒

1

𝜌𝑠𝑣𝜎𝑣
𝑚2𝜉), 

𝑔𝑖𝑗(𝑡, 𝑠, 𝑣) = {

−ℒ̅21𝑃00(𝑡, 𝑠, 𝑣)                        ∶ 𝑖𝑗 = 01
     ℋ𝑃00(𝑡, 𝑠, 𝑣)                         ∶ 𝑖𝑗 = 11

−(ℒ̅21𝑃01 + ℒ̅22𝑃00)(𝑡, 𝑠, 𝑣) ∶ 𝑖𝑗 = 02

, 
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𝑚1 = 𝑟𝜌𝑠𝑣𝜎𝑣 −
1

2
𝜌𝑠𝑣𝜎𝑣

3,  𝑚2 =
1

√2
𝜌𝑠𝑣𝜎𝑣

2,

𝑛1 =
1

2
𝜎𝑠
2𝜎𝑣 − 𝑟𝜎𝑣 −

1

2
𝜎𝑣
2𝜌𝑠𝑣𝜎𝑠 + 𝑟𝜌𝑠𝑣𝜎𝑠,     

𝑛2 =
1

√2
𝜎𝑠 𝜎𝑣 √1 − 𝜌𝑠𝑣

2. 

 

Proof. The result for the case 𝑖𝑗 = 10 has been already mentioned in the middle of the 

proof of Theorem 3.2. Similarly, one can obtain 𝑃20 = 0 which also could be expected 

from the scale structure of the underlying model (1)-(2).  

Since each 𝑃𝑖𝑗for 𝑖𝑗 = 01, 02, 11satisfies an inhomogeneous Black-Scholes PDE 

with the zero terminal condition, one can use the well-known Duhamel’s principle (cf. 

John, 1982) to transform the problem into a homogenous Black-Scholes PDE with a 

non-zero terminal condition. Then one can use the same standard technique (cf. 

Kevorkian, 2000) asin the derivation of the classical Black-Scholes formula to derive a 

solution formula for each 𝑃𝑖𝑗. We omit the detailed derivation here.■ 

4. Elasticity Correction Effects 

In the previous section, we have obtained formally an approximate solution 

denoted by 𝑃̃ as follows. 

𝑃𝜀,𝛿 ≈ 𝑃̃ ≔ 𝑃00 + 𝑃̃01 + 𝑃̃11, 𝑃̃01 ≔ √𝛿𝑃01, 𝑃̃11 ≔ √𝜀𝛿𝑃11.  
Here, the term 𝑃02 has been omitted because of its marginal quantitative contribution 

to 𝑃01. Since 𝑃00 is the Black-Scholes price of Klein (1996), it is also denoted by 

notation 𝑃𝐵𝑆. Since 𝑃̃01 is a correction term of the first order coming from the regular 

perturbation of the elasticity of variance, 𝑃00 + 𝑃̃01 corresponds to a constant 

correction to the zero elasticity of variance of the Black-Scholes model and so it is a 

CEV option price which is denoted by 𝑃𝐶𝐸𝑉. The correction term 𝑃̃11 involves the 

scale parameter 𝜀 of the mean-reverting OU process driving the elasticity of variance 

and so it represents a correction effect driven by stochastic elasticity of variance. Note 

that accuracy with respect to δ and ε can be checked out by regular andsingular 

perturbation arguments as in Fouqueet al. (2003) or Fouqueet al. (2014).  

The vulnerable options are derivatives traded personally in over-the-counter markets so 

that the data of bid and ask price are not recorded officially. Thus this paper generates 

the price data of a vulnerable option by using the Monte-Carlo simulation, which is 

frequently used for forecasting the price of a variety of options in financial industry (cf. 

Boyle, 1977). The CEV model is popularly used for modeling derivatives in stock 

markets. Typically, when the elasticity parameter γt is less than 1, the CEV price is 

similar to the real market data as studied by Chen et al. (2009). So, we use alternative 
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market data generated by Monte-Carlo simulation with the CEV model as a benchmark 

of comparison.  

Throughout this section, we use the following values of parameters whenever they 

are required to be fixed; 𝑠 = 50 , 𝑣 = 30 ,𝐾 = 50 , 𝑟 = 0 , 𝑇 = 3 , 𝑡 = 0 , 𝜎𝑣 =
0.125𝜎𝑠 = 0.2,𝜌𝑠𝑦 = 0.2, 𝜌𝑣𝑦 = 0.1, 𝜌𝑠𝑣 = 0, 𝛼 = 0.5, 𝐷∗=50, 𝐷 = 60, 𝜀 = 0.01, 

𝛿 = 0.02, 〈𝜓′〉 = 8, 〈𝑓〉 = 0.3,〈𝑓2〉 = 0.01, and u=0.7.  

Table 1 shows a general comparison of the prices of a vulnerable European call 

option under the Black-Scholes model, the CEV model and the SEV model against the 

underlying asset price. It says that the CEV model raises the Black-Scholes prices but 

the SEV model lowers the CEV option prices. 

 

Table 1. The prices of a vulnerable option under the Black-Scholes model, the 

CEV model and the SEV model 

  

s 𝑃𝐵𝑆 𝑃𝐶𝐸𝑉 𝑃̃ 

35 0.2856 0.5548 0.5377 

40 0.8768 1.2564 1.1781 

45 1.8184 2.2617 2.1167 

50 3.0799 3.5341 3.3379 

55 4.6001 5.0239 4.8019 

60 6.3128 6.6822 6.4584 

65 8.1604 8.4665 8.2587 

 

Now, we investigate the correction effects generated by the constant or stochastic 

elasticity of variance factor for different strike prices and default levels in detail. Note 

that the Black-Scholes model has a constant volatility and so it has zero elasticity of 

variance whereas the elasticity of variance of the SEV model changes randomly around 

zero in time. Recall that the option price can be decomposed into the intrinsic value 

and time value, where the time value partly arises from the uncertainty of movements 

of the underlying asset’s future price. If one fixes conditions other than the volatility 

and the underlying asset price, one can observe the time value against the underlying 

asset price based on market data traded in financial market. In general, the time value 

appears to be relatively lager when the option is at-the-money than in-the-money or 
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out-of-money. We want to observe how constant (𝑃̃01) as well as random (𝑃̃11)change 

of elasticity of variance can affect the option price now.  

Figure 1 (a) and (b) are the graphs of 𝑃̃01against the underlying price and the value of 

option writer’s assets, respectively. Figure 1 (a) shows that the non-zero constant 

elasticity of variance raises Klein’s option price and the effect is remarkable 

 
 

 

 
near the money. Also, the raising effect increases as the strike price 𝐾 goes up. Figure 

1 (b) shows that in general the raising effect increases as the default level 𝐾∗ rises. 

The effect reaches a maximum level as the value of option writer’s assets approaches 
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the default level and it tends to maintain the maximum level longer as the default level 

is lower.  

On the other hand, Figure 2 shows the correction effect of stochastic elasticity of 

variance on the CEV option price. Contrary to the case of constant elasticity of 

variance, in which the non-zero elasticity of variance heightens the Klein price, 

stochastic elasticity of variance lowers the CEV option price (which includes the Klein 

price of course) and the effect is relatively large also near the money. The lowering 

effect increases as the strike price 𝐾 goes up while at each strike price it reaches a 

maximum level as the value of option writer’s assets approaches the default level𝐾∗. 

The maximum level of the lowering effect stays longer as the default level is lower.  

5. Conclusions 
We have derived an analytic formula of the approximate price of a European-type 

vulnerable option when the underlying asset price follows a stochastic elasticity of 

variance diffusion process and compared with the corresponding price driven by the 

constant elasticity of variance model. The resultant option prices are extensions of the 

result of Klein (1996) which was built based upon the Black-Scholes model. From the 

formula, we have obtained the following findings. First, the non-zero constant 

elasticity of variance heightens Klein’s option prices whereas the stochastic elasticity 

of variance lowers the option prices. Second, the heightening or lowering effect highly 

depends on the underlying price, the strike price, the value of option writer’s assets and 

the default level. Third, the heightening or lowering effect comes close to the 

maximum level near the money at each strike price or when the value of option 

writer’s assets approaches the default level. Fourth, the maximum level of the 

heightening of lowering effect tends to stay longer against the value of option writer’s 

assets as the default level gets lower. Based upon this sensitivity analysis on the CEV 

and SEV models, we believe that one can design better a dynamic investment strategy 

reducing option writer’s credit risk. 
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