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BAYESIAN ESTIMATION OF THE PARAMETERS OF THE ARCH 

MODEL WITH NORMAL INNOVATIONS USING LINDLEY’S 

APPROXIMATION 
  

Abstract. Autoregressive conditionally heteroscedastic (ARCH) models are 

used to analyze empirical financial data and capture various stylized facts in 

financial econometrics. The procedure that is most commonly used for estimating 

the unknown parameters of an ARCH model is the maximum likelihood estimation 

(MLE). In this study, it is assumed that the parameters of the ARCH model are 

random variables having known prior probability density functions, and therefore 

they will be estimated using Bayesian methods. The Bayesian estimators are not in 

a closed form, and thus Lindley’s approximation will be used to estimate them. The 

Bayesian estimators are derived under squared error loss (SEL) and linear 

exponential (LINEX) loss functions. An example is given in order to illustrate the 

findings and furthermore, Monte Carlo simulations are performed in order to 

compare the ML estimates to the Bayesian ones. Finally, conclusions on the 

findings are given.  

Keywords: ARCH, QML method, Lindley’s Approximation, Bayesian 

Methods, SEL, LINEX. 
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1. Introduction 
 

The least squares models are important in applied econometrics, because 

they help applied econometricians to determine how much one variable will 

change in response to a change in another variable. Once a model has been fitted to 

the data one wants to forecast and analyze the size of the errors involved in the 

fitting. The main assumption in the basic version of the least squares model is that 

the expected value of all squared error terms are the same at any given point. This 

assumption is called homoskedasticity. Often, the variances of the error terms are 

not equal and the error terms are larger for some points or ranges of the data than 
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for others. In this situation where the variance of the error terms is not constant it is 

said that heteroskedasticity exists. The economist Engle (1982) treated 

heteroskedasticity as a variable to be modeled, and thus he constructed the first 

volatility model, namely the ARCH model. The basic idea of the ARCH model is 

that the error term 𝑎𝑡 of an asset return is serially uncorrelated, though dependent 

on its p squared lag values. The dependence of 𝑎𝑡 can be described by a simple 

quadratic function of its lagged values. The  ARCH(p) model assumes that 

 

𝑎𝑡 = 𝜎𝑡𝜀𝑡  ,   𝜎𝑡
2 = 𝛼0 + 𝛼1𝑎𝑡−1

2 + 𝛼2𝑎𝑡−2
2 + … . +𝛼𝑝𝑎𝑡−𝑝

2  (1) 

 

where {𝜀𝑡} is a sequence of independent and identically distributed (i.i.d.) random 

variables with mean zero and variance 1.  

 

Engle (1982) used the maximum likelihood method to estimate the 

unknown parameters 𝛼0, 𝛼1, … , 𝛼𝑝. Another commonly used estimation procedure 

for an ARCH model is the quasi maximum likelihood estimation (QMLE), whose 

asymptotic properties have been extensively studied, see for instance Berkes et al. 

(2003), Francq and Zakoïan(2004), and Straumann(2005). It should be noted that 

the ML and QML estimation methods require the use of a numerically optimization 

procedure.  Bose and Mukherjee (2003) recommend a two–stage least squares 

estimator (LSE) for the ARCH model. These estimators are in a closed form and 

have the same asymptotic efficiency as those of the QMLE. Giraitis and Robinson  

[6] propose an estimation method that is based on Autoregressive and 

Autoregressive Moving Average representations of the squared ARCH process. 

 

The ML method is the favored approach for making inferences for ARCH 

models. It is appealing because it is easy to implement and is available in economic 

packages; furthermore, Bollereslev et al. (1994), Lee and Hansen (1994)  have 

shown that the estimators are asymptotically optimum. Another approach of 

making inferences about the ARCH models is the Bayesian one. However, for 

most of the prior distributions assumed for the model parameters, the posterior 

distribution is analytically intractable, and thus numerical methods or proper 

approximation is required. Markov chain Monte Carlo (MCMC) methods enable to 

draw samples from the posterior and predictive distributions, thus sample averages 

can be used to approximate expectations. Mitsui and Watanabe (2003) introduced a 

Taylored approach based on the acceptance-rejection Metropolis-Hastings 

algorithm for parametric ARCH-type models. 

 

The purpose of this study is to derive Bayesian estimators for the 

parameters of the ARCH(p)  model, using different loss functions and when the 

innovations are distributed according to the standard normal or a standardized 

student-t distribution. Although there do not exist any certain rules that one could 
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follow to choose the loss function; nevertheless, this choice is of fundamental 

importance in Bayesian decision making. The symmetric SEL function is the usual 

choice due to its mathematical tractability. As it was pointed out by Moore and 

Papadopoulos (2000), such a choice is arbitrary and its popularity is due to its 

analytical tractability. In particular, Box and Tiao(1992) state that "the quadratic 

loss function leading to the posterior mean is arbitrary. The question remains as to 

why many sampling theorists seem to cling rather tenaciously to the mean squared 

error criterion and the quadratic loss function. As an example,  banks and in 

general financial institutions are likely to have asymmetric preferences, as pointed 

out by Peel and Nobay(1998), perhaps tending to error in the direction of caution 

in reaching inflation targets. Consequently, in economics and finance forecasting 

performance is increasingly evaluated under the asymmetric loss functions as 

witnessed by such scholars as Batchelor and Peel (1998), Christoffersen and 

Diebold (1997), Granger and Newbold(1986), Granger and Pesaran(2000), West, 

Edison and Choi (1993)and Zellner(1986). Thus, in addition to the SEL function 

the asymmetric LINEX function that was introduced by Varian (1974)will be 

utilized. 

 

This paper is organized as follows. In section 2, under the assumption that 

the innovations follow the standard normal distribution and that the parameters 

behave as random variables with 𝛼0 having a gamma or vague prior and 𝛼1, … , 𝛼𝑝 

a Dirichlet prior, the posterior density is derived which is not a closed form. 

Therefore, for the estimation of the parameters of the ARCH(1) and ARCH(2) 

models Lindley’s (1980)approximation  is used.. Finally,  in Section 3 an example 

is given to illustrate the findings of section 2. In section 4, in order to compare the 

different types of estimators a computer simulation study is done and the results 

are discussed.  

 

1. Bayesian estimation of the parameters of ARCH(p) model with 

normal innovations 

 
Let {𝑎𝑡} where 𝑡 = 1,2, … , n, denote the ARCH(p) process defined by 

equation (1) where the parameters 𝛼0 > 0 and  𝛼𝑖 ≥ 0 for 𝑖 = 1,2, … , 𝑝. In this 

study it will be assumed that the process is stationary and thus the coefficients 

𝛼1, … , 𝛼𝑝 satisfy the condition ∑ 𝛼𝑖
𝑝
𝑖=1 < 1.  

Let 𝛼 = (𝛼0, 𝛼1, … , 𝛼𝑝) denote the parameters of the ARCH(p) model and 

𝑥 = (𝑎𝑝+1, 𝑎2, … , 𝑎𝑇) the observed series. Then under the normality assumption, 

the conditional likelihood function of an ARCH(p) model is 
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𝑓1(𝑎𝑝+1, 𝑎𝑝+2, … , 𝑎𝑇|𝛼, 𝑎1, 𝑎2, … , 𝑎𝑝) = ∏
1

√2𝜋𝜎𝑡
2

𝑇

𝑡=𝑝+1

𝑒
−

𝑎𝑡
2

2𝜎𝑡
2
 (2) 

where𝜎𝑡
2 can be evaluated recursively from eq (1 ).  

 

The estimates obtained by maximizing eq (2) are known as the conditional 

maximum likelihood estimates. Usually, it is easier to maximize the log of the 

likelihood function, i.e. 

 

𝐿 = ln(𝑥|𝛼) = ∑ {−
1

2

𝑇

𝑡=𝑝+1

ln (2𝜋) −
1

2
𝑙𝑛(𝛼0 + 𝛼1𝑎𝑡−1

2 + ⋯ + 𝛼𝑝𝑎𝑡−𝑝
2 )

−
1

2

𝑎𝑡
2

(𝛼0 + 𝛼1𝑎𝑡−1
2 + ⋯ + 𝛼𝑝𝑎𝑡−𝑝

2 )
} 

(3) 

 

Engle(1982) derived the MLE estimates of 𝛼, denoted by 𝛼̂, by 

maximizing eq(3). 

 

In this study it will be assumed that the parameters of the ARCH(p) model 

behave as random variables and thus they will be estimated using Bayes theorem. 

It will be assumed that 𝛼0 has gamma prior 𝑔1(𝛼0, 𝑟, 𝛽) with parameters (𝑟, 𝛽),  

 

𝑔1(𝛼0; 𝑟, 𝛽) =
1

𝛤(𝑟)𝛽𝑟 𝛼0
𝑟−1𝑒

−
𝛼0
𝛽     for  𝛼0 > 0 and  𝑟, 𝛽 > 0 (4) 

 

Furthermore, we will assume that the joint density function of 𝛼1, 𝛼2 … , 𝛼𝑝 

with 𝑝 ≥ 2 is the Dirichlet probability function with parameters 𝜔1, 𝜔2, … , 𝜔𝑝+1>0 

given as 

𝑔2(𝛼1, 𝛼2, … , 𝛼𝑝; 𝜔1, 𝜔2, … , 𝜔𝑝+1) =
1

𝐵(𝜔)
∏ 𝛼𝑖

𝜔𝑖−1

𝑝+1

𝑖=1

 (5) 

 

where𝛼1 + 𝛼2 + ⋯ + 𝛼𝑝 < 1 and 𝛼𝑝+1 = 1 − 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑝 . The 

normalizing constant 𝐵(𝜔)is the multinomial beta function given as 

 

𝐵(𝜔) =
∏ 𝛤(𝜔𝑖

𝑝+1
𝑖=1 )

𝛤(∑ 𝜔𝑖
𝑝+1
𝑖=1 )

 

 

where 𝜔 = (𝜔1 + 𝜔2 + ⋯ + 𝜔𝑝+1). If 𝑝 = 1 the Dirichlet reduces to the beta 

probability function. 
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Since 𝛼0 and 𝛼1, 𝛼2, … , 𝛼𝑝 are independent, their joint pdf is given by 

 

𝑔(𝛼0, 𝛼1, 𝛼2, … , 𝛼𝑝) =
1

𝛤(𝑟)𝛽𝑟

1

𝐵(𝜔)
𝛼0

𝑟−1𝑒
−

𝛼0
𝛽 ∏ 𝛼𝑖

𝜔𝑖−1

𝑝+1

𝑖=1

 (6) 

The posterior function is given as  

 

ℎ1(𝛼|𝑥)  

=

{∏
1

√2𝜋𝜎𝑡
2

𝑇
𝑡=𝑝+1 𝑒

−
𝑎𝑡

2

2𝜎𝑡
2
}

𝛼0
𝑟−1𝑒

−
𝛼0
𝛽

𝛽𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝛼𝑖

𝜔𝑖−1𝑝
𝑖=1

∬ … ∫{∏
1

√2𝜋𝜎𝑡
2

𝑇
𝑡=𝑝+1 𝑒

−
𝑎𝑡

2

2𝜎𝑡
2
}

𝛼0
𝑟−1𝑒

−
𝛼0
𝛽

𝛽𝑟𝛤(𝑟)

1

𝐵(𝜔)
∏ 𝛼𝑖

𝜔𝑖−1𝑝
𝑖=1 𝑑𝛼0𝑑𝛼1 … 𝑑𝛼𝑝

 
(7) 

 

which can not be expressed in a closed form.  Also, the Bayes estimator of 𝛼𝑖 can 

not be written analytically. Therefore an approximation is required. As it was 

pointed out by Mahmoud (1991), the use of numerical computer routines may not 

converge for a given set of data𝑥  . Thus, when the posterior is complicated, 

researchers have usually resorted to the Markov Chain Monte Carlo (MCMC) 

method and successfully achieve a satisfactory computational answer; see Robert 

and Casella (1999)and Li et. al. (2008). 

 

Also, one can use Tierney’s and Kadane’s(1986)approximation or 

Lindley’s method; see Lindley (1980). Nadaretc (2010) used Lindley’s 

approximation in the Bayesian estimation of P(Y<X) for Kumaraswamy’s 

distribution. In this study we considered Lindley’s approximation for the Bayes 

estimation of 𝛼𝑖. 

 

Lindley (1980)developed approximate procedures for the evaluation of the 

ratio of two integrals which are in the form of 

 

∫ 𝑣(𝜃) exp{𝐿(𝜃)} 𝑑𝜃

∫ 𝑔(𝜃) exp{𝐿(𝜃)} 𝑑𝜃
 (8) 

 

where 𝜃 = (𝜃1, 𝜃2, … , 𝜃𝑛), 𝐿(𝜃) is the logarithm of the likelihood function, and 

𝑔(𝜃) and 𝑣(𝜃) = 𝑢(𝜃)𝑔(𝜃) are arbitrary functions of 𝜃. The posterior expectation 

of the function 𝑢(𝜃), for given 𝑥, is 
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𝐸[𝑢(𝜃)|𝑥] = ∫ 𝑢(𝜃) exp{𝐿(𝜃) + 𝜌(𝜃)} 𝑑𝜃/ ∫ exp{𝐿(𝜃) + 𝜌(𝜃)} 𝑑𝜃 (9) 

 

where𝐿(𝜃) + 𝜌(𝜃) is the the posterior distribution of  𝜃 except for the normalizing 

constant and 𝜌(𝜃) = 𝑙𝑛𝑔(𝜃). Expanding 𝐿(𝜃) + 𝜌(𝜃) in equation (9) into a Taylor 

series expansion about the ML estimates of 𝜃gives 𝐸[𝑢(𝜃)|𝑥]. So, 𝐸[𝑢(𝜃)|𝑥] can 

be estimated asymptotically by  

 

𝑢̂𝐵 = 𝑢 +
1

2
∑ ∑(𝑢𝑖𝑗 + 2𝑢𝑖

𝑗𝑖

𝜌𝑗)𝜑𝑖𝑗 +
1

2
∑ ∑ ∑ ∑ 𝐿𝑖𝑗𝑘

𝑙𝑘𝑗𝑖

𝜑𝑖𝑗𝜑𝑘𝑙𝑢𝑙 (10) 

 

where 𝑖, 𝑗, 𝑚, 𝑙 = 1,2, … , 𝑛, and 

 

𝑢 = 𝑢(𝜃),   𝑢𝑖 =
𝜕𝑢

𝜕𝜃𝑖
,   𝑢𝑖𝑗 =

𝜕2𝑢

𝜕𝜃𝑖𝜕𝜃𝑗
,    𝐿𝑖𝑗𝑘 =

𝜕3𝐿

𝜕𝜃𝑖𝜕𝜃𝑗𝜕𝜃𝑘
,  

𝜌𝑗 =
𝜕𝜌

𝜕𝜃𝑗
, 𝐿𝑖𝑗 =

𝜕2𝐿

𝜕𝜃𝑖𝜕𝜃𝑗
 

 

and𝜑𝑖𝑗 is the (𝑖, 𝑗)𝑡ℎ element of the inverse matrix {−𝐿𝑖𝑗} and all are evaluated at 

the MLE of the parameters. 

 

In the next two subsections of this section Bayes estimates of the 

parameters of the ARCH(1) and ARCH(2) models will be derived in detail using 

Lindley’s approximation. 

 

2.1 Bayes Estimation of the ARCH(1) Model 

 

For the ARCH(1) model the log likelihood reduces to  

𝐿 = ∑(−
1

2

𝑇

𝑡=2

ln (2𝜋) −
1

2
𝑙𝑛𝑐𝑡 −

1

2

𝑎𝑡
2

𝑐𝑡
) (11) 

 

where 𝑐𝑡 = 𝛼0 + 𝛼1𝑎𝑡−1
2 .  

 

For the two parameter case: (𝜃1, 𝜃2) = (𝛼0, 𝛼1). Using e.q. (10), the Bayes 

estimator of 𝛼0 simplifies as 

𝛼0_𝑆𝐸𝐿
∗ = 𝛼̂0 + 𝜌1𝜑11 + 𝜌2𝜑12 +

1

2
{𝐿111𝜑11

2 + 3𝐿112𝜑11𝜑12 

  +𝐿122(2𝜑12
2 + 𝜑22𝜑11) + 𝐿222𝜑12𝜑22}𝑢1 (12) 
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where 𝑢 = 𝑎0, 𝑢1 = 1,  𝑢2 = 0,   𝑢𝑖𝑗 = 0 𝑖, 𝑗 = 1, 2and the Bayes estimator of 𝛼1 

𝛼1_𝑆𝐸𝐿
∗ = 𝛼̂1 + 𝜌1𝜑12 + 𝜌2𝜑22 +

1

2
{𝐿111𝜑11𝜑12 + 𝐿112(𝜑11𝜑22 

          +2𝜑12
2 ) + 𝐿122(𝜑12𝜑22 + 2𝜑12𝜑22) + 𝐿222𝜑22

2 }𝑢2 (13) 

 

One can obtain the values of {𝐿𝑖𝑗} for 𝑖, 𝑗 = 1, 2 as 

 

𝐿11 = ∑
1

2

𝑇

𝑡=2

(
1

𝑐𝑡
2 −

𝑎𝑡
2

𝑐𝑡
3),   𝐿22 = ∑

1

2

𝑇

𝑡=2

(
𝑎𝑡−1

4

𝑐𝑡
2 −

2𝑎𝑡
2𝑎𝑡−1

4

𝑐𝑡
3 ) 

𝐿12 = 𝐿21 = ∑
1

2

𝑇

𝑡=𝑝+1

(
𝑎𝑡−1

2

𝑐𝑡
2 −

𝑎𝑡
2𝑎𝑡−1

2

𝑐𝑡
3 ) 

 

The values of {𝐿𝑖𝑗𝑘} for 𝑖, 𝑗 = 1, 2, 3 are 

 

𝐿111 = ∑ (−
1

𝑐𝑡
3 +

3𝑎𝑡
2

𝑐𝑡
4 )

𝑇

𝑡=2

, 𝐿122 = 𝐿212 = 𝐿221 = ∑(−
𝑎𝑡−1

4

𝑐𝑡
3

𝑇

𝑡=2

+
3𝑎𝑡

2𝑎𝑡−1
4

𝑐𝑡
4 ) 

𝐿112 = 𝐿211 = 𝐿121 = ∑(−
2𝑎𝑡−1

2

𝑐𝑡
3

𝑇

𝑡=2

+
3𝑎𝑡

2𝑎𝑡−1
2

𝑐𝑡
4 ),  

  𝐿222 = ∑ −

𝑇

𝑡=2

(
𝑎𝑡−1

6

𝑐𝑡
3 −

3𝑎𝑡
2𝑎𝑡−1

4

𝑐𝑡
4 ) 

(14) 

 

The partial derivatives of 𝜌(𝜃) with respect to 𝛼0 and 𝛼1 are, 𝜌1 = (𝑟 −

1)/𝛼0 − 1/𝛽and 𝜌2 =
𝜔1−1

𝛼1
+ (1 − 𝜔2)/(1 − 𝛼1) . Finally, 𝑢1 = 1and 𝑢2 = 1.  

 

In the case that the prior of 𝛼0 is not specified, one might want to use a 

vague prior given by 𝑔3(𝛼0) ∝ 1/𝛼0 . In this situation the Bayes estimators for 𝛼0 

and 𝛼1 denoted as 𝛼0_𝑆𝐸𝐿
∗ and 𝛼1_𝑆𝐸𝐿

∗ , obtained from eq(12) and eq(13) with 𝜌1 =

− 1
𝛼0

⁄ . 

 

Instead of using the well known symmetric SE loss function, one can use 

the asymmetric LINEX loss function which was first proposed by Varian (1974)  

and is given as 

 

𝐿(𝜉, 𝛿) = 𝑒𝛾(𝛿−𝜉) − 𝛾(𝛿 − 𝜉) − 1 (15) 
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where𝜉 is a univariate parameter and 𝛾 ≠ 0. The parameter 𝛾 is known and gives 

the degree of asymmetry. If 𝛾> 0 and the errors 𝛿 − 𝜉 are positive the LINEX loss 

function is almost exponential and for negative errors almost linear, in this 

situation overestimation is a more serious problem than underestimation. If 𝛾< 0 

underestimation is more important than overestimation. In addition to the LINEX 

loss function one could use other asymmetric loss functions, such as balanced 

LINEX, or asymmetric linear and asymmetric quadratic loss functions. 

 

Let  𝑀Ξ|𝑥(𝑡) = 𝐸𝛩|𝑥(𝑒𝑡𝜉) be the moment generating function of the 

posterior density function of  Ξgiven 𝑥. It can be easily verified that the value of 

𝛿(Ξ) that minimizes 𝐸Ξ|𝑥(𝐿(Ξ, 𝛿(Ξ)) in equation (14) is  𝛿∗(Ξ) = −
1

𝛾
𝑙𝑛𝑀Ξ|𝑥(−𝛾), 

provided that 𝑀Ξ|𝑥(. ) exists and is finite.  

 

In order to compute the Bayes estimators of  𝛼0 let  𝑢(𝛼0) = 𝑒−𝛾𝛼0 then 

eq (10) takes the form 

𝛼0
∗∗ = 𝑒−𝛾𝛼̂0 + 𝜌1𝜑11 + 𝜌2𝜑12 +

1

2
{(𝐿111𝜑11

2 + 3𝐿112𝜑11𝜑12 

                                     +𝐿122(2𝜑12
2 + 𝜑22𝜑11) + 𝐿222𝜑12𝜑22)𝑢1 + 𝑢11𝜑11} (16) 

 

where 𝑢1 = −𝛾𝑒−𝛾𝛼̂0, 𝑢11 = 𝛾2𝑒−𝛾𝛼̂0and thus the LINEX estimator of 𝛼0 is given 

as 

𝛼0_𝐿𝐼𝑁𝐸𝑋
∗∗ = −

1

𝛾
ln (𝛼0

∗∗) (17) 

Similarly, in order to compute the Bayes estimators of  𝛼1 let  𝑢(𝛼1) =
𝑒−𝛾𝛼1 then the Bayes estimator of 𝐸(𝑒−𝛾𝛼1) simplifies as 

 

𝛼1
∗∗ = 𝑒−𝛾𝛼̂1 + 𝜌1𝜑12 + 𝜌2𝜑22 +

1

2
{(𝐿111𝜑11𝜑12 + 𝐿112(𝜑11𝜑22 + 2𝜑12

2 )

+ 𝐿122(𝜑12𝜑22 + 2𝜑12𝜑22) + 𝐿222𝜑22
2 )𝑢2 + 𝑢22𝜑22} (18) 

 

where𝑢2 = −𝛾𝑒−𝛾𝛼̂1and𝑢22 = 𝛾2𝑒−𝛾𝛼̂1.. Thus, the LINEX estimator of 𝛼1 is 

given as  

 

𝛼1_𝐿𝐼𝑁𝐸𝑋
∗∗ = −

1

𝛾
ln (𝛼1

∗∗) (19) 

 

In the case that one wants to use a vague prior for 𝛼0 the LINEX 

estimators will be given by eq(16) and eq(18) with  𝜌1 = − 1
𝛼0

⁄   . 
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2.2 Bayes’ Estimation of Normal-ARCH(2) Model 

 

For the ARCH(2) model the log likelihood function reduces to  

 

𝐿 = ∑ (−
1

2

𝑇

𝑡=𝑝+1

ln (2𝜋) −
1

2
𝑙𝑛𝑐𝑡 −

1

2

𝑎𝑡
2

𝑐𝑡
) (20) 

where 𝑐𝑡 = 𝛼0 + 𝛼1𝑎𝑡−1
2 + 𝛼2𝑎𝑡−1

2  

 

For the three parameter case when u is a function of only of one of the 

three parameters 𝜃 = (𝛼0, 𝛼1, 𝛼2) Lindley’s approximation simplifies, when a SEL 

function is assumed, as 

 

𝛼𝑖−1_𝑆𝐸𝐿
∗∗ = 𝛼̂𝑖−1 + 𝑢𝑖𝜌𝑖𝜑𝑖𝑖 +

1

2
{𝐴𝑢𝑖𝜑1𝑖 + 𝐵𝑢𝑖𝜑2𝑖 + 𝐶𝑢𝑖𝜑3𝑖}        𝑖 = 1, 2, 3 (21) 

 

where 𝑢𝑖 = 1 for 𝑖 = 1, 2, 3, ρ
1

=
r−1

α0
−

1

θ
 , ρ2 =

ω1−1

α1
−

ω3−1

1−α1−α2
 and ρ3 =

ω2−1

α2
−

ω3−1

1−α1−α2
 . 

 

𝐴 = 𝜑11𝐿111 + 2𝜑12𝐿121 + 2𝜑13𝐿131 + 2𝜑23𝐿231 + 𝜑22𝐿221 + 𝜑33𝐿331 

𝐵 = 𝜑11𝐿112 + 2𝜑12𝐿122 + 2𝜑13𝐿132 + 2𝜑23𝐿232 + 𝜑22𝐿222 + 𝜑33𝐿332 

𝐶 = 𝜑11𝐿113 + 2𝜑12𝐿123 + 2𝜑13𝐿133 + 2𝜑23𝐿233 + 𝜑22𝐿223 + 𝜑33𝐿333 (22) 

 

When a LINEX loss function is assumed, first we estimate 𝑒−𝜈𝛼𝑖−1   𝑖 =
1, 2, 3 using eq(10) which reduces to 

 

(𝑒−𝛾𝛼𝑖−1)𝐵 = 𝑒−𝛾𝛼̂𝑖−1 + (𝑢1𝑑1 + 𝑢2𝑑2 + 𝑢3𝑑3 + 𝑑4 + 𝑑5) +
1

2
[𝐴(𝑢1𝜑11

+ 𝑢2𝜑12 + 𝑢3𝜑13) + 𝐵(𝑢1𝜑21 + 𝑢2𝜑22 + 𝑢3𝜑23)
+ 𝐶(𝑢1𝜑31 + 𝑢2𝜑32 + 𝑢3𝜑33)] (23) 

 

where 

𝑑𝑖 = 𝜌1𝜑𝑖1 + 𝜌2𝜑𝑖2 + 𝜌3𝜑𝑖3 ;           𝑖 = 1,2,3 
𝑑4 = 𝑢12𝜑12 + 𝑢13𝜑13 + 𝑢23𝜑23 
𝑑5 = 0.5(𝑢11𝜑11 + 𝑢22𝜑22 + 𝑢33𝜑33) 

 

and the LINEX estimators for 𝛼0, 𝛼1 and 𝛼2 are given as 

𝛼𝑖−1_𝐿𝐼𝑁𝐸𝑋
# = −

1

𝛾
ln ((𝑒−𝛾𝛼𝑖−1)𝐵) (24) 
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The Bayes estimators for 𝛼0, 𝛼1 and 𝛼2are obtained from eq(21) through 

eq(23) by letting  𝜌1 = − 1
𝛼0

⁄ . 

The derived 𝐿𝑖𝑗 𝑖, 𝑗 = 1,2,3 and 𝐿𝑖𝑗𝑘 𝑖, 𝑗 = 1,2,3 and the estimated 

variances and covariances of the MLE are given in the followings. 

𝐿11 = ∑
1

2

𝑇

𝑡=3

(
1

𝑐𝑡
2 −

𝑎𝑡
2

𝑐𝑡
3) 

 

𝐿22 = ∑
1

2

𝑇

𝑡=3

(
𝑎𝑡−1

4

𝑐𝑡
2 −

2𝑎𝑡
2𝑎𝑡−1

4

𝑐𝑡
3 ) 

 

𝐿33 = ∑
1

2

𝑇

𝑡=3

(
𝑎𝑡−2

4

𝑐𝑡
2 −

2𝑎𝑡
2𝑎𝑡−2

4

𝑐𝑡
3 ) 

 

𝐿12 = ∑
1

2

𝑇

𝑡=3

(
𝑎𝑡−1

2

𝑐𝑡
2 −

𝑎𝑡
2𝑎𝑡−1

2

𝑐𝑡
3 ) 

where 𝐿12 = 𝐿21 
 

𝐿13 = ∑
1

2

𝑇

𝑡=3

(
𝑎𝑡−2

2

𝑐𝑡
2 −

𝑎𝑡
2𝑎𝑡−2

2

𝑐𝑡
3 ) 

where 𝐿13 = 𝐿31 
 

𝐿23 = ∑
1

2

𝑇

𝑡=3

(
𝑎𝑡−1

2 𝑎𝑡−2
2

𝑐𝑡
2 −

𝑎𝑡
2𝑎𝑡−1

2 𝑎𝑡−2
2

𝑐𝑡
3 ) 

where 𝐿23 = 𝐿32 
 

𝐿112 = ∑(−
2𝑎𝑡−1

2

𝑐𝑡
3

𝑇

𝑡=3

+
3𝑎𝑡

2𝑎𝑡−1
2

𝑐𝑡
4 ) 

where 𝐿112 = 𝐿121 = 𝐿211 
 

𝐿113 = ∑(−
2𝑎𝑡−2

2

𝑐𝑡
3

𝑇

𝑡=3

+
3𝑎𝑡

2𝑎𝑡−2
2

𝑐𝑡
4 ) 

where 𝐿113 = 𝐿131 = 𝐿311 
 

𝐿111 = ∑ (−
1

𝑐𝑡
3 +

3𝑎𝑡
2

𝑐𝑡
4 )

𝑇

𝑡=3

 

 

𝐿222 = ∑ −

𝑇

𝑡=3

(
𝑎𝑡−1

6

𝑐𝑡
3 −

3𝑎𝑡
2𝑎𝑡−1

6

𝑐𝑡
4 ) 

 

𝐿333 = ∑ −

𝑇

𝑡=3

(
𝑎𝑡−2

4

𝑐𝑡
3 −

3𝑎𝑡
2𝑎𝑡−2

6

𝑐𝑡
4 ) 

 

𝐿122 = ∑(−
𝑎𝑡−1

4

𝑐𝑡
3

𝑇

𝑡=3

+
3𝑎𝑡

2𝑎𝑡−1
4

𝑐𝑡
4 ) 

where 𝐿122 = 𝐿212 = 𝐿221 
 

𝐿133 = ∑
1

2

𝑇

𝑡=3

(−
𝑎𝑡−2

4

𝑐𝑡
3 +

𝑎𝑡
2𝑎𝑡−2

4

𝑐𝑡
4 ) 

where 𝐿133 = 𝐿313 = 𝐿331 
 

𝐿233 = ∑(−
𝑎𝑡−1

2 𝑎𝑡−2
4

𝑐𝑡
3

𝑇

𝑡=3

+
3𝑎𝑡

2𝑎𝑡−1
2 𝑎𝑡−2

4

𝑐𝑡
4 ) 

where 𝐿233 = 𝐿332 = 𝐿323 
 

𝐿223 = ∑(−
𝑎𝑡−1

4 𝑎𝑡−2
2

𝑐𝑡
3

𝑇

𝑡=3

+
3𝑎𝑡

2𝑎𝑡−1
4 𝑎𝑡−2

2

𝑐𝑡
4 ) 

where 𝐿223 = 𝐿232 = 𝐿322 
 

𝐿123 = ∑(−
𝑎𝑡−1

2 𝑎𝑡−2
2

𝑐𝑡
3

𝑇

𝑡=3

+
3𝑎𝑡

2𝑎𝑡−1
2 𝑎𝑡−2

2

𝑐𝑡
4 ) 

where 𝐿123 = 𝐿321 = 𝐿213 = 𝐿132 
= 𝐿231 = 𝐿312 
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3. Example 

In order to illustrate the findings of this study an example with real data is 

given. The data are taken from the Turkish Central Bank which shows daily 

foreign exchange rate of DKK (Danish Korona) versus TRY (Turkish Lira) for the 

time period from July 2011 to April 2015. Dickey-Fuller and Phillips-Perron unit 

root tests show that the data are not stationary. By taking the first difference the 

series becomes stationary.  The graphs of the original and first difference series are 

shown in Figure 1.  

 

Figure 1.Time series plot and first difference of DKK/TRY 

 

 
 

The Lagrange Multiplier (LM) test for ARCH effects is performed and 

with p-value < 2.2e-16 we can conclude that an ARCH model can be used to fit the 

data. For illustrative purposes an ARCH(1) model will be utilized with standard 

normal innovations. The ML and Bayes estimates, under SE and LINEX loss 

functions when 𝛾 = 0.3 of the parameters are computed. For the parameter 𝛼0 a 

vague prior is assumed whereas the parameters 𝜔1 and 𝜔2 of the beta prior of 𝛼1 

are estimated from the data by equating the sample mean and variance with the 

population mean and variance. The resulting estimates are 𝜔̂1=0.0003782319 and 

𝜔̂2=8.397714. In addition of estimating the parameters the 1115 values of the 

differenced series will be used to estimate the parameters and then using the 

ARCH(1) model the next 10 values will be predicted. The estimated predicted 

values will be compared to the real ones by computing the mean errors. Table 1 

below shows the estimates of the parameters when the innovations are follow the 

standard normal distribution. 

 

Table 1.Parameter estimates for the ARCH(1) with normal innovations 

 
Coefficients MLEs Bayes SE  Bayes LINEX  

𝛼0 2.864901e-06  

 

2.848307e-06  

 

2.848307e-06  

 𝛼1 0.4286469  

 

0.4341838  

 

0.4342412 
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Forecasting with the ARCH(p) model      𝜎𝑡
2 = 𝛼0 + 𝛼1𝑎𝑡−1

2 + 𝛼2𝑎𝑡−2
2 +

… . +𝛼𝑝𝑎𝑡−𝑝
2   can be obtained recursively. At the forecast origin h, the 1-step 

ahead forecast of  𝜎ℎ+1
2  is 

 

𝜎ℎ
2(1) = 𝛼0 + 𝛼1𝑎ℎ

2 + 𝛼2𝑎ℎ−1
2 + … . +𝛼𝑝𝑎ℎ+1−𝑝

2  

 

The 2-step ahead forecast is 

 

𝜎ℎ
2(2) = 𝛼0 + 𝛼1𝑎ℎ

2(1) + 𝛼2𝑎ℎ
2 + … . +𝛼𝑝𝑎ℎ+2−𝑝

2  

 

and the 𝑙- step ahead forecast can be found as following 

𝜎ℎ
2(𝑙) = 𝛼0 + ∑ 𝛼𝑖𝑎ℎ

2(𝑙 − 𝑖)

𝑝

𝑖=1

 

where 𝜎ℎ
2(𝑙 − 𝑖) = 𝑎ℎ+𝑙−𝑖

2  if   (𝑙 − 𝑖) < 0.  

 

The ML and Bayes estimates of 𝜎ℎ
2(𝑙) are derived by replacing the 

parameters 𝛼0, 𝛼1, . . , 𝛼𝑝−1and 𝛼𝑝 by the corresponding estimates. 

 

Table 2 shows the real data along with the estimated forecasted values 

when the innovations are normally distributed with mean zero and standard 

deviation 1. Table 3 shows the mean errors. 

 

Table 2. Actual values and estimates of 𝝈𝒉
𝟐(𝟏) using an ARCH(1) model with  

normal innovations 
 

ACTUAL MLE BAYES (SE) BAYES( LINEX) 

0.00071 0.00175355 0.001749588 0.001749596 

0.00072 0.002045229 0.002043861 0.002043907 

0.00143 0.00215822 0.002159179 0.002159253 

0.00144 0.002204881 0.002207373 0.002207465 

0.00031 0.002224583 0.002227973 0.002228076 

0.0073 0.002232975 0.002236859 0.002236967 

0.00394 0.002236562 0.002240706 0.002240816 

0.00012 0.002238098 0.002242374 0.002242486 

0.00316 0.002238756 0.002243098 0.002243211 

0.00162 0.002239038 0.002243412 0.002243525 
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Table 3.Mean Square Error of  Forecasts 
 

SE loss function LINEX loss function 

ML Bayes ML Bayes 

4.192089e-06 4.188936e-06 1.886957e-07 1.885523e-07 

 

 

4. Simulation results 

 

The Bayesian and ML estimators were compared by means of Monte Carlo 

simulations. The simulation study is undertaken using a standard normal or a 

standardized student-t distribution for the innovations and different sample sizes. 

In particular the sample sizes are 200, 400, 600, 800 and 1000. The prior for 𝛼0 is a 

gamma or an improper prior and for (𝛼1,𝛼𝑗) 𝑗 = 1,2 Dirichlet function. Using the 

above mentioned innovations, sample sizes and priors we obtain the ML and Bayes 

estimates of the parameters under a SE and LINEX loss functions. Tables 1 

through 4 present the mean true value for each parameter and the average values of 

the ML and Bayesian estimates are reported. Furthermore, in parenthesis, the mean 

errors are also reported. All the results are based on 1000 repetitions. In all 

simulations the value of the LINEX parameter 𝛾 is -0.5. 

 

In particular, in Table 4 considers the ARCH(1) model when the 

innovations are drawn from the standard normal distribution. The prior of 𝛼0 is 

either a gamma with 𝑟 = 2  and𝛽 = 1  or a vague prior and the Dirichlet prior of 

𝛼1 is beta with parameters 𝜔1 = 1 and  𝜔2 = 3.  

 

Table 5 is similar to table one, but considers an ARCH(2) model with 

standard normal innovations. The prior of 𝛼0 is either a gamma with 𝑟 = 3  and 

𝛽 = 1  or a vague prior and a Dirichlet  prior for 𝛼1, 𝛼2 with parameters 𝜔1 = 1 

,𝜔2 = 3  and 𝜔3 = 2 . 
 

From Tables 4 and 5 it is observed that as the sample sizes increase the 

MSEs and MEs decrease. This should be expected since the MLEs are consistent. 

Also, as expected for all the estimates when the sample sizes increase the MSEs 

and MEs decrease. In all cases the MSEs and MEs when proper priors are used for 

the Bayes estimates are smaller than the ones corresponding when an improper 

prior is used for 𝛼0 and to the MLE estimates. Finally, there is little difference 

between the MLEs and MEs when an improper prior for 𝛼0 is utilized. 
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Table 4.ARCH(1) model with standardized  normal innovations 

 
AVERAGE VALUES      

𝛼0 Gamma(2,1) 1.99592 1.99710 1.97473 2.04904 1.99442 

𝛼1 Beta(1,3) 0.28128 0.26563 0.26527 0.258863 0.264296 

  Sample Size   

SE LOSS FUNCTION 200 400 600 800 1000 

MLEs of 𝛼0 2.08847 2.06571 2.02353 2.10426 2.02547 

 (0.16551) (0.06509) (0.04130) (0.03928) (0.02875) 

𝛼0 (vague)  1.99614 2.02881 2.00171 2.08832 2.01417 

 (0.14502) (0.05558) (0.03524) (0.03487) (0.02645) 

𝛼0(Gamma) 1.95067 2.00670 1.98795 2.07698 2.00523 

 (0.13911) (0.05091) (0.03238) (0.03076) (0.02438) 

MLEs of 𝛼1 0.28128 0.26563 0.26527 0.25886 0.26430 

 (0.01684) (0.00763) (0.00542) (0.00390) (0.00304) 

𝛼1 ( Beta), 𝛼0(vague) 0.29681 0.26316 0.26067 0.25121 0.25829 

 (0.01418) (0.00644) (0.00432) (0.00331) (0.00263) 

𝛼1 (Beta), 𝛼0(Gamma)  0.29735 0.26341 0.26078 0.25145 0.25832 

 (0.01400) (0.00636) (0.00429) (0.00328) (0.00263) 

LINEX LOSS FUNCTION      

MLEs of 𝛼0 2.08847 2.06571 2.02353 2.10426 2.02547 

 

(0.02314) (0.00854) (0.00542) (0.00518) (0.00371) 

𝛼0(vague) 2.10712 2.07565 2.03058 2.10933 2.02969 

 

(0.02215) (0.00836) (0.00524) (0.00502) (0.00351) 

𝛼0(Gamma) 2.12557 2.08485 2.03688 2.11366 2.03317 

 

(0.02032) (0.00820) (0.00514) (0.00492) (0.00344) 

MLEs of 𝛼1 0.28128 0.26563 0.26527 0.25886 0.26430 

 

(0.00208) (0.00095) (0.00067) (0.00048) (0.00038) 

𝛼1( Beta), 𝛼0(vague) 0.28950 0.26582 0.26493 0.25678 0.26301 

 

(0.00207) (0.00092) (0.00066) (0.00047) (0.00037) 

𝛼1(Beta), 𝛼0(Gamma)  0.29662 0.26529 0.26351 0.25359 0.26065 

 

(0.00190) (0.00090) (0.00065) (0.00046) (0.00036) 
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Table 5. ARCH(2) model with standardized normal innovations 
AVERAGE VALUES      

𝛼0 Gamma(3,1) 2.86877 2.88818 2.98862 2.91820 2.95684 

𝛼1  Dirichlet(1,3,2) 0.20130 0.19375 0.19138 0.18543 0.18391 

𝛼2  Dirichlet(1,3,2) 0.35504 0.34376 0.34070 0.33717 0.33700 

  Sample Size   

SE LOSS FUNCTION 200 400 600 800 1000 

MLEs of 𝛼0 3.20131 3.13150 3.20031 3.09812 3.03502 

 

(0.63128) (0.32351) (0.21924) (0.13268) (0.09963) 

𝛼0(vague) 3.04339 3.05814 3.15375 3.06203 3.00845 

 

(0.45898) (0.26875) (0.19114) (0.11548) (0.09473) 

𝛼0 (Gamma) 2.98106 3.03352 3.13576 3.05021 3.00029 

 

(0.35373) (0.23300) (0.17011) (0.10354) (0.09185) 

MLEs of 𝛼1 0.18202 0.17216 0.17290 0.16913 0.17286 

 

(0.01088) (0.00537) (0.00350) (0.00189) (0.00186) 

𝛼1 (Dirichlet), 𝛼0 (vague) 0.19852 0.18044 0.17806 0.17323 0.17611 

 

(0.01012) (0.00522) (0.00326) (0.00171) (0.00178) 

𝛼1 (Dirichlet) , 𝛼0(Gamma)  0.19896 0.18055 0.17815 0.17327 0.17612 

 

(0.00997) (0.00518) (0.00325) (0.00170) (0.00178) 

MLEs of 𝛼2 0.29803 0.30506 0.30234 0.30535 0.31690 

 

(0.01703) (0.00822) (0.00582) (0.00311) (0.00303) 

 𝛼2 (Dirichlet), 𝛼0(vague) 0.31335 0.31213 0.30669 0.30841 0.31919 

 

(0.01468) (0.00766) (0.00544) (0.00292) (0.00290) 

 𝛼2(Dirichlet) , 𝛼0(Gamma)  0.31384 0.31227 0.30680 0.30845 0.31921 

 

(0.01456) (0.00763) (0.00541) (0.00291) (0.00290) 

LINEX LOSS FUNCTION 

     MLEs of 𝛼0 3.20131 3.13150 3.20031 3.09812 3.03502 

 

(0.07891) (0.04044) (0.02740) (0.01659) (0.01245) 

𝛼0(vague) 3.22268 3.19514 3.17735 3.18040 3.03206 

 

(0.05439) (0.03490) (0.02450) (0.01563) (0.01225) 

𝛼0(Gamma) 3.21321 3.16454 3.19005 3.14048 3.03476 

 

(0.04422) (0.02913) (0.02126) (0.01294) (0.01148) 

MLEs of 𝛼1 0.18202 0.17216 0.17290 0.16913 0.17286 

 

(0.00181) (0.00089) (0.00058) (0.00031) (0.00031) 

𝛼1  (Dirichlet), 𝛼0(vague) 0.19141 0.17744 0.17662 0.17232 0.17562 

 

(0.00177) (0.00087) (0.00056) (0.00029) (0.00030) 

𝛼1 (Dirichlet) , 𝛼0(Gamma)  0.18781 0.17589 0.17785 0.17182 0.17533 

 

(0.00166) (0.00086) (0.00054) (0.00028) (0.00030) 

MLEs of  𝛼2 0.29803 0.30506 0.30234 0.30535 0.31690 

 

(0.00310) (0.00149) (0.00106) (0.00057) (0.00055) 

 𝛼2 (Dirichlet),𝛼0(vague) 0.31251 0.30182 0.30566 0.30635 0.31812 

 

(0.00290) (0.00143) (0.00099) (0.00053) (0.00053) 

 𝛼2(Dirichlet) , 𝛼0(Gamma)  0.30513 0.30330 0.30387 0.30571 0.31737 

 

(0.00265) (0.00139) (0.00098) (0.00053) (0.00053) 
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5. Conclusions 

 

In this study, we have considered the Bayesian inference of ARCH(p) 

model with normal distributed innovations. The Lindley’s approximation method is 

applied to obtain the Bayesian estimator of unknown parameters since the 

Lindley’s approximation is a one of the proper methods in case which the Bayes 

estimators of ARCH model  cannot be obtained in explicit forms. ARCH(1) and 

ARCH(2)  models  are studied due to the fact that Lindley method is difficult to 

compute when the number of unknown parameters is increased. In this situation, 

one can use Tierney-Kadane method yet this method requires two maximizations. 

Furthermore, the Lindley method is as accurate as Tierney-Kadane method since 

sample sizes are enough large in the simulation study. 

At first hand, it is observed that as expected, the MSE of each estimator 

decreases as the sample size increases. Bayes estimators obtained from Lindley’s 

method are observed to perform much better than the MLEs under SEL and 

LINEX functions, but the discrepancy in their relative performance tends to get 

smaller and smaller with the increase in sample size because of the consistency of 

ML method. 

We have also considered the forecasting performance of Bayes estimates 

and MLEs using foreign exchange data as an example. Although Bayes estimates 

are not always better than MLEs, it is observed that Bayes estimator is quite well  

in prediction especially predictors of ARCH(1) model with normal innovations. 
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