
Mohammad Hossein REZAIE,  M.Sc. 

E-mail: rezaie345@yahoo.com 

Faculty of Industrial and Mechanical Engineering 

Qazvin Branch, Islamic Azad University, Qazvin, Iran  

Alireza GHAHTARANI, PhD Candidate 

E-mail: a.ghahtarani@modares.ac.ir 

Department of Industrial Engineering 

Tarbiat Modares University, Tehran, Iran  

Assistant Professor Amir Abbas NAJAFI, PhD 

E-mail: aanajafi@kntu.ac.ir 

Department of Industrial Engineering 

K.N. Toosi University of Technology, Tehran, Iran  

IDEAL AND ANTI-IDEAL COMPROMISE PROGRAMMING FOR 

ROBUST Bi-OBJECTIVE PORTFOLIO SELECTION PROBLEM 

 
         Abstract: This paper proposes a robust optimization approach for bi-

objective portfolio selection problem. We propose mean-CVaR as a bi-objective 

model and in this model we consider parameter uncertainty. We use Bertsimas and 

sim approach to consider uncertainty in the model and we try to use ideal and anti-

ideal compromise programming to solve model. This solving approach is better 

than compromising and goal programming approach for portfolio selection 

problem because this approach tries to increase the distance of the solution and 

anti-ideal criteria that in our model is CVaR and on the other hand tries to 

decrease the distance between expected rate of return of portfolio and the solution. 

Efficiency of this model is tested by real life data.    
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1. Introduction  

Portfolio selection problem is one of the basic issues in finance. Decision maker in 

portfolio selection problem try to maximize return and minimize risk of portfolio. 

Markowitz (Markowitz, 1952) proposed the first portfolio selection problem. In the 

original Markowitz model assume that the return follow from normal distribution 

and risk measured by variance.  
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The original Markowitz model is a quadratic programming but in real life data 

because of the size of variance-covariance matrix is unpractical.  

There are many researches that try to develop portfolio selection problem such as 

(Chiodi et al., 2003; Kellerer et al., 2000; Konno and Yamazaki, 1991; Laniado et 

al., 2012; Mansini et al., 2003; Michalowski and Ogryczak, 2001; 

Papahristodoulou and Dotzauer, 2004; Rockafellar and Uryasev, 2000; Xie et al., 

2008). 

In 90's decade new risk measure has been introduced. This risk measure is called 

value at risk (VaR). But VaR has some bad mathematical fecures. In order to 

overcome these features Rockafellar and Uryasev proposed a new risk measure 

which is derived from VaR and this new risk measure is called Conditional Value 

at Risk (CVaR). In this paper we use CVaR as a risk measure(Rockafellar and 

Uryasev, 2000).  

In portfolio selection modeling there are some papers that consider multiple criteria 

to modeling such as (Alexander and Resnick, 1985; Azmi and Tamiz, 2010; 

Ghahtarani and Najafi, 2013a; Gupta et al., 2013; Kumar and Philippatos, 1979; 

Wu et al., 2007). In this paper we use bi-objective programming to model portfolio 

selection problem. 

In some mathematics models, there are some coefficients subject to uncertainty. In 

recent years, researchers try to develop a new approach to consider uncertainty in 

mathematical models.  

This new approach is called robust optimization. The first step in this approach was 

taken by Soyster (Soyster, 1973) but this approach was too conservative, it means 

this approach ignores optimality instead of feasibility. Another step in this concept 

was taken by Ben-tal and Nemirovski (Ben-Tal and Nemirovski, 2000). They 

proposed an approach that can control the conservatism of the solutions but their 

model is nonlinear,. The final step in robust optimization was taken by Bertsimas 

and Sim (Bertsimas and Sim, 2004). This new approach is linear programming and 

also decision maker can control the conservatism of the solutions. There are some 

practical robust optimization models in portfolio selection problem such as: (Chen 

and Tan, 2009; El Ghaoui et al., 1998; Ghahtarani and Najafi, 2013b; Kawas and 

Thiele, 2011; Ling and Xu, 2012; Moon and Yao, 2011; Pınar and Burak Paç, 

2014; Quaranta and Zaffaroni, 2008; Tütüncü and Koenig, 2004). 

 Quaranta and Zaffarani (Quaranta and Zaffaroni, 2008) developed a robust 

optimization in portfolio selection problem by used of Ben-tal and Nemirowski 

approach. Risk measure in their model is CVaR and their model is single objective, 

But in this paper we use Bertsimas and Sim approach in a multi-objective model. 

We apply CVaR as risk measure in our model. Furthermore, we use ideal and anti-

ideal compromise programming to solve model. 

The first contribution of this paper is developing a bi-objective portfolio selection 

problem. This model has two criteria that these criteria have conflict together, the 

second contribution of this paper is developing robust optimization to consider 

parameters uncertainty. Parameter uncertainty is one of the basic features of 
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financial market and without considering it, the financial model aren’t adapted to 

the real word. The last contribution of this paper is a solving approach; this solving 

approach is adapted to portfolio selection problem better than other solving 

approach. This approach tries to increase the distance between the solution and 

anti-ideal criteria and decrease the distance between solution and ideal criteria. In 

portfolio selection problem risk is anti-ideal criteria that DMs try to increase the 

distance from it and return is ideal criteria that DMs try to decrease the distance 

from it.   

The structure of this paper is as follow, next selection explain CVaR and a multi-

objective model for portfolio selection problem. Third section proposes robust 

optimization for multi-objective portfolio selection problem that proposed in 

section two. Forth section proposes ideal and anti-ideal compromise programming 

to solve the model and in fifth section the results of historical data are discussed. In 

final section, the conclusions are proposed.  

 

2. Bi-Objective (mean-CVaR) Programming for Portfolio Section Problem  

This section proposes a Multi-objective model for portfolio selection problem. 

Portfolio selection problem is a basic problem in finance where decision makers 

want to invest their money in financial asset.  

In this paper, we use CvaR as risk, at first we define VaR and CvaR.  

Definition 1.1 (Value at Risk (VaR)). Let K be a random variable and let F be its 

distribution function, that is  hkP)h(F  . 

Let  w)h(F:hmin)w(F   be it's VaR the  quantile of k :  

)(F)k(VaR  1
 

(1) 

Definition 1.2 (Conditional Value at Risk (CVaR)). Let 
NRXx   be a 

decision vector representing a portfolio, 
NRTy   be a vector representing 

the future value of a number of variables.  

For each x that denote by ),x( 0  the distribution function of the loss 

)y,x(fZ   i.e . 

  )y,x(f|yP),x(  (2) 

             

For given 0 , the CVaR of loss associated with x is the mean of the 

tail  distribution of the loss function, that is the mean of distribution function 

)0,x(  defined by: 
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and )x(a is the VaR  of the loss associated with X.  

The model of min CVaR )x(  based on Rockafellar and Uryasev is as follow 

(Rockafellar and Uryasev, 2000): 
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The model mentioned above is CVaR that we use it for risk measure.  

The bi-objective portfolio selection problem is as follow: 

1
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The above formulation rewrite as follow: 
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(15) 

m,...,1k0uk   (16) 





m

1i
i 1x  (17) 

m,...,1i1x0 i   (18) 

Above formulation is a bi-objective portfolio selection problem that considers both 

return and risk as criteria. 

 

3. Robust Optimization for Mean-CVaR Portfolio Selection Problem  

 

This section proposes a robust optimization for portfolio selection problem. We 

use Bertsimas and Sim approach to deal robust optimization. 

In this model  ir  is subject to uncertainty. This parameter is cited in objective 

function. At first we change that objective function (objective function with ir ) to 

a constraint. 

The model reformulate as follow: 
max w  (19) 

1

1
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To deal with Bertsimas and Sim approach we have to change the uncertain 

constraint as follow (Bertsimas and Sim, 2004) : 
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1

m
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r x w
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    (26) 

 

In above formulation, ir  is uncertain. Let j  be the set of coefficient  ir  . 

jr i J  take values according to a c distribution with a mean ir  in the intervals 

 iiii r̂r,r̂r  . We introduce a parameter   that is called price of robustness. 

  Takes values in the interval [0,| |]J .   

Based on Bertsimas and Sim, formulation is as follow (Bertsimas and Sim, 2004):  
max w  (27) 
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If   is integer then:  

 | ,| |
ˆ( , ) max | |i i

S S J S
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To reformulated (27) to (33) as a linear programming, we need the following 

proposition. *X  is optional value:  

  

* * *
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Above constraint is equal to the objective function of following models:  
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The dual problems (36) to (38) are as follow: 
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By strong duality, it is provable that (36) to (38) are feasible and bounded, because 

(39) to (42) are feasible and bounded for all  [0,| |]J  . The robust 

optimization of this model is as follow:  
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Above formulation is a robust optimization model that considers parameter 

uncertainty. The contribution of this model is the use of robust optimization in a bi-
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objective model with CVaR as risk measure. In the next section we propose a 

solving approach as another contribution in this paper. 

 

4. Ideal and Anti-Ideal Compromise Programming for Mean-CVaR Portfolio 

Selection Problem 

In this section we propose a L-P metrics approach to deal with robust bi-objective 

portfolio selection problem. In this paper we use ideal and anti-ideal compromise 

programming to solve model. This model has two objective functions, mean rate of 

return and risk measure, that this two objectives are conflict. Triantaphyllou  

introduced utopia approach for multi-objective problem(Triantaphyllou, 2000). 

This approach is a L-P metrics that try to minimize the distance between utopia and 

the solution of the model. In this approach for every objective function the problem 

solved and 
( )i xf  is the result.  

( )min/ max j xf  

S.t 

(53) 

( )i xg    (54) 

n
x E  

(55) 
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{ ,.... }k
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* j
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( )
j

j
f x  if 

*1 *2 *
...

k

x x x   then the ideal solution is the optimal 

solution but this situation usually not happen, so the DM try  to minimize the 

distance between ideal solution and the solution of the model as follow: 

(56) 
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j

 is the weight of each objective function. Zelany  proposed the anti-ideal 

approach (Zelany, 1974). In this approach the DM try to increase the distance 

between anti-ideal criteria and the solution of the model.in this approach for each 

objective function the model solved and if the general objective function is max 

(min) the single objective problem change based on min (max). If the solution of 

this models are 
1

1
{ ( ),..., ( )}

k

k
f fx x  then the DM try to increase the distance 

between anti-ideal solution and the solution of the model as follow: 
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The model of this paper has two objective functions. The first is mean rate of 

return that is ideal and we can use utopia approach to consider it and the risk 

measure (CVaR) that is anti-ideal. We can combine these two approaches to solve 

model. 

At first in order to find ideal and anti-ideal we should solve two single objective 

problems as follow: 
*

1
max ( )w f x  

S.t 

(58) 

1 1

m m
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Then we should solve the following model: 
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Above formulation is based on the ideal and anti-ideal compromise programming 

that consider different objective function and consider uncertainty based on robust 

optimization. 

 

5. Numerical Results 

This section illustrates the numerical result for robust ideal and anti-ideal 

compromise programming. We use New York stock exchange data to deal with the 

model. The data extracted from 1/10/2012 to 1/10/2013 for one year. The data is 

monthly for 12 periods and 15 stocks. Solving approach in this paper consist of 3 

models. The first model consider on rate of return without other criteria, in this 

model rate of return is subject to uncertainty that we consider this uncertainty with 

robust optimization approach. This model runs for different price of robustness. 

The result of this model is as follow: 

 
Table 1: The result of first model 

Price of robustness Objective function 

0 0.09504300 

0.1 0.09314210 

0.2 0.09124120 

0.3 0.08934030 

0.4 0.08743940 

0.5 0.08553850 

0.6 0.08363760 

0.7 0.08173670 

0.8 0.07983580 

0.9 0.07793490 

1 0.07603400 

 

The data of table 1 use in ideal section of our solving approach. This result is refer 

to 
*

1
( )f x . As shown in table 1by increase of price of robustness the result gone 

worse that it is a predictable result in robust approach. Price of robustness can vary 
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to 15 but in this case the result after 1 is equal, the cause of this result is that after 

1  the robust approach doesn’t allow to parameter to volatile because the 

volatility after this quantity may result infeasibility, but robust optimization 

approach wouldn’t let the infeasibility to occurred. But in other data for this 

formulation may this situation not happen. 

In second step, the DM should run the second model to calculate the anti-ideal 

criteria. Then the DM can run the essential model. 
i  and p in this model are 

equal to one. The results of essential model are as follow: 

 

Table 2: Results of the model 
 

         


 
Objective function 

Portfolio rate of 

return 
CVaR 

0 0.02353960 0.08570698 0.2491090 

0.1 0.02310736 0.08423832 0.2491090 

0.2 0.02267512 0.08276966 0.2491090 

0.3 0.02222768 0.07391269 0.1192627 

0.4 0.02145953 0.07277993 0.1192627 

0.5 0.02069139 0.07164717 0.1192627 

0.6 0.01992325 0.07051442 0.1192627 

0.7 0.01915510 0.06938166 0.1192627 

0.8 0.01838696 0.06824890 0.1192627 

0.9 0.01761882 0.06711615 0.1192627 

1 0.01685067 0.06598339 0.1192627 

 

The above table shows the result of essential ideal and anti-ideal compromise 

programming with robust approach to consider uncertainty. The different results 

for portfolio rate of return and objective function is because of parameter 

uncertainty. By increase of price of robustness the portfolio rate of return gone 

worse that is because of uncertainty. The above results are optimal values under 

worst uncertainty parameters.  

We summarize the results of the model in two charts; the first chart shows the 

variation of objective function against price of robustness and the second chart 

shows the variation of portfolio rate of return against price of robustness. Bothe 

chart illustrate that by increase of price of robustness the model gone conservative 

and the result gone worse. 

The objective function in this model gone well but these phenomena means by 

increase of price of robustness the distance between criteria in first models and 

final model are decrease. This improvement in objective function at first glance is 
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against of the fundamental of robust optimization. Because in robust optimization 

by increase of price of robustness the objective function gone worse. In this model 

objective function is the distance between criteria and solutions. Since the rate of 

decrease of portfolio rate of return in first model is more than final model so the 

objective function gone well but in reality rate of return of portfolio gone worse.  

         Chart 1: Objective function vs. price of robustness 
 

The chart number one shows that the objective function decreases by increase of 

price of robustness. 

 
Chart 2: Portfolio rate of return vs. price of robustness 

 

The above chart shows the decrease of portfolio rate of return by increase of price 

of robustness. These two charts show that the uncertainty of parameters can change 

the result of portfolio, and the DM should consider the uncertainty of parameters in 

modeling. Without considering uncertainty the model has less adaption with real 
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word because the uncertainty of parameters are one of the most important features 

in financial markets. 

  

6. Conclusions 

This paper proposes a robust optimization approach for a bi-objective portfolio 

selection problem. This paper uses Bertsimas and Sim approach to consider 

uncertainty parameters. The solving approach that use in this paper is ideal and 

anti-ideal compromising programming that try to decrease the distance between 

ideal criteria and solution of model and increase the distance between anti-ideal 

criteria (risk measure) and solution of model. This model shows that the 

conservatism of the solution increases when the price of robustness increases.  
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