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OUTLIER ROBUST POSTERIOR PREDICTIVE CHECKS  

FOR MISSING DATA MODELS 
 

Abstract. The goal of this paper is to adjust the posterior predictive checks in 

order to overcome the problem of simultaneous outliers and missing data. We 

combine the approaches used to treat these two problems (separately) in the 

construction of particular posterior predictive p-values for Bayesian model validation. 

The outlier accommodation is realized using modified likelihood for estimation of 

posterior predictive distribution of parameter and, also, for deriving a robust form of 

discrepancy measure. In order to manage the missing data problem it’s used the 

Multiple Imputation technique. According to latter, a computation algorithm for 

outlier robust posterior predictive p-values for missing data models is elaborated and 

realized in a computer environment in order to perform a simulation study, which 

emphasizes the efficiency and usefulness of the approach in comparison to the 

classical posterior predictive p-values in this particular context. 

Keywords: Discrepancy measure, modified likelihood, multiple imputation, 

PCOut algorithm, posterior predictive p-value, robust diagnostics, weighted 

likelihood, weighting scheme. 
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1. Introduction 

There are three ways offered by the Bayesian statistics perspective upon 

model checking: (1) examining sensitivity of inferences to reasonable changes in the 

prior distribution and the likelihood; (2) checking that the posterior inferences are 

reasonable, given the substantive context of the model; and (3) checking that the 

model fits the data. Posterior predictive checks method addresses the third of these 

concerns. The posterior predictive distribution is used for a discrepancy measure, an 

extension of classical test statistics designed to allow dependence on unknown 
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(nuisance) parameters. Sometimes it is possible to obtain a meaningful reference 

distribution theoretically, for the purpose of obtaining the desired tail-area probability. 

This is the situation of realized discrepancy assessment of model fitness proposed by 

Gelman et al. (1996). Otherwise, it is easily accomplished via Monte Carlo simulation. 

The original idea is to compare the dataset model fit to the future replications fit, in 

the setting that these replications are generated according to the model defined by the 

null hypothesis in study. 

Although Bayesian methods are in general robust to some insignificant 

departures from initial hypothesis, potential outliers and missing data may affect the 

estimation and testing. As the posterior predictive checks involve both the latter, it’s 

worth trying to protect it against breaking from outliers using a robust accommodation 

approach (Maronna et al. (2006)). In a Bayesian context, a natural choice is to use the 

modified likelihood. We try to apply this approach in the construction of our posterior 

predictive p-values. Also, to protect them from missing data, we use Multiple 

Imputation approach. It is convenient due to restoring of data dimensions, that’s very 

important in the context of outliers. 

In the second section of this paper we recall the definition of the posterior 

predictive p-value and describe some of its properties. The third section is about the 

use of modified likelihood, in Bayesian context, in order to achieve robustness in face 

of outliers. The fourth section is a recall of the multiple imputations technique. And 

the fifth section attacks straightforwardly the subject of construction of outlier robust 

posterior predictive p-values for missing data models. Afterwards a simulation 

example comes, comparing the robust and non-robust p-values in the context of 

contaminated and non-contaminated normal missing data models. In the end are the 

conclusions. 

2. Posterior Predictive P-Values 

It is obvious that, if the model fits, then the replicated data generated under the 

model should look similar to the observed data. To put it another way, the observed 

data should look plausible under the posterior predictive distribution. This is really a 

self-consistency check: an observed discrepancy can be due to model misfit or chance.  

Our basic technique for checking the fit of a model to data is to draw 

simulated values from the posterior predictive distribution of replicated data and 

compare these samples to the observed data. Any systematic differences between the 

simulations and the data indicate potential failings of the model. 
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Let us have a dataset y and suppose the future replications of this one are the 

realizations x of the random variable X. As usual in Bayesian statistics, the parameter 

vector   is also considered to be a multivariate random variable along with the data 

X=(X1 ,…,Xn). Their joint posterior distribution density is defined as the following 

factorization: 

           
         yxfyyxfyxf   ,,

                             (1) 

 

In this case the posterior density of the parameter,  y , has a natural Bayesian 

construction, based on the specified prior density    and the likelihood, represented 

by the Y’s density itself 
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All the above definitions are regarded in the context of testing the hypothesis 

 yfYH ~:0  and may be conditioned on it, if it consists of more assumptions than 

solely the form of Y’s distribution. It looks like we wish to compare the unknown 

distribution of Y to the distribution proposed by the model (the known distribution of 

X) by means of some sort of loss function. For the test purpose is used a p-value. 

Definition 1. Posterior predictive p-value for the null 

hypothesis  yfYH ~:0 , against   fgygYH ,~:1   of the dataset y is the 

tail-area probability: 

                },),(),({)( 00 HyyDxDPHyp   ,                            (3) 

where ),( xD is the discrepancy variable. (from Meng (1994)) 

 A discrepancy variable (measure), ),( xD , is a scalar summary of 

parameters and data that is used as a standard when comparing data to predictive 

simulations (from de la Horra and Rodriguez-Bernal (1999)). Being a generalization 

of test statistics, the discrepancy variable has the same goal, to emphasize the misfit of 

the model to the data. Many discrepancy variables are derived from test statistics by 

introducing directly the dependence on the parameter, according to some properties of 
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the distribution density. Under some regularity conditions, a posterior predictive   p-

value which is based on a discrepancy variable arisen from a classical test statistic is 

asymptotically equivalent to the classical p-value with inserted (efficient) estimate of 

the parameter . 

The probability in the definition is taken over the joint posterior distribution of 

),( x  given H0 , defined earlier. Thus, the posterior predictive   p-value can be 

regarded as the posterior mean of a classical p-value, averaged over the posterior 

distribution of the parameters under the null hypothesis. Also, Gelman et al. (1996) 

mention a restriction, which imposes that we can use for comparison only similar 

replicate samples, and that’s a natural condition.  

A problem claimed to affect the posterior predictive checks is that it uses the 

same data twice, once to fit the model parameters, and then again as input to 

significance test using those parameters. One of the advantages of the method is that 

the posterior distribution on the model parameters may well be proper, even if the 

prior distribution of those parameters is not. Also, using Monte Carlo techniques to 

work with Bayesian models tends to produce samples from the posterior distribution, 

making it relatively easy to estimate the posterior predictive p-values simply by 

drawing many simulated observations generated basing on each sample of parameters 

according to their posterior distribution, then comparing them to the real observation. 

The optimistic character of this measure may be seen as a disadvantage of the method. 

To overcome this inconvenience, Bayarri and Berger (1999) developed some sort of 

modifications, but the latter are not always easy to apply. 

Posterior predictive checks method justifies its conclusions upon the model fit 

grounding on the posterior predictive p-values. It’s almost obvious that extreme values 

(very close to 0 or to 1) are signs of poor fit. But, in contrast to hypothesis test 

procedures, here doesn’t exist a definite threshold, which can assure clear rejection of 

a model. Rather the posterior predictive p-value is only a measure of fit that can lead 

to a more suitable model. However, for more intuitive and easier interpretation of 

these p-values Bayarri and Berger (1999) proposed a calibration of small p-values, 

which brings them closer to Bayes factor. On the other hand, the benefit of p-values is 

that they are actual posterior probabilities and, therefore, can be interpreted directly, 

not as posterior probability of the model being true. Moreover, Gelman and Meng 

(1996) state: “The role of predictive model checking is to assess the practical fit of a 

model, not to estimate the “probability that the model is true”, whatever that means.” 
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3. Modified Likelihood 

The modified likelihood approach was developed in order to adjust the 

maximum likelihood method to obtain robustness to outliers in estimation and testing 

(the general method can be found in Tiku and Akkaya (2004)). This approach was 

expanded to be useful in Bayesian context through the use of modified likelihood 

function at the predictive distribution construction stage, like in Chen et al. (2000). 

A common approach to outlier detection is to assess a model to explain the 

behaviour of the (possible) outliers. This contamination model is usually taken to be a 

generalization of the original model, involving an extra parameter (vector). The 

original model is then typically a particular case of the contamination model, 

corresponding to some specific value of the extra parameter(s). Testing for outliers 

can be reduced to testing for this specific value of the extra parameter. Conversely, 

someone halts at the generalization model, if the aim is the accommodation. There are 

plenty examples when, the particularly sensible to outliers, normal distribution is 

replaced by the t distribution to achieve robustness. But unfortunately it’s not always 

the case that a model can be extended in an explicit way. 

The likelihood function relies on the distribution density, that’s why all the 

procedures involving it are as well affected by the outliers through the posterior 

density estimation. The modified likelihood approach is based on the same intuitive 

motivation as the idea of replacing a distribution with another one having thicker tails 

or a mixture of the original one with such a distribution. The idea is to directly 

introduce a penalization term, in order to obtain the modification of the likelihood, 

which would resemble to be arisen from a slightly different distribution. As well, the 

new form is a generalization of the classical likelihood function; hence a particular 

choice of extra parameter draws us back to it. Also it’s natural that the departure from 

the original model must not be great, for we don’t want to deteriorate the efficiency of 

inference in a non-contaminated context. 

A common example of modification is the case described by Wang and Zidek 

(2005), namely the weighted likelihood. Its corresponding loglikelihood has a form of 

linear combination of logarithms of realized point probabilities: 

   



n

i

ii yfyWL
1

,log,log                                               (4) 
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Generally, fixed weights do not work very well. More reliable choice may be 

some adaptive weights. Our proposal in this sense is to make an adaptation of weights 

from the robust weighting scheme, introduced by Filzmoser et al. (2008) for outlier 

detection algorithm in high dimension, and to use them to obtain a robust weighted 

likelihood needed for posterior predictive distribution estimation. 

4. Multiple Imputation 

The Multiple Imputation technique was proposed by Rubin (1987) as a 

flexible alternative to likelihood methods for a wide variety of missing-data problems. 

In Multiple Imputation, each missing value is replaced by a list of m > 1 simulated 

values. Substituting the j-th element of each list for the corresponding missing value, 

for j = 1, . . . , m, produces m plausible alternative versions of the complete data set. 

Each of the m data sets is analyzed in the same fashion by a complete-data method. 

The results are then combined by simple arithmetic, according to rules of Rubin, to 

obtain overall estimates and standard errors that reflect missing-data uncertainty as 

well as finite sample variation. This method allows the analyst to proceed with 

familiar complete-data techniques and software. Also, unlike other Monte Carle 

methods, with Multiple Imputation there is no need for a large number of repetitions 

for precise estimates. Generally good estimates are obtained from 5 sets, and up to 10 

sets assure very good results. 

5. Outlier Robust Posterior Predictive P-Values for Missing Data Models 

Recall that the posterior predictive p-value is a posterior mean of a generalized 

p-value, averaged over the posterior distribution of parameters and (new) data under 

the null hypothesis. Suppressing the conditioning on H0 , we get: 

 

      


dxdyxfxIyp
yDxD ),(),(

)(
                         (5) 

where I is the indicator function. 

In this definition there are two quantities depending on observed y: the 

posterior predictive distribution of parameter,  y , and the discrepancy measure 

applied to the original data,  ,yD . Though, these are two ways the potential 
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outliers may affect the posterior predictive p-value. Both of them need to be 

robustified to achieve proper accommodation. 

In one of the previous sections we described the modified likelihood approach, 

which may be useful to achieve outlier robustness of the posterior predictive 

distribution of the parameter. A reliable choice is the weighted likelihood; it yields the 

following posterior distribution: 
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1  ,                                        (6) 

where nii ,...,1,0   are the chosen weights. 

We stated earlier that a nice candidate for weights can be derived from 

Filzmoser’s et al. (2008) PCOut Algorithm, which yields a robust weighting scheme 

of outlyingness for observations from a multivariate sample. These PCOut weights 

take values between 0 and 1, where outlyingness shows through values very close to 0. 

As the weights in the modified likelihood are introduced as powers and, in the 

classical likelihood, their sum equals the sample volume n, we want to maintain this 

property and rescale Filzmoser’s weights accordingly,  

ni

w

nw
n

i

i

i
i ,...,1    ,

1






 ,                                                (7) 

where wi, ni ,...,1  are the weights obtained from PCOut algorithm. 

At the second step we choose a robust discrepancy variable. The natural 

approach is to derive a robust discrepancy variable from a simple one. Recall that a 

discrepancy measure is a generalization of a test statistic. In our case, for model check, 

a test statistic or a discrepancy variable is a function of several sufficient statistics of 

the sample. The idea behind the robustification is to replace classical sufficient 

statistics by their robust alternatives or some robust approximations, but to keep intact 

the relation between them and the parameters.  
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For our simulation example we decided to take as the original discrepancy 

measure the Akaike criterion, but, as the parameter dimension is fixed, it reduces to a 

linear function of loglikelihood. To obtain robustness, the latter is to be replaced by 

the same weighted likelihood: 

     .,log,log 2,
1





n

i

ii yfyWLyD                          (8) 

Having at hand both the joint posterior predictive distribution and the 

discrepancy variable, it’s important to understand how to perform posterior predictive 

check in practice. As we already know, if the model is reasonably accurate, the 

hypothetical replications should look similar to the observed data y. Formally, having 

some realizations (obtained by means of Markov chain Monte Carlo), the necessary p-

value is estimated as the proportion of cases in which the simulated discrepancy 

variable exceeds the corresponding realized value: 

  ,
1
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
                                                  (9) 

where I is the indicator function. 

Practical computation is typically a by-product of the usual Bayesian 

simulation that provides a set of draws of θ from the posterior distribution, 

 0, Hy . Specifically, consider the computation required for comparing the 

realized discrepancy  ,yD  to its reference distribution under the null hypothesis. 

Given a set of (possibly dependent) draws, θj, j = 1, . . . , J, Gelman et al. (1996) 

suggest to perform the following two steps for each j:  

(i) Given θj, draw a simulated replicated data set, 
jx , from the sampling 

distribution,  0, Hxf j ;  

(ii) Calculate  jxD ,  and  jyD , , and compare them. 

Hu (1999) adjusted the former algorithm of posterior predictive checks to face 

properly the missing data problem by incorporating a step to reproduce the missing 

data pattern as a part of the simulation model and by using missing data modifications 

of Bayesian measures of fit. In the case of contamination hypothesis, an extra 
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contamination-generating step will look similar to Hu’s censoring step. But, in our 

accommodation context settings, the contamination step is of no need, for we directly 

use robust measures within all computations, on both original and replicated data. We 

already applied with success this approach in construction of outlier robust posterior 

predictive p-values, for samples affected solely by outliers, in Nicorici (2011). In our 

new algorithm we also retain the censoring step proposed by Hu (1999), because the 

studied models imply missing data. But, for the sake of weighted robust computations, 

we manage the missing data estimations according to the Multiple Imputation method 

described previously. For every simulation step we compute new parameters basing on 

a set of completed selections. More in depth the procedure and the corresponding 

algorithm will be described in the example, for we need some model based 

computations developed directly from the form of model characteristic distribution, in 

our case the normal one. 

On the other hand, we have to state explicitly the hypothesis we want to 

examine. For the following example we supposed that we know that the model is 

defined by a multivariate normal distribution. The hypothesis is then determined by 

the normal parameter estimates based on the observed contaminated selection with 

missing data. They are obtained in preliminary, according to the following algorithm: 

1. Compute the estimators  00
ˆ,ˆ   using the EM algorithm version adjusted 

to the missing data models. 

2. Impute missing data according to  00
ˆ,ˆ N . 

3. Compute robust estimators  11
ˆ,ˆ  , reweighted according to the PCOut 

Algorithm using the previously imputed dataset. 

4. Impute missing data according to the new estimators  11
ˆ,ˆ  . 

5. Repeat steps 3-4 m times. 

6. Combine the m obtained earlier estimates according to Rubin’s Multiple 

Imputation rules. 

This algorithm combines the outlier robustness adjustment approach with the 

Multiple Imputation technique, such that both the problems affect less each other’s 

stages of computation. It obtains m sets of data needed for the Multiple Imputation 
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procedure, implying combining the estimates in the final step to obtain model 

parameter estimates to test. 

6. Simulation Example 

The object of this simple example is a contaminated bivariate normal sample. 

Its characteristic parameters are the mean vector    


 100,10, 21  and the 

covariance matrix 








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









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; the sample volume is 

50n . The data are synthetic, but their advantage is that we possess information 

about the underlying distribution. We will study a dataset under contamination of 10% 

of outliers, yield by a normal distribution having the same mean, but an “exploded” 

covariance matrix  100*
. The sample is also affected by missing data, defined 

by three different missing data patterns, affecting only the second position of vector 

observations, namely: MCAR ( 33% missing completely at random), MAR (missing if 

the first component is greater than 1.12* 1 ) and MNAR (missing if the second 

component is greater than 1.12* 2 ). 

We calculate the classical posterior predictive p-value to compare it to our 

robust posterior predictive p-values for both contaminated and non-contaminated 

samples. There are two parts of p-value estimation: predictive distribution estimation 

and discrepancy variable realizations comparison. For them both we’ve chosen to 

apply the weighted likelihood approach with PCOut weights. 

Initially, the parameter   ,,,, 2121  gets the uninformative, almost 

flat prior with independent marginals N(0, 0 ), 0 1000. The posterior predictive 

distribution of the parameter given the data then is the following: 
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From the latter we determine the conditionals of each component on all the 

others; these are needed for Markov chain Monte Carlo simulation from the joint 

posterior predictive distribution by means of Data Augmentation. At each step the 

conditional densities are reestimated and new parameters are generated by an adapted 

numerical form of the inverse method. Formally, the algorithm is the following: 

1. Using Data Augmentation there is generated each g-th realization of 

parameter vector   ,,,, 2121  according to the posterior predictive distribution 

from (10) 

2. Given 
          ggggg

 ,,,, 2121  obtained in the previous step, 

generate 
      ggg yyy 21 ,  from 
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
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3. Apply the missing data pattern by censoring similar to the original. 

4. Calculate the discordancy variables for the observed and simulated 

samples,
  gyD ,  and 

    ggyD , , respectively. 

5. Repeat the steps 1-4 many times G (say G=1000) 

6. Obtain the estimated p-value as the mean:  

        




G

g
yDyD gggI

G 1
,,

1


, 

where I is the indicator function. 

The program was realized using R environment (R Core Team (2012). R: A 

language and environment for statistical computing. R Foundation for Statistical 

Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.). 

There were used the following packages: 

 mi – Yu-Sung Su, Andrew Gelman, Jennifer Hill, Masanao Yajima  

(2011). Multiple Imputation with Diagnostics (mi) in R:  Opening Windows 
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into the Black Box. Journal of Statistical Software, 45(2), 1-31. URL 

http://www.jstatsoft.org/v45/i02/. 

 mnormt – Fortran code by Alan Genz and R code by Adelchi Azzalini  

(2012). mnormt: The multivariate normal and t  distributions. R package 

version 1.4-5.  http://CRAN.R-project.org/package=mnormt 

 mvoutlier –  Peter Filzmoser and Moritz Gschwandtner (2012). mvoutlier: 

Multivariate outlier detection based on robust methods. R package version 

1.9.8.  http://CRAN.R-project.org/package=mvoutlier 

 norm – Ported to R by Alvaro A. Novo. Original by Joseph L.  

Schafer <jls@stat.psu.edu>. (2012). norm: Analysis of multivariate normal 

datasets with missing values. R package version 1.0-9.4.  http://CRAN.R-

project.org/package=norm 

The results are collected in the table below, containing the obtained p-values 

for the different settings listed above. The data are classified according to the different 

combinations of settings (contaminated versus non-contaminated samples with 

missing data, classical versus outlier and missing data robust p-values). 

Table 1 

Classic versus outlier robust posterior predictive p-values for a sample 

from a particular non-contaminated and contaminated bivariate normal with 

missing data 

Missing pattern 

P-value type 

Non-contaminated sample 

MCAR MAR MNAR 

Classic 0.2935 0.0465 0.3505 

Weighted robust 0.3950 0.2837 0.4137 

 Contaminated sample 

Classic 0.2310 0.0000 0.0000 

Weighted robust 0.3068 0.2642 0.3810 
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We see that robust p-values perform pretty well in confirming the real 

hypothesis on non-contaminated samples, it means that they do not lose much in 

efficiency comparing to the classical p-values. The classical posterior predictive p-

value breaks in the sensible normal contaminated sample with missing data. 

Repeated simulations with plenty different input parameters and context 

settings lead to similar results. So we conclude that the approach was successful. 

6. Conclusions 

In this paper it was proposed an approach to build robust posterior predictive 

p-values to protect the posterior predictive checks method from the influence of both 

potential outliers and missing data. The robust procedure was realized in software 

environment and tested on a simulated normal sample. Future research may imply the 

study of other distribution hypotheses. Also it would be useful a research implying 

construction of other robust discrepancy variable to test some specific properties of the 

null hypothesis model, for more sensible analysis. 
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