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WEIGHTED-AVERAGE PRODUCT EVALUATION 
 

 

Abstract. This paper presents a procedure that estimates how markets 

perceive a product. A weighted-average approach is used as a model for the product 

perception. Since this approach requires weights to be assigned to product features, 

and the weights are unknown and vary among customers, the procedure focuses on 

estimating expected weights of the entire market – such weights are representative 

weights. The estimation is performed by constructing a confidence interval for the 

weights. Further, a more accurate location of the weights in the interval is proposed, 

the accuracy being based on additional information regarding inferior products. This 

information suggests that if a product is inferior, its value must be low. Therefore, the 

weights from the interval which minimize the value of an inferior product are 

suggested, the minimization serving as an approximation of what low value means. 

Since a minimization is involved, its existence and uniqueness is discussed.  

Key words: Product evaluation, weighted average, expected weights, 

confidence interval, linear optimization. 
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1. INTRODUCTION 

 
Many companies set up their businesses to generate profit. To make this 

accomplishment, the companies must naturally have a product to offer that is of value 

to customers. If this is the case, a rational question arises how to detect what a product 

should look like so that it represented a value to customers. To answer the question, 

product value as a term must first be defined, i.e. it must be formulated how to 

evaluate products, and subsequently, the defined value should be broken down to 

some major features it is formed of. A more subtle decomposition of a product as a 

whole then sheds more light on what part of it should be altered so that it had a good 

value and was more appealing to the market.  
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There is an unavoidable obstacle on the way to becoming a favourite with the 

customers, however. It is the fact that every customer is different, and has different 

perceptions regarding products. This automatically implies that it is impossible for 

any product maker to fully satisfy the entire market. Does it mean there is no point in 

trying to achieve something that is not achievable? Of course not. We don’t really 

have to be interested in every single customer, we might rather take an interest in the 

stance of the entire market, and look for a stance that is typical of that market. What is 

typical and what isn’t has to be unambiguously defined, of course, and should comply 

with the intuitive notion that it represents a certain standard a larger part of the market 

follows. Since characteristics that bear the property of reflecting a typical behaviour 

exist in the theory of probability, a probabilistic approach offers itself for solving the 

problem of an appropriate product design. What supports the idea of using the theory 

of probability, as well, is the fact that finding what is typical in the market requires 

necessarily that the behaviour of the entire market is known in the first place. This is 

usually not possible in the markets numbering thousands of customers, and so the only 

way of getting the idea of what is typical is using a random sample of customers and 

the principles of statistical inference. Point and interval estimations are among the 

tools provided by the theory of probability. The technique of confidence intervals is 

often preferred, since it attaches a specific probability to the location of the sought 

typical phenomenon.  

The stochastic approach alone, however, may not suffice for the aforementioned 

purposes. Imagining that a confidence interval was constructed for what is desired by 

a product maker to be known about the typical behaviour of the market, the fact that it 

is an interval means there is an infinite number of possibilities of how the typical 

behaviour could look like. This, of course, creates a problem. Nevertheless, this 

problem maybe tackled, as well, if the product maker selects or estimates such a 

typical market behaviour contained in the constructed interval that corresponds to its 

own product value or its own position in the market. If its market position is not good, 

it may expect the typical market behaviour to be such that yields a low value of its 

product. The inferior market position may serve as additional information for 

determining the typical market behaviour. 

Several problems have just been outlined. This paper deals with these problems, 

and presents an approach to them in a general way. To be more specific, the paper 

deals with the following:  

 

It first defines the term product value as a weighted average of product features. 

This is a natural approach to evaluating products, taking into account both the 

features, or what makes up the product, together with the current level of the features, 
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and also the importance with which the features contribute to the overall product 

value. The importance of the features is expressed by weights. The weighted average 

is a function of the weights, and it is the weights that product makers are interested in. 

Product makers would like to know typical weights customers assign to product 

features, so that it was understood how the entire market perceives the products.  

It defines the term typical weight as expected weight, i.e. expected value, if it 

exists, is used as a description of the typical. Further, a confidence interval, based on 

weights gathered through a random sampling of customers, is constructed for the 

vector of expected values that represents the set of typical market weights. It must be 

stressed that the construction of the interval itself may not be a straightforward task, 

especially when little is known about the market. In this part of the paper, a general 

approach is used, based on the Markov’s inequality. 

Once a confidence interval for the weights is constructed, reflecting a typical 

perception of product features by the market, the set of typical weights from the 

interval that minimizes the weighted average, i.e. the overall value, of a given inferior 

product is derived. This is to be the set of weights that corresponds to those product 

makers who are not very competitive. This set of weights may be used by these 

companies as a model for how the market perceives their and other typologically 

identical products. We shall be interested in the existence and uniqueness, in 

particular, of the solution that minimizes the weighted average. The reasoning behind 

selecting the minimization as a model is the following: although there exists one and 

only one set of expected values for the weights, all that is known is that the vector lies 

with a high probability in an interval, and another piece of information must be used 

to locate the vector more precisely. Since noncompetitive producers make products of 

low value, the minimization may be used as an approximation of the low value and, at 

the same time, as the other piece of information for detecting where the vector of 

expected weights might be located. The approach is later demonstrated in an example. 

 

Before proceeding, let us note that different techniques to set weights were 

proposed in the past by many authors, using various mathematical tools. In the 1970s, 

Pekelman and Sen (1974) analysed a possibility of modelling customers’ behaviour 

with mathematical programming techniques, although their procedures were limited to 

market segments of a specific type. Other scientific papers devoted to this subject 

dealt with weights which were clearly defined by the decision-making body. This is 

not exactly the kind of situation handled in this paper in the sense that the principles 

utilized in the paper stress the existence of natural diversity of an entity – weights  of 
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decision makers or customers in this case. Further, many articles looked at the 

problem from the point of view of decision makers. The presented paper views the 

problem from the point of view of another side – product makers in this case. To give 

some examples of the papers devoted to weights of decision makers, Nutt (1980), for 

instance, compared several ways of determining weights of decision makers. Choo 

and Wedley (1985) used the linear programming methodology and decision makers’ 

past rulings to find proper weights for the decision makers. Other literary examples 

include Solymosi and Dombi (1986) who worked out a way of setting weights which 

required information from decision makers in the form of inequalities. From more 

recent papers, Choo, Schoner and Wedley (1999) were preoccupied with pitfalls of 

decision-making weights interpretation, giving recommendations to decision makers 

how to proceed when defining their own weights. A step towards working with 

weights without prior information from decision makers appeared in a hybrid 

approach introduced by Ma, Fan and Huang (1999). The approach combines objective 

information and subjective knowledge to determine weights; More recently, the 

scientific progress in the field of multicriteria decision-making has focused on 

modelling uncertainty embedded in the lack of information with fuzzy sets and 

numbers. Wang, Li and Wang (2009) presented such approach, their procedures 

requiring some information from decision makers in the form of inequalities. Luo et 

al. (2009) presented an approach with known weight information, the approach being 

based on weighted correlation coefficients in an interval-valued intuitionistic fuzzy 

environment. A similar, but improved approach applied to group decision-making was 

proposed by Park et al. (2009). Finally, a fuzzy approach based on interval-valued 

intuitionistic fuzzy decision matrix, was introduced by Ye (2010).  

As outlined, many papers were preoccupied with the problem how to help 

decision makers set their own weights, with the more recent papers dealing with 

modelling uncertainty of the weights with the fuzzy set theory. The presented paper 

assumes that customers, or  decision makers who decide what products to buy, know 

what importance they assign to each product feature, and it is the uncertainty 

embedded in the different perception of the product by each customer that is 

accentuated in this article. 

 

2. WEIGHTED-AVERAGE APPROACH 

 
We are interested in how customers assess products so that their desires may be 

met to a greater extent by corresponding responsive product improvements. The 

approach to product assessment by customer we are going to adopt is based on 

calculation of a weighted-average 1 1 2 2 ... n nh w h w h w   , where 'iw s  are weights, i.e. a 
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set of nonnegative numbers the sum of which equals one, and each 
ih  is a quantitative 

expression of the level of the i-th product feature observed [4]. It is assumed the levels 

are already dimensionless so that the summation makes sense. Various techniques 

exist which achieve this goal, including the so-called normalization and 

standardization techniques. The strength of the weighted-average approach is clear: in 

a group of typologically identical and mutually competing products, each product is 

evaluated by customer with a single number representing an aggregation of the 

product information. Since there is only one number that is assigned to each product, 

the products can be arranged from best to worst. Although not the only one, this 

approach is natural and reflects importance of all the criteria considered. This type of 

aggregate product evaluation will be utilized in the paper, and will be considered a 

model that describes the decision-making process customers go through when buying 

a product. It is eventually the customer that defines what features products should 

possess or how important these features are, but it is product makers that determine 

the levels 
ih ’s when designing products. The features discussed may include such 

characteristics as product price or product power efficiency, for instance. Product 

makers want to recognize the unknown weights, or the importance of the product 

features, so that they can adjust the levels 
ih ’s to boost the product value.  

We shall consider each weight of each customer to be strictly positive and smaller 

than one to avoid situations when a product feature with no importance to customer is 

involved in the discussion, or when a product would unnaturally have only one feature 

of interest. In the next section, we shall also presume that a random sample has been 

drawn from a population of customers. Each weight will then be considered a random 

variable whose sampled values are available as a result of the random drawing from a 

probability distribution which may be approximated by a continuous distribution. 

Therefore, each weight will be considered a continuous random variable. 

Regarding the 
ih ’s, although they are often positive in the real world, we do not 

restrict their values to any set. An adverse yield provided by a financial product may 

serve as an example of ih  
being negative. We will, however, assume that 

i jh h for 

.i j  This condition will not affect the existence of a solution we will seek in relation 

to the unknown weights, but will have an effect on the uniqueness of the solution. 
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3. INTERVAL FOR WEIGHTS 

 
In this section, we shall construct a general confidence interval for the vector of 

expected values of the weights used by customers to evaluate products of a kind. The 

expected value of a weight is considered to be what we previously referred to as a 

typical weight, and the motivation behind using this characteristic is the fact that each 

customer simply assigns different importance or weight to a product feature, generally 

speaking. Thus, a set of weights that is representative of the market’s product 

perception is needed. Of course, when talking about confidence intervals, we 

automatically put ourselves in the framework of the probability theory. This is a 

reasonable model to work with here because a customer base may be looked at as a 

population and its customers’ sets of weights in the product evaluation may be viewed 

as all possible realizations of a random vector, especially when a customer random 

poll is run to get the idea about the market. 

Let us assume a random selection of m customers from the customer base has 

been realized. Each of the customers was asked to provide their individual set of 

weights for a selected product. Their answers have the form of 

 
( ) ( ) ( )

1 2( , , ..., ), 1, 2, ..., .i i i

nw w w i m                                                         (1) 

 

These sets of values represent realizations of m n  random variables 
( ) ( ) ( )

1 2, , ..., ,i i i

nW W W 1, 2, ..., ,i m  the probability distributions of which are unknown. 

What is known is that, for a given , 1 ,k k n   the variables ( )i

kW , 1, 2, ..., ,i m  

represent a random sample drawn from the same probability distribution. As outlined 

in the previous section, we also assume that the distribution is, at least approximately 

within our model, continuous. Thus, we work with n continuous probability 

distributions.  Althouth not always ideal, a normal distribution may be visualized as a 

model. In this context, we also assume that all the random variables are positive and 

smaller than one on the probability space ( , , )S P  where they are defined. Since 

( )0 1,
l

i

kW     where ( )
l

i

kW    is the l-th power of ( )i

kW , and this is true for each k and i 

considered and each positive integer l, all moments of all the variables exist as finite 

numbers [3], including the expected values ( )( ),i

k kE W  1, 2, ..., ,k n 1, 2, ..., ,i m and 

variances 2 ( )var( ),i

k kW  1, 2, ..., ,k n 1, 2, ..., .i m This means that 1 ( )

1
,

m i

k ki
W m W


   

1, 2, ..., ,k n  has the expected value k  and variance 2var( ) / .k kW m    
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The Markov’s inequality now states that if *Y  is a positive random variable with 

expected value *( )E Y , then  

 
* *( ( )) 1/ , 1.P Y E Y                                                                                             (2) 

 

Inequality (2) implies  

 
* *( ( )) 1 1/ , 1.P Y E Y                                                                                         (3) 

 

Let us have a nonnegative continuous random variable Y defined on a space ( , , )S P , 

which has expected value E(Y). If the variable is changed on the set 

 

  : ( ) ( ) 0 ,M Y E Y                                                                                         (4) 

 

i.e. on a set of probability zero since Y is a continuous random variable, so that it is 

strictly positive everywhere in , the change will not alter its stochastic behaviour. 

Also, the changed variable *Y  will still be a random variable, i.e. a measurable 

function on S (see the short appendix to this paper). Further,  

 
*0 ( ) ( ),E Y E Y                                                                                                            (5) 

 

since the two variables differ only on M, ( ) 0.P M   
Now, applying (2) to * ,Y  we 

 
* *( ( )) 1/ , 1P Y E Y                                                                                              (6) 

 

and therefore, because of (5) and (6), 

 
* * *( ( )) ( ( )) ( ( )) 1/P Y E Y P Y E Y P Y E Y                             (7) 

 

for 1.   Noting the left-hand side and the right-hand side of (7), and applying this 

result to the nonnegative continuous random variable  
2

,1 ,k kW k n   we have 
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   
2

var( ) 1/k k kP W W                                                                                       (8) 

 

for 1,1 ,k n     as   
2

var( ).k k kE W W   

 

Let us rewrite (8) to 

 

 var( ) 1/k k kP W W                                                                                        (9) 

 

for 1,1 .k n     This implies, in the same way as (3) is implied by (2), that  

 

 var( ) 1 1/k k kP W W          for 1,1 ,k n                                              (10) 

 

or                                                             

 var( ) var( ) 1 1/k k k k kP W W W W                                                          (11) 

 

for 1,1 .k n     To simplify the notation, let the symbol 
kB  represent the event in 

the parentheses of (11). We are now interested in the probability 
1

( ),
n

kk
P B


that is in 

the probability that (11) holds for each k considered at the same time. We would like 

this probability to be high, but we cannot calculate it as 
11

( ) ( ),
n n

k kkk
P B P B


  since 

the events 
kB are not statistically independent. This follows directly from the fact that 

the sum of 'kW s  is one: 

 
1 ( ) 1 ( )

1 1 1
( )

n n m i i

k k kk k i i k
W m W m W 

  
       

1

1
1 1.

m

i
m


                                                                                                             (12) 

 

What we can use, however, is the following: First of all, (11) implies 

 

1
( ) (1 1/ ) .

n n

kk
P B 


                                                                                                (13) 
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Secondly, assuming that among the numbers ( )kP B , there is a unique minimum, the 

relation  

 

1
( ) min ( ) ( ),1 , ,h k l

k n
P B P B P B l n l h

 
                                                                        (14) 

 

implies that  

 

,1 , ,h lB B l n l h                                                                                                    (15) 

 

since the opposite, 
h lB B  leads to the contradiction 

 

( ) ( )h lP B P B . From (15), we obtain  

1
,

n

h kk
B B


                                                                                                                (16) 

 

and so, using (13), (16), 

  

1

11

1

( )
( ) ( )

( )

n

n n kk

k k nkk

kk

P B
P B P B

P B







 


 

1 11 1
( ) ( ) ( ) min ( )

nn n

k k k kk kk k n
P B P B P B P B

   
      

1(1 1/ ) .n                                                                                                      (17) 

 

To sum up, selecting a high ,  we can accomplish that the probability of the event 

 

 var( ) var( )k k k k k

k

W W W W                                                                    (18) 

 

is high enough. Therefore, the multivariate interval 

 

1 2 ... ,nJ J J J                                                                                                        (19) 
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where, for 1 ,k n   

 

 1 2( , ) var( ), var( )k k k k k k kJ J J W W W W      
                                                   

(20) 

 

may serve as a confidence interval for the vector of expected or typical weights 

1 2( , , ..., ).n  μ  
  

4. PROPER SAMPLE SIZE  

 
In this shorter section of the text, we shall focus on the width of the derived 

confidence interval. This is important because, as suggested by (17), it might be 

needed to set  fairly high to achieve an appropriately high probability, especially 

when n is not particularly small. The problem is that a too large   leads to an overly 

wide, and therefore imprecise interval (20). This problem brings us to a discussion on 

how large the random sample we work with should be, since the larger the sample, the 

smaller the variance 2var( ) / ,k kW m  which would allow us a more comfortable 

setting of   when constructing the interval. Except for the greater precision of the 

narrower interval, the interval should also be narrow enough not to contain the 

extreme values zero and one, since if it did contain such values, the result would not 

comply with our natural and previously mentioned requirement that all conceived 

product features have their importance in the customers’ evaluation of the entire 

product. To derive how large the random sample should be, we use (17) and (20) with 

the unknown characteristic 2var( ) / ,k kW m  being estimated by its usual sample 

counterpart 2var( ) / ,k kW s m where 2

ks 
1 ( ) 2

1
( 1) ( ) ,1 .

m i

k ki
m W W k n


    As is known, 

the estimates will be consistent.  

The requirement that 1(1 1/ )n   be sufficiently high, say 0.9, at least, means that  

 
11(1 0.9)n                                                                                                             (21) 

 

is necessary. The requirement that the intervals don’t contain one and zero means that  

 

var( ) 0k kW W  
 

 

and 
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var( ) 1k kW W                                                                                                      (22) 

 

for each k considered. Since var( )kW  depends on the sample size m reciprocally, a 

large enough sample size will ensure a small enough var( )kW , which will ensure 

validity of (22), and, at the same time, will allow for a sufficiently high   that 

satisfies (21). A four-feature product, for instance, will require   of at least 48 

according to (21). If, at the same time, the k-th weight meanders around a value within 

0.2 units, and so the variance 2

ks  will be of 0.04 order, then for a kW  of 0.2, one can 

expect a poll of 50 customers to satisfy (22) for this particular k, as well. Thus, 

setting 48   and 50m   satisfies (21) and (22) for this k. 

 

5. ADDITIONAL INFORMATION ON µ  

 
Having constructed a confidence interval containing the unknown vector of 

expected weights μwith a high probability, we are set to give a thought to where in 

the interval the unknown vector might be located. Of course, these discussions must 

be based on additional information. Technically, our discussion is now aimed at 

selecting a point estimate of μ  from the interval J. One obvious and most frequent 

candidate with this property that would serve as a point estimate of μ  
is 

1 2( , , ..., ).nW W W The coordinates of this vector are consistent estimates of the 

corresponding coordinates of .μ . The consistency, however, requires larger samples. 

When a sample is large enough to ensure consistency is not generally known, and a 

sample of around fifty customers, which otherwise might suffice for other purposes, 

such as those analyzed in the previous section, is not particularly large by most 

statistical standards, when it comes to asymptotic statistical properties of an estimate. 

The question then arises whether a different estimate from J than the one typically 

used could be exploited, provided some other information on the market is available. 

Such information may be available indeed, and the kind of information we are 

going to exploit is the information that a company has an inferior position in the 

market. This company can be expected to generate a product the value of which is low 

when judged by customers. Using the weighted-average approach as a model for 

product value, we could expect that the weighted average of the inferior product is 

low. We may then be motivated to seek an estimate 1 2( , , ..., )n  μ of μ in J which 
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minimizes the weighted-average value of the inferior product. The minimization 

approximates the low product value. That is, we are looking for such numbers 

1 2( , , ..., ),n  μ  
that for the following function

1 1
( ) ( , ..., )

n

n i ii
f f w w h w


 w and the 

set  1 2

1
: , 1, 2, ..., , 1 ,

nn

i i i ii
M R J w J i n w


     w  we have  

 

min ( ) ( ).
M

f f



w

w μ                                                                                                       (23) 

 

The coefficients 'ih s  in f are the levels of the features of an inferior product. Three 

questions are of interest in connection with (23): A) Is there a point nRμ which 

minimizes f on M? B) If such a point exists, is it the only solution to the problem? C) 

How to find the point μ  if  (23) holds? 

The answer to question A) is as follows: firstly, M    according to (11) and 

(12); secondly, the set is apparently bounded; thirdly, the set is closed – a point z with 

a zero distance from the set  1
: 1

nn

ii
K R w


  w is the limit of a sequence of 

points ( )m
x  from this set. Now, since the function 

1 2 1
( , , ..., ) 1

n

n ii
k x x x x


   is 

continuous, ( )( ) lim ( ) lim 0 0,m

m m
k k

 
  z x  that is 

1
1 0

n

ii
z


  and .Kz  The set K is 

therefore closed. Since M is an intersection of two closed sets – the interval J and the 

set K, it is closed itself. Further, the function f is continuous on M, and so the 

existence of a solution to the problem (23) is guaranteed.  

Let us now focus on question C). Although a solution may easily be found with an 

optimization software, since we are dealing with a linear program, we shall first 

discuss a way of detecting the solution without software because the discussion will 

also help us answer question B). Later, however, we will use a simple software 

package to verify the validity of our conclusions. 

Since the solution is an element of J K , it belongs to J. Let us imagine that the 

solution μ
 

exists in the interior of J. Since there are integers , ,k l  

1 ,1 , ,k n l n k l     such that k lh h  (see the assumptions on the 'lh s ), selecting a 

vector ,nRu (0, 0, ..., , 0, ..., , 0, ..., 0),  u where   is positive and represents the k-

th coordinate of u and   represents the l-th coordinate of the vector, we get  

 

, or 0k l k lh h h h                                                            (24) 

 
and 
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( ) ( ) ( ) ( ) ( ).k lf f f f h h f       μ u μ u μ μ                                                          (25) 

 

At the same time, for a small enough positive  , the point 

1 1( , ..., ),n nu u    μ u resulting from shifting the point μ  in the direction of u by a 

unit, will still belong to J, since μ
 
is an interior point of the interval. Moreover, 

 
1

1
n

i ii
u


   

and μ u belongs to K, as well. Thus, our prerequisite of having a 

solution in the interior of J leads to a contradiction – we have found another point in 

M which reduces the already minimal value of the function. The current conclusion is 

the solution lies on the boundary of J, in other words, at least one of the coordinates of 

the solution, say 
i , for instance, lies on the boundary of the corresponding univariate 

interval 
iJ .  

Remark: If  * 1 2

1
: , 1, ..., , ,

nn

i i i ii
M R J w J i n w c


     w (0,1)c fixed, is defined 

instead of M and *M   holding, then, replacing  
1

1
n

i ii
u


  with 

 
1

n

i ii
u c


   

in the proof and keeping the rest of the problem the same, the 

conclusions about the existence and boundary location of the solution for the newly 

defined set * ,M or the newly defined problem, will apply, as well.  

Let us return to the original problem now. The coordinate of the solution which 

lies on the boundary of its corresponding interval is one of the numbers ,i  

1 .i n  Let 
1  

be such a number. Since 
1 1,J   

10 1  (see section 4). The other 

coordinates of the solution, the numbers 
2 , ..., ,n   satisfy   

 

12
, 2, ..., , 1 .

n

i i ii
J i n  


                                                                           (26) 

 

The numbers also minimize the function 

 

2 3 1 1 2
( , , ..., )

n

n i ii
g w w w h h w


                                                                                 (27) 

 

on the set 
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 * 1 2

12
: , 2, ..., , 1 .

n

i i i ii
M J w J i n w 


     w                                                     (28) 

 

Thus, to find the other coordinates 
2 , ..., n  , we need to solve the subproblem (26) – 

(28), but this is exactly the kind of problem discussed in the remark, provided the 

'ih s in (27) are mutually different, which is the case here by our assumptions. Strictly 

speaking, the term 
1 1h   

should also be included in (25), but this does not alter the 

conclusion:
1 1( ) ( ) ( ) ( ) ( ).k lg g g h g h h g         μ u μ u μ μ Thus, the subproblem 

has a solution on the boundary of 
2 ... ,nJ J   i.e. at least one of the coordinates 

2 , ..., n   
is on the boundary of its corresponding univariate interval. Let us say that it 

is 
2 . Then we may proceed in the same way as we have done so far, encountering 

another sub-subproblem with a solution which is on the boundary of the interval 

3 ... .nJ J   Proceeding this way, each of the numbers 
1, ..., ,n   except perhaps one, 

,
nj

  which will be calculated in the final iteration of the procedure as a 

straightforward solution of the form 
1

1
1 ,

n k

n

j jk
 




   will lie on the boundary of its 

corresponding univariate interval. 

We don’t know which sequence 
1 2

...
nj j j       we should decide to pass 

through, and which of the two boundaries of the interval ,1 ,
ij

J i n 
 
to insert in 

,1 ,
ij

i n  
 

on this path, so we might try all the combinations. One of the 

combinations will lead to the solution. This procedure leads to setting up a tree which, 

however, need not be walked through entirely, as suggested, since many of the paths 

repeat. Since the tree has at most a finite number of branches, the number of solutions 

to the original problem is finite. We shall see, however, that there is only one solution 

to the problem. To see this, we shall draw on the conclusion of our discussion so far 

that at most one of the weights representing the solution does not lie on the boundary 

of its corresponding univariate interval. This said, let us look at question B). 

Let’s assume more than one solution to the problem exist, i.e. there is a point  

1 2( , , ..., )p p p

nw w wP and a point 
1 2( , , ..., )q q q

nw w wQ , P Q , both of which minimize the 

function f on M, that is ( ) ( ).f fP Q  An index i, 1 ,i n  exists, such that p q

i iw w . 

Since both P and Q represent a set of weights, we have 

 

1 2 1 1... ... 1 ,p p p p p p

i i n iw w w w w w                                                                        (29) 

1 2 1 1... ... 1 .q q q q q q

i i n iw w w w w w                                                                             (30) 
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Since the right-hand sides of (29) and (30) differ, another index ,1 , ,j j n j i   exists 

that .p q

j jw w Since J is convex, the line  ( ), 0,1 ,   P Q P belongs to J, moreover,  

1
( ) 1,

n p q p

k k kk
w w w


      ( ( )) ( ) ( ( ) ( )) ( ),f f f f f      P Q P P Q P P so all the 

points on the line segment are solutions to the problem. Since P is a solution, either 

orp p

i jw w  (or both) lies on the boundary of the interval and i jJ J respectively. If none 

of the numbers lied on the boundary, P would not be a solution, as we saw in the 

previous discussion. However, looking at a point  ( ), 0,1 ,   P Q P and its i-th 

and  j-th coordinate, in particular, 

 

( ),p q p

i i iw w w                                                                                                 (31) 

( ),p q p

j j jw w w                                                                                                 (32) 

 

we see that the coordinates ,p

iw
p

jw  will move away from their respective boundaries 

if they are on the boundaries, or one of them will stay away from its boundary if it 

isn’t already on its boundary, for a sufficiently small  0,1 ,  since 

,p q

i iw w .p q

j jw w  Yet, the moved point will remain, as we saw in the previous 

paragraph, a solution to the problem. This solution will have at least two coordinates 

not lying on the boundaries of their respective intervals. This, however, is a 

contradiction. Thus, there cannot be two different solutions to the problem. 

As was mentioned at the beginning of the analysis, the unique solution can be 

found with a software. We went deeper into the problem to see that results returned by 

an optimization software may be considered unique. We shall use now, as promised, a 

simple software - the Excel Solver to demonstrate the validity of the presented ideas.   

 

6. EXAMPLE 

 
The final section presents an example to demonstrate the procedure just described, 

and verify its validity, using Excel Solver. A four-feature product is analysed. The 

value function is 1 2 3 4 1 2 3 4( , , , ) 0.11 0.4 0.2 0.7 ,f w w w w w w w w    and let us assume that 

the confidence interval for the weights is        0.2, 0.5 0.05, 0.3 0.1, 0.2 0.3, 0.35 .J    
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The aforementioned tree has 128 branches, representing all possible sequences of 

selecting the boundary values for the unknown expected weights. The sequences are:
  

1 2 3 4* ,w w w w   1 2 4 3* ,w w w w   1 3 2 4 ,w w w w   1 3 4 2* ,w w w w  

2 1 3 4 ,w w w w   2 1 4 3 ,w w w w   2 3 1 4 ,w w w w   2 3 4 1* ,w w w w  

3 1 2 4 ,w w w w   3 1 4 2 ,w w w w   3 2 1 4 ,w w w w   3 2 4 1,w w w w  

4 1| 2 3 ,w w w w   4 1 3 2 ,w w w w   4 2 1 3 ,w w w w   4 2 3 1.w w w w    

 

In each of the 'iw s  in each sequence, one of the two boundaries of the corresponding 

univariate interval may be inserted. For instance, taking the first sequence, we may 

insert 0.2 or 0.5 in 
1w , and for any of the two values, we may then insert 0.05 or 0.3 in 

2w , and for each of the four scenarios, we can finally insert 0.1 or 0.2 in 
3w . The last 

weight is 
4 1 2 31 .w w w w     Working with each of the sequences this way provides 

16 8 128  scenarios. Each time a set of weights is selected, the function f  is evaluated 

for the set, and the value which minimizes f determines the weights from J we looked 

for. We don‘t need to evaluate all 128 sets of weights, however, but only the ones 

marked with “*“, since the other sets are a repetition. These are sequences 1, 2, 4 and 

8. For the sequence 1, the possible weights are  

 

Table 1 Sets of weights for the first sequence 

w1 w2 w3 w4 f 

0.2 0.05 0.1 0.65   

0.2 0.05 0.2 0.55   

0.2 0.3 0.1 0.4   

0.2 0.3 0.2 0.3 0.39 

0.5 0.05 0.1 0.35 0.34 

0.5 0.05 0.2 0.25   

0.5 0.3 0.1 0.1   

0.5 0.3 0.2 0   
 

Only the highlighted sets are of interest to us, since the other fall out of J, and 

therefore cannot be the solution from M. The column „f“ records the value of the 

function f  for the corresponding set of weights. Similarly, for the sequence 2, 
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Table 2 Sets of weights for the second sequence 

 

w1 w2 w4 w3 f 

0.2 0.05 0.3 0.45 
 0.2 0.05 0.35 0.4 
 0.2 0.3 0.3 0.2 0.392 

0.2 0.3 0.35 0.15 0.417 
0.5 0.05 0.3 0.15 0.315 
0.5 0.05 0.35 0.1 0.34 

0.5 0.3 0.3 -0.1 
 0.5 0.3 0.35 -0.15 
  

Again, we pay attention only to the highlighted sets. For the sequence 4, we have  

 

 

Table 3 Sets of weights for the fourth sequence 

w1 w3 w4 w2 f 

0.2 0.1 0.3 0.4 
 0.2 0.1 0.35 0.35 
 0.2 0.2 0.3 0.3 0.392 

0.2 0.2 0.35 0.25 0.407 

0.5 0.1 0.3 0.1 0.325 

0.5 0.1 0.35 0.05 0.34 

0.5 0.2 0.3 0 
 0.5 0.2 0.35 -0.05 
  

and for the final sequence 8,  
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Table 4 Sets of weights for the eighth sequence 

w2 w3 w4 w1 f 

0.05 0.1 0.3 0.55 
 0.05 0.1 0.35 0.5 0.34 

0.05 0.2 0.3 0.45 0.3195 

0.05 0.2 0.35 0.4 0.349 

0.3 0.1 0.3 0.3 0.383 

0.3 0.1 0.35 0.25 0.4125 

0.3 0.2 0.3 0.2 0.392 

0.3 0.2 0.35 0.15 
  

Comparing the values of  f  for the feasible solutions, the sought unique minimum of 

the function is attained at  0.5, 0.05, 0.15, 0.3 . The same result is achieved with Excel 

when the same problem: Minimize 
1 2 3 4 1 2 3 4( , , , ) 0.11 0.4 0.2 0.7 ,f w w w w w w w w    on 

the set          0.2,0.5 0.05,0.3 0.1,0.2 0.3,0.35 : 1iw    w is resolved. 

 

7. CONCLUSIONS 

 
In this paper, a procedure was presented that estimates how a selected market 

segment characterized by products of the same type perceives the products. A 

weighted-average approach was used as a model for the product perception or 

evaluation. Since this approach requires weights to be assigned to product features by 

the market segment, and the weights are usually unknown and vary from customer to 

customer, the procedure focused on estimating „average“ or expected weights of the 

entire market segment, which may be regarded as representative or prevailing weights 

on the market. The estimation was performed by constructing a confidence interval for 

the expected weights, the interval being derived generally on the basis of a random 

poll run across a sufficiently large sample of customers, and having the property of 

containing the unknown expected weights with a predefined high probability. Further, 

a more precise location of the expected weights in the interval was suggested in the 

paper, the intended accuracy being based on an additional piece of information 

regarding inferior product makers. This information suggests that if a product maker is 

viewed as inferior, its product value must be low. Using the weighted-average 

approach as a model for product evaluation, a set of expected weights from the 

interval which minimizes the value of the inferior product was proposed as the 
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appropriate one, the minimization serving as an approximation of what „low value“ 

means. Since a minimization was involved in the problem, existence and uniqueness, 

in particular, of the solution to the problem was discussed and confirmed. 

 

APPENDIX 

 
When constructing a confidence interval for the vector of unknown expected 

weights, we changed a nonnegative continuous random variable Y, defined on   of a 

probability space ( , , ),S P so that it was strictly positive everywhere in  . This can 

be done by changing Y on the set  : ( ) 0N Y S     to a positive constant c, and 

keeping the variable the same everywhere else, i.e. on the set .N  The changed 

variable *Y  will still be a random variable or a measurable function, that is, if r is any 

real number, then  *: ( ) .K Y r S       To see this, let us select a real number r. 

If 0,r  then ,K   which always belongs to the algebra  S of events. If 0,r  then 

either ,r c or .r c Since Y is a measurable function on S, we have: for the case ,r c   

   *: ( ) : ( ) ;K Y r Y r S          if ,r c

   *: ( ) : ( ) .K Y r Y r N S            
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