
Assistant Professor Esmaeil MEHDIZADEH, PhD 

Faculty of Industrial and Mechanical Engineering, Islamic Azad 

University, Qazvin Branch, Iran  

E-mail: emehdi@qiau.ac.ir (Corresponding author) 

Siamak NEZHAD DADGAR, MSc 

Faculty of Industrial and Mechanical Engineering, Islamic Azad 

University, Qazvin Branch, Qazvin, Iran 

E-mail: siamak.dadgar@yahoo.com  

  

 

USING VIBRATION DAMPING OPTIMIZATION ALGORITHM 

FOR RESOURCE CONSTRAINT PROJECT SCHEDULING 

PROBLEM WITH WEIGHTED EARLINESS-TARDINESS 

PENALTIES AND INTERVAL DUE DATES 

 
Abstract. Resource constrained project scheduling problem with weighted 

earliness-tardiness penalties is one of the most crucial problems in resource 

constrained project scheduling problems. This paper focuses on the notable 

characteristic of the model which is an interval due dates for activities. In this 

problem setting, activities have an interval activity due date with associated unit 

earliness and tardiness penalties. Vibration damping optimization (VDO) is 

proposed to solve this strongly NP-hard model. The proposed VDO algorithm is 

computationally compared with simulated annealing (SA) algorithm and the 

results are analyzed and discussed. Response surface methodology (RSM) is 

employed to tune of the VDO and SA parameters.  

Keywords: project Scheduling, resource constrained, earliness-tardiness, 

simulated annealing and vibration damping optimization. 
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1 Introduction 

 

This paper deals with the resource constrained project scheduling 

problem with weighted earliness-tardiness penalties (RCPSPWET) and interval 

due dates. It is an extended case of the classical resource constrained project 

scheduling problem (RCPSP). One measure of performance, which is gaining 

attention in JIT environments, is the minimization of the weighted earliness–

tardiness penalty costs of the project activities. In this problem setting, activities 

have an interval due date with associated unit earliness and unit tardiness penalty 

costs. The objective is to schedule the activities to minimize the weighted penalty 

cost of the project. This problem often occurs in practice since many project 
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schedulers have to deal with due dates and penalty costs. Costs of earliness include 

extra storage requirements and idle times and implicitly incur opportunity costs. 

Tardiness leads to customer complaints, loss of reputation and profits, monetary 

penalties or goodwill damages. Moreover, tardiness can cause penalties due to 

delays in the project completion, which is often faced by many firms hiring 

subcontractors, maintenance crews as well as research teams.  

 In spite of RCPSP which there are plenty of papers concerning heuristic 

and exact approaches to solve it, the literature about RCPSPWET is scant. 

Lawrence and Morton (1993) have studied the due date setting problem of 

scheduling multiple resource-constrained projects with the objective of minimizing 

weighted tardiness costs. Kogan and Shtub (1999) have studied the problem of 

resource-constrained multi-project scheduling with variable-intensity activities. 

They have developed four dynamic models, based on four types of precedence 

relations to minimize dynamic earliness and tardiness cost of project activities. 

Also, they have adopted an efficient time-decomposition approach and an efficient 

search to solve the models. Vanhoucke et al. (2000) have considered the weighted 

earliness-tardiness project scheduling problem with the objective of minimizing the 

net present value in which progress payment occurred. They have presented a 

branch and bound algorithm to solve the problem. Vanhoucke et al. (2001) have 

developed an exact recursive search algorithm. They have used the basic idea that 

the earliness-tardiness costs of a project can be minimized by first scheduling 

activities at their due dates or at a later time instant if forced so by binding 

precedence constraints, followed by a recursive search which computes the optimal 

displacement for those activities for which a shift towards time zero proves to be 

beneficial. Vanhoucke et al (2001) have presented a branch and bound algorithm 

that minimizes the weighted earliness-tardiness penalty costs subject to zero-lag 

finish to start precedence constraints and renewable resource constraint. They have 

used the mentioned exact recursive procedure as a lower bound in their algorithm. 

The branching strategy resolved resource conflicts through the addition of extra 

precedence relations, based on the concept of minimal delaying alternatives 

developed by Demeulemeester and Herroelen (1992, 1997) and further explored by 

Icmeli and Erenguc (1996). Vanhoucke et al (2003) have studied the unconstrained 

project scheduling problem with discounted cash flows where the net cash flows 

were assumed to be dependent on the completion times of the corresponding 

activities. The objective was to schedule the activities in order to maximize the net 

present value of the project subject to the precedence constraints and a fixed 

deadline. They have introduced a B&B algorithm which computes upper bounds 

by making piecewise linear overestimations. The algorithm has transformed the 

problem into a weighted earliness–tardiness project scheduling problem. Since the 

RCPSPWET is strongly NP-hard as a generalization of RCPSP, thus using 

metaheuristics to solve it is justified in the literature. Mendes (2003) has presented 

a genetic algorithm that uses a random key representation and a modified parallel 

schedule generation scheme (SGS). This genetic algorithm minimizes 

simultaneously the tardiness, earliness and flow time deviation criteria  
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Elmaghraby (2005) has demonstrated the significant advantages of adaptive 

scheduling with a simple example of a project with tardiness penalties and 

stochastic activity durations. Kwan Woo et al. (2005) have proposed a hybrid 

genetic algorithm with fuzzy logic controller to solve the resource-constrained 

multiple project scheduling problem. Objectives were to minimize total project 

time and to minimize total tardiness penalty. They have proposed a new approach 

which was based on the design of genetic operators with fuzzy logic controller.  

Shadrokh and Kianfar (2007) have presented a genetic algorithm, for solving a 

class of project scheduling problems, called resource investment problem. 

Tardiness of project was permitted with defined penalty. Afshar nadjafi and 

shadrokh (2008) presented a new depth-first branch and bound algorithm for the 

problem, which time value of money is taken into account by discounting the cash 

flows. Recently, Khoshjahan et al (2013) proposed two meta-heuristics to solve 

RCPSP with discounted earliness-tardiness penalties. 

In this study, we develop a new RCPSPWET model with interval due date 

consideration. In our model, we assume project activities cannot be interrupted and 

the resources are renewable, where in each period the renewable resources are 

limited. The aim is to schedule all activities of the project to minimize the 

weighted earliness-tardiness penalty costs. A metaheuristic algorithm namely 

vibration damping optimization (VDO) algorithm is developed to solving 

RCPSPWET which is strongly NP-hard as a generalization of RCPSP. VDO is a 

new metaheuristic algorithm which was introduced by Mehdizadeh and Tavakkoli-

Moghaddam (2009). This stochastic search method is created based on the concept 

of the vibration damping in mechanical vibration. 

    The paper is organized as follows: In section 2 the RCPSPWET with 

interval activity due date is formulated mathematically. Proposed metaheuristic 

algorithms and application of them to solve the model are described in section 3. In 

section 4, parameters of the algorithms are tuned and performance of the 

algorithms is investigated. Finally, the paper is concluded in section 5. 

 

2 Problem formulation 

 

The deterministic RCPSPWET with interval activity due dates involves the 

scheduling of project activities in order to minimize the weighted earliness-

tardiness costs of the project under resource constraints, with consideration of a 

permissible interval for activities finish time. The project is represented by an 

AON network where the set of nodes, N, represents activities and the set of arcs, 

A, represents finish-start precedence constraints with a time-lag of zero. The 

activities are numbered from the dummy start activity 1 to the dummy end activity 

n and are topologically ordered, i.e., each successor of an activity has a larger 

activity number than the activity itself. The fixed duration of an activity is denoted 

by id (1 i n ), while [hi
-
 , hi

+
] denotes its deterministic interval due date. The 
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completion time of activity i is denoted by the nonnegative integer variable fi (

1 i n ). 

The earliness of activity i can be computed as: 

 

Ei=max (0, hi
-
-fi) 

                                                      

The tardiness of activity i can be computed as: 

Ti=max (0, fi-hi
+
) 

 

    If we let ie and it denote the per unit earliness and tardiness cost of activity i, 

respectively, the total earliness-tardiness cost of activity i equals: 

 

 

 

It is assumed that h1
-
=h1

+
=0, hn

-
=hn

+
= , 

1 1e = t = and 
n ne = t = 0. 

     

  The objective of the RCSPWET with interval activity due dates is to find 

a schedule such that the total earliness-tardiness penalty cost is minimized. The 

way of calculating the value of earliness-tardiness penalty cost depends on the 

payment model considered. We suppose that the cost due to earliness or tardiness 

of each activity will impose in progress model (e.g., at the end of each month, 

earliness or tardiness of each activity may impose some cost to the client). 

 

We have the following notation for RCPSPWET with interval activity due dates: 

 

n           = Number of activities 

N           = set of nodes of acyclic digraph representing the project 

  A            = set of arcs of acyclic digraph representing the project 

id           =   Duration of activity i 

[hi
-
 , hi

+
] =   Interval due date of activity i 

if            = Finish time of activity i (integer decision variable) 

ie            = Per unit earliness cost of activity i 

it            = Per unit tardiness cost of activity i 

K          = Number of renewable resources 

ka          = Per-period availability of renewable resource type k (1 k K ) 

ikr           = Per-period usage of renewable resource type k required to execute 

activity i.                        (1 i n,1 k K ) 

 

S (t)        =The set of activities in progress in period [t -1, t] 

 

i i i ie E t T
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The basic form of the RCPSPWET with new assumption about due dates 

can be conceptually formulated as follows: 

 
The objective in equation (1) minimizes the weighted earliness-tardiness 

cost of the project. Equation (2) enforces the finish to start precedence relations 

between activities. Equation (3) and (4) compute the earliness and tardiness of each 

activity. Equation (5) represents the renewable resource constraints. Equation (6) 

forces the dummy start activity to end at time zero. Equation (7) ensures that the 

activity finish times, earliness and tardiness of activities to be nonnegative integer 

values. 

Figure (1) demonstrates a graphical representation of the RCPSPWET with 

interval due date [h
-
 , h

+
] for activity A, in which situations A1 and A3 denote 

tardiness and earliness, respectively. Situation A2 describes a situation that the 

activity finishes on time with no penalty. 

 

 

 

 

 

 

 

 

  

 

Figure 1. The possible positions for an activity from the view point of due date 
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3 Proposed Vibration Damping Optimization algorithm 

 

In this section, a vibration damping optimization algorithm is developed 

for solving RCPSPWET with interval due dates. 

 

3.1 Common features 

  

In this section, we describe the elements of the VDO algorithm. 

 

3.1.1 Solution representation and scheduling scheme 

 

A feasible solution for both approaches is represented by two n-element 

lists. The first one is a precedence feasible permutation of activities, in which each 

activity i (1 i n ) must occur after all its predecessors and before all its 

successors. This structure is called the activity list .The second one is a list of 

delays for all activities and is called the delay list. The k
th
 element of delay list 

determines the delay of k
th
 activity in activity list. We use the delay list to create a 

random delay at start time of activities, after the biggest finish time of their 

predecessors.  

Our scheduling scheme is like the serial scheduling scheme proposed by 

Kelley (1963) in many features. In serial scheduling, activities are added to the 

schedule sequentially until a feasible complete schedule is obtained. In each stage 

the next activity in the priority list is chosen and the first possible starting time is 

assigned to that activity such that no precedence or resource constraint is violated. 

Our scheduling scheme some differs. In each stage of our scheduling scheme, 

when an activity is chosen to schedule, the largest finish time of its predecessors is 

computed and added to the corresponding number of the activity in the delay list. 

 The resulted number (time) is the first alternative to survey the resource 

feasibility to schedule the activity. If the situation is resource feasible, the activity 

will be scheduled, otherwise, next alternatives will be surveyed. This scheduling 

scheme is like a situation in serial scheme which we add the number in delay list to 

the activities duration. 

 

3.1.2 Fitness function 

 

As we mentioned in section 2, the objective is to minimize the total 

earliness-tardiness penalty of the project’s activities. For each solution, we 

calculate the objective function according to the following formula: 
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3.1.3 Starting solution 

 

The initial solution for each instance is generated by setting all activities of 

activity list in an ascending order of activity numbers. All elements of delay list are 

set to zero. This procedure has been commonly used in local search algorithms 

before especially in multi-mode scheduling problems. 

 

3.1.4 Neighborhood generation mechanism 

  

Neighborhood solution of a current solution is generated by using one of 

the following three operators: 

 Activity shift: it operates only on the activity list in the following ways: 

1. One activity i is randomly chosen from the activity list. 

2. The nearest predecessor p and the nearest successor s of the activity i, 

are found in the activity list. 

3. A position x between activities p and s is randomly chosen.  

4. Activity i is moved to position x and all activities between i and x+1 (x-

1) are shifted to the left (right). 

 Delay change: it operates only on the delay list as follow: 

1. A position y is randomly chosen from the delay list.  

2. If the number in position y is greater than zero, a discrete number is 

randomly chosen between -1, 0 and 1, else a number is randomly chosen 

between 0, 1. It is obvious that the numbers in delay list are nonnegative. 

Recent chosen number is added to the number in position y. 

 Combined move: it operates simultaneously on both activity list and delay 

list and is a combination of the activity shift and delay change. 

  

In each iteration of algorithms one of the three mentioned operators is chosen 

with a certain probability which depends on the size of the considered problem. Po, 

Pd and Pc are probability of order change (activity shift), delay change and 

combined move, respectively. 

 

3.2 Vibration Damping Optimization 

 

There is a useful connection between vibrations damping process and 

optimization. In the analogy between an optimization problem and the vibration 

damping process, I) The states of oscillation system represent feasible solutions of 

the optimization problem, II) The energies of the states correspond to the objective 

function value computed at those solutions, III) The minimum energy state 

corresponds to the optimal solution to the problem and rapid quenching can be 

viewed as local optimization. Vibration damping optimization (VDO) is 

metaheuristic algorithm that is created based on heuristics from vibration damping 
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process in physics field. This stochastic search method is similar to SA algorithm 

in some parts, but it has different base in comparison with SA one. In this section, 

we describe proposed VDO algorithm that is developed for RCPSPWET to 

minimize the weighted earliness-tardiness penalty costs. 

  

Figure (2) demonstrates the general process of the proposed VDO 

algorithm. During the initialization step of the presented algorithm, initial 

amplitude (A0), number of neighborhood searches in the search loop for each 

amplitude (L), damping coefficient ( ) and sigma of Rayleigh distribution ( ) are 

determined. The amplitude in suggested algorithm has a control parameter role. 

This factor controls the possibility of the acceptance of a worse solution in various 

steps of the algorithm. At high amplitude (early in the search), there is some 

flexibility to move to a worse solution; but at lower amplitude (later in the search) 

less of this flexibility exists. The algorithm escapement from local optimum is 

reduced in low amplitude and the accessibility to global optimization is increased 

in higher amplitude. In addition, in the initialization step, an initial solution X is 

generated randomly and is set as the current solution, X ( )X X . In each 

iteration of the algorithm search loop, a new neighboring solution, X , is generated 

by implementing neighborhood structure on the current solution, X . After the 

neighboring solution, X , is produced, the difference in objective function value,

)( ( ( ))E X E X , is computed. If the difference is negative or zero i.e., 0

(for a minimization problem), current solution, X , is replaced with neighboring 

solution, X ( )X X . Besides, In the case of positive difference, 0) , the 

algorithm moves from current solution, X , to neighboring solution, X , only if: 

  
2

22
1 exp( )           (R~U(0,1))A R                                             (10)  

 

 

This rule provides acceptance possibility of worse solutions and increases 

the possibility of finding a global optimal solution out of a local optimum. If none 

of the conditions above is met, the current solution is preferred. On condition that 

all iterations of the search loop are considered, an iteration of the VDO algorithm 

is accomplished. In that case, stop condition is checked. If stop condition is not 

met, next iteration of the algorithm begins with new amplitude (

0A A exp( / 2)t ), otherwise, the algorithm is finished. 

 

3.2.1 Damping scheme 

 

The damping scheme in our adapted VDO algorithm is according to the 

following formula, which A0 is a certain fixed parameter: 
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0 exp( / 2)A A t  

 

3.2.2 Stop criterion 

 

There are many rules for the stopping condition in metaheuristic 

algorithms which depends on the problem at hand. In this paper, the stop criterion 

is fulfilled when at least one of two stop criterions occur, first stop criterion occurs 

when the objective function reaches to zero, second criterion is fulfilled when the 

amplitude of oscillation reaches to zero. 

 

Begin 

Determine the values of (A0) , (L) , ( ) and
 ( ) ; 

Create an initial solution X; 

X
’

X; 

A A0; 

t 1 ; 

Repeat 

For i=1 to L do: {Search Loop} 

Generate a neighboring solution X
”
 from 

The neighborhood of X
’
 by neighborhood structure; 

Calculate =E (X
”
) – E(X

’
); 

If ≤ 0 then X
”

X
’
; 

Else if ≥ 0 then generate random R in the range (0,1) ; 

If 1-
2

2

2

A

e >R then X
”

X
’
 ; 

End if 

Else X
’
 is preferred; 

End if 

End for {End of Search Loop} 

Update A and t (A  2
0

t 

eA and t t+1); 

Until the stop condition is reached 

End. 

 

Figure 2. The pseudo code of the proposed VDO algorithm 
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3.3 Simulated annealing 

 

For validation the VDO algorithm especially for large size problems, the 

simulated annealing (SA) algorithm as a well-known local search metaheuristic 

algorithm selected and describe in this section. First time a physical annealing 

process was simulated by Metropolis (1953). Using of cooling process in 

optimization problems as simulated annealing optimization problem was suggested 

by Kirkpatrick (1980). Simulated annealing procedure is one of the neighborhood 

search methods and is used in both continuous and discrete optimization problems. 

 

3.3.1 Cooling scheme 

 

The adaptive cooling scheme described by Bouleimen (2003) and Boctor 

(1996) is used in our algorithm to control the cooling process. We use a certain 

fixed parameter, , for cooling program according to the following formula. 

 

3.3.2 Markov 

chain 

 

A Markov chain is a random process that consists of a finite number of 

states with the property that the next state depends only on the current state and 

some known probabilities p, where p is the probability of moving from a state to 

another. The length of the Markov chains, L, specifies the number of 

neighborhoods generated for a fixed value of the temperature. We assume that the 

length of Markov chains is deterministic and depends on the size of the problem. 

 

3.3.3 Stop criterion 

 

The stop criterion is fulfilled when at least one of two stop criterions occur; 

first stop criterion occurs when the objective function reaches to zero, second 

criterion is fulfilled when the temperature in SA algorithm reaches to the final 

value. 

The objective function, starting solution and neighborhood generation 

mechanism of VDO algorithm are like the simulated annealing algorithm. 

 

4 Tuning and comparison 

 

In this section, the parameters of the two algorithms are first tuned. Then, 

the computational performance of the VDO and SA on a set of test problems is 

analyzed. 

 

 

 

http://en.wikipedia.org/wiki/Markov_property
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4.1 Tuning the parameters 

 

In this section response surface methodology (RSM) is used to determine 

the effective parameters of the algorithms. RSM is a collection of statistical and 

mathematical techniques useful for developing, improving, and optimizing 

processes (Raymond et al. 2002). The aim is to find the levels of the algorithms 

parameters and subsequently the best values for the both of the value of the 

objective function and run time. Length of the Markov chain (L), Primary 

temperature (To), Final temperature (Tf), Cooling program parameter ( ), 

Probability of activity list shift (Po) and Probability of delay list change (Pd) are 

assumed as input variables for SA and Length of the Markov chain (L), 

Primary amplitude (A0), Probability of activity list shift (Po) and Probability of 

delay list change are considered as input variables for VDO algorithm. 

 In order to generalize the statistical results, a set of 27 test problems that 

include problems with 10, 20 and 30 non dummy activities with 3, 4 and 5 

resources are generated using RanGen project scheduling instances generator 

developed by Demeulemeester et al. (2003). RanGen has three project 

characteristics including OS, RF and RC. The values 0.25, 0.5 and 0.75 are 

considered for the order strength, the density of the network. The value of 1 is used 

to resource factor, the average number of resource types used by an activity and 

finally the value of 0.25 is considered for resource constrained-ness, the average 

portion of the resource availability. The earliness and tardiness unit costs are 

randomly chosen from the [0, 10]. The due date generating method developed by 

vanhoucke et al. (2001) is used to calculate the due dates of activities with some 

differences. First, a maximum due date is obtained for each project by multiplying 

the critical path length with one of the 1, 1.25, 1.5, 1.75, 2, 2.25 and 2.5 factors. 

Then 2n random numbers are generated between 1 and the maximum due date. 

Finally, these numbers are sorted and assigned to the activities interval due date 

limits in increasing order. Tables 1 and 2 present the levels of the input variables 

for SA and VDO, respectively. 

 

Table 1: The levels of the input variables for SA algorithm 

Size Levels L To Tf Pd Po 

Small problems  

(10 activity) 

Low 10 8 0.3 0.8 0.2 0.15 

High 16 10 0.5 0.9 0.6 0.35 

Medium problems 

(20 activity) 

Low 20 12 0.2 0.85 0.2 0.15 

High 26 16 0.4 0.93 0.6 0.35 

Large problems 

(30 activity) 

Low 24 14 0.15 0.85 0.2 0.15 

High 28 18 0.35 0.93 0.6 0.35 
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Table 2: The levels of the input variables for VDO algorithm 

Size Levels L A0 Pd Po 

Small problems  

(10 activity) 

Low 23 0.7 0.25 0.03 0.2 0.15 

High 29 0.9 0.35 0.05 0.6 0.35 

Medium problems 

(20 activity) 

Low 23 0.4 0.35 0.03 0.2 0.15 

High 29 0.5 0.45 0.05 0.6 0.35 

Large problems 

(30 activity) 

Low 30 0.1 0.4 0.03 0.2 0.15 

High 40 0.2 0.6 0.05 0.6 0.35 

 

The fractional two-level factorial design, 2
6-2

 with four central points is 

chosen for the experiments. The algorithms are run according to the design. The 

results obtained from the analysis of variance test showed a statistically significant 

curvature on the two response surfaces. Therefore, CCF (Central Composite Face 

Centered) as second order model, which consists of a fractional two-level model 2
6-

1
 with 9 central points and 12 axial points, is employed to perform the experiments 

in three problem sizes. 

 The fitted second order models for three problem sizes and two algorithms 

are shown in the equations (12)-(23). The value of objective function and run time 

are denoted by Y and Y', respectively. For example YSA1 in the equation (12), 

denotes the value of the objective function in small size problems that is obtained 

from the SA algorithm. 

 

YSA1 = 106.262 - 1.808 L + 0.629 Tf - 2.535 + 0.818 Pd + 0.877 PO + 0.593 L.  

0.874 .Pd – 0.647 .PO                                                                                        (12) 

                             

YSA1
' 
= 2.128 + 0.57 L + 0.067 TO - 0.181 Tf + 0.867  - 0.049 Pd + 0.28 

2
 -0.052 

L.Tf   + 0.215 L. - 0.053 L.Pd - 0.0887 Tf. - 0.051 .Pd                                   (13) 

 

YSA2 = 685.779 + 5.326 Tf – 10.461                                                                   (14) 

 

YSA2'= 25.636 + 4.091 L + 1.036 TO – 2.822 Tf + 10.87  + 0.021 Pd + 4.448 
2 
– 

0.553 L.Tf + 1.176 L + 0.407 TO.  - 0.746 Tf. - 0.479 .Pd                         (15) 

 

YSA3 = 1006.21 - 9.157 L +7.234 Tf – 20.606  + 17.463 Pd – 7.635 PO            (16) 

 

YSA3
'
 = 66.765 + 5.827 L +2.551 TO – 7.632Tf + 29.298  + 1.438 Tf

2
 + 10.948 

 0.510 L.Tf + 2.147 L.  + 0.907 TO.  - 3.049 Tf.                                        (17) 
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YVDO1 = 105.342 – 1.171 L + 2.021 L
2 
                                                                (18) 

 

YVDO1
'
= 1.849 + 0.198 L – 0.2  – 0.019 L                                                         (19) 

 

 

YVDO2 = 690.328 – 0.762 L + 3.507  + 2.075 A0 + 3.236 Pd + 5.135 
2
 – 4.261 L.  

– 3.733 L.A0                                                                                                          (20) 

 

YVDO2
'
= 27.01 + 3.235 L – 3.187  + 1.292 A0 – 0.311 L.  – 0.337 .A0              (21) 

 

 

YVDO3 = 1009.33 – 4.028 L – 2.482  – 2.771 A0 + 13.861 Pd + 18.33 L
2
 – 10.34 

L.Pd – 7.416 .A0                                                                                                  (22) 

 

YVDO3
'
= 61.445 + 9.257 L – 12.622  + 2.648 A0 + 3.722 

2
 – 1.97 L.  – 1.358 .A0                         

(23) 

 

Since the aim is to find the parameter values of the algorithms such that 

both the value of the objective function and run time are simultaneously optimized, 

we have to solve a bi-objective decision making problem with conflicting 

objectives. We can combine two objectives as following model: 

 
 

Where f1(x) and f2(x) denote estimated values for two objectives (the value 

of objective function and run time). The optimum value for two objectives are 

denoted by f1
*
 and f2

*
 regardless to the bi-objective model. Xi, Li and Ui denote 

factor i, low level of factor i and high level of factor i, respectively. Regarding the 

importance of the value of the objective function in comparison with run time, the 

value 0.75 is chosen for w and subsequently 0.25 for 1-w, weights of objective 

function and run time, respectively. Finally, the optimum values of the parameters 

are obtained using LINGO 8 software. The optimum parameter values are 

presented in tables 3 and 4. 
 

 

 

1

* *

1 1 2 2

* *

1 2

( ) ( )
 (1 )

p p p

f x f f x f
Min w w

f f
                               (24) 

. :s t            

iL i iX U                                                                                                (25) 
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Table 3: Optimum values of parameters for SA 

Size L To Tf Pd Po 

Small problems 10 8 0.5 0.8 0.2 0.15 

Medium problems 20 12 0.4 0.8523 0.2 0.25 

Large problems 24 14 0.35 0.8524 0.2 0.35 

 

Table 4: Optimum values of parameters for VDO 

Size L A0 Pd Po 

Small problems 24 0.8 0.9 0.04 0.4 0.25 

Medium problems 23 0.45 0.45 0.03 0.2 0.25 

Large problems 30 0.2 0.2 0.05 0.2 0.25 

 

 

4.2 Comparison of the VDO algorithm vs. SA algorithm 

 

In order to compare the performance of VDO algorithm, we have coded 

the VDO and SA procedures in the MATLAB version 7.4. We have generated a 

problem set, consisting of 90 problem instances, by the project generator RroGen, 

using the parameters setting as subsection 4.1. Algorithms are run 5 times for each 

problem. The experiments are performed on a laptop with 1.6 GHz CPU (Genuine 

Intel(R)) and 1 GB RAM, limiting the solution times to be less than or equal to 3.5, 

22 and 60 CPU seconds for small, medium and large size problems, respectively. 

Regarding the importance of the value of the objective function, the comparisons 

are done based upon the value of the objective function criterion. Also, for 

robustness comparison of the algorithms, we consider the relative deviation percent 

(RDP) criterion. Relative deviation percent for problem instance i at iteration j 

(RDPij) is computed as follows: 

 

aluefunction v objective foundBest 

aluefunction v objective foundBest - iteration at  aluefunction v Objective j
RDPij

  (26)   

 

 

4.2.1 Comparison of the algorithms in the small size problems 

 

For the comparison of the algorithms in the small problems, 30 problems 

including 10 activities with 3, 4 and 5 resources are considered. Table 5 shows the 

computational results of the proposed algorithms in small size problems. The 

results of table 5 show that the solutions quality of SA is better than the solutions 

quality of VDO in small size problems. In addition it seems that the best solution 

values of SA are better than VDO, overall. 

 



 

 

 

 

 

 
Using VDO Algorithm for RCPSPWET and Interval Due Dates 

_______________________________________________________________ 

 

 

Table 5: Computational results of the proposed algorithms in the small size 

problems 

            Solutions        

                   Average 

      Best solutions 

average No. Of 

problems 

No. of 

resources 

 No. of    

activities 
VDO SA VDO SA 

260.5 263.4 253.8 254.7 10 3 

10 242.7 241.1 237.4 235.8 10 4 

192.8 190.0 188.2 185.8 10 5 

 

A Paired t-test is used to perform a hypothesis test of the mean difference 

between paired observations in the algorithms outputs. Analysis of variance results 

in table 6 show that at 95% confidence level, Null hypothesis is accepted. It means 

that there is no significant difference between the mean solutions of the two 

methods. 
 

Table 6: Analysis of variance results for small size problems  
-----------------------------------------------------------------------  

                                    N    Mean   St. Dev   SE Mean 

SA                               30   231.5    105.4     19.2 

VDO                           30   232.0    103.4       18.9 

Difference                   30   -0.47     6.67        1.22 

-----------------------------------------------------------------------  

95% CI for mean difference: (-2.96; 2.03) 

T-Test of mean difference = 0 (vs. ~ = 0): 

T-Value = -0.38,   P-Value = 0.705 

-----------------------------------------------------------------------  

 

For robustness comparison of the algorithms, we test the equality of 

relative deviation percent of two algorithms, statistically. Table 7 shows that at 

95% confidence level, equality of relative deviation percent of two algorithms is 

accepted statistically.
 

 

Table 7: Robustness results for small size problems (two way test)  
-------------------------------------------------------------------------------  

                    N       Mean      St. Dev      SE Mean 

SA              30      0.3106     0.2445      0.0446 

VDO           30      0.2852     0.1809      0.0330 

Difference   30      0.0254     0.2330      0.0425 

------------------------------------------------------------------------------  

95% CI for mean difference: (-0.0616; 0.1124) 

T-Test of mean difference = 0 (vs. ~ = 0) 

T-Value = 0.60,  P-Value = 0.555 

-------------------------------------------------------------------------------  
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4.2.2 Comparison of the algorithms in the medium size problems 

 

For performance comparison of the algorithms in the medium size 

problems, 30 problems including 10 activities with 3, 4 and 5 resources are 

considered. Table 8 shows the computational results of the proposed algorithms in 

medium size problems.
 

 

Table 8: Computational results of the proposed algorithms in the medium 

problems 

            Solutions  

                   Average 

     Best solutions 

average No. Of 

problems 

No. of 

resources 

 No. of 

activities 
VDO SA VDO SA 

801.2 795.16 763.9 750 10 3 

20 838.16 847.44 784.5 802.7 10 4 

1178.36 1171.66 1119.4 1113.7 10 5 

 

The results of the paired t-test in table 9 show that at 95% confidence level, 

Null hypothesis is accepted. It means that there is no significant difference between 

the mean solutions of the two methods. 
 

Table 9: Analysis of variance results for medium size problems 
-----------------------------------------------------------------------  

                                     N   Mean   StDev  SE Mean 

SA                               30    938    660      121 

VDO                            30    939     657      120 

Difference                    30  -1.15   31.81     5.81 

-----------------------------------------------------------------------  

95% CI for mean difference: (-13.03; 10.72) 

T-Test of mean difference = 0 (vs. ~ = 0): 

T-Value = -0.20,  P-Value = 0.844 
------------------------------------------------------

Table 10 shows that at 95% confidence level, equality of relative deviation 

percent of two algorithms is accepted statistically. 

 

Table 10: Robustness results for medium size problems (two way test) 
------------------------------------------------------------------------------  

                     N       Mean       St. Dev     SE Mean 

SA                30      0.3102     0.1982      0.0362 

VDO            30       0.3711    0.2790      0.0509 

Difference   30       -0.0609   0.2580      0.0471 

------------------------------------------------------------------------------  

95% CI for mean difference: (-0.1573; 0.0354) 

T-Test of mean difference = 0 (vs. ~ = 0) 

T-Value = -1.29,  P-Value = 0.206 

------------------------------------------------------------------------------  
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4.2.3 Comparison of the algorithms in the large size problems 

 

For comparison of two algorithms in the large size problems 30 problems 

including 10 activities with 3, 4 and 5 resources are considered. Table 11 shows the 

computational results of the proposed algorithms in large size problems. In this 

problem size the situation seems to be unlike previous problem sizes. The results of 

table 11 show that the solutions quality of VDO is better than the solutions quality 

of SA in large size problems. Furthermore, the best solution values of VDO is 

better than SA overall. 
 

Table 11: Computational results of the proposed algorithms in the large 

problems 

Solutions Average 
      Best solutions 

average No. of 

problems 

No. of 

resources 

 No. of 

activities 
VDO SA VDO SA 

2481.08 2459.12 2383.2 2378.8 10 3 

30 2408.33 2427.43 2338.6 2357.1 10 4 

2407.07 2437.16 2296.4 2328.7 10 5 

 

A paired t-test is applied to perform a hypothesis test of the mean 

difference between paired observations in the algorithms outputs. The results of the 

statistical test in table 12 show that at 95% confidence level, Null hypothesis is 

accepted. It means that there is no significant difference between the mean 

solutions of the two methods. 

 

 

Table 12: Analysis of variance results for large size problems 
-------------------------------------------------------------------------  

             N  Mean  StDev   SE Mean 

SA          30  2441   1344      245 

VDO         30   2432   1338      244 

Difference  30   9.1   84.6     15.4 

-------------------------------------------------------------------------  

95% CI for mean difference: (-22.5; 40.7) 

T-Test of mean difference = 0 (vs. ~ = 0): 

T-Value = 0.59,  P-Value = 0.561 

-------------------------------------------------------------------------  

 

Table 13 shows that at 95% confidence level, there is significant difference 

between the robustness of the two methods, Namely, VDO has more robustness 

than SA.   
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Table 13: Robustness results for large size problems (two way test)  
------------------------------------------------------------------------------  

                     N      Mean       St. Dev       SE Mean 

SA                30     0.2459     0.1991       0.0363 

VDO            30     0.1792     0.1952       0.0356 

Difference    30     0.0667    0.1772        0.0324 

------------------------------------------------------------------------------  

95% CI for mean RDP difference: (0.0005; 0.1328) 

T-Test of mean RDP difference = 0 (vs. ~ = 0) 

T-Value = 2.06,    P-Value = 0.048 

------------------------------------------------------------------------------  

 

5 Conclusions  

 

In this paper the resource constrained project scheduling problem with 

weighted earliness-tardiness penalty costs (RCPSPWET) and interval due dates has 

been considered. A mathematical model with new assumption about the due dates 

has been developed. A novel metaheuristic algorithm namely vibration damping 

optimization (VDO) algorithms have been applied to solve proposed model. A 

comprehensive computational experiment has been described which has been 

performed on a set of standard test problems constructed by the RanGen project 

generator and VDO algorithm was compared with simulated annealing (SA) 

algorithm and the parameters of two algorithms have been fine-tuned by using 

response surface methodology (RSM) and central composite face centered (CCF) 

design on 27 test problems. The consequences of the computational experiment 

showed that vibration damping optimization algorithm has more robustness than 

simulated annealing at large size problems. 
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