

Professor Ion LUNGU, PhD

E-mail: ion.lungu@ie.ase.ro

Economic Informatics Department

The Bucharest Academy of Economic Studies

Lecturer Dana-Mihaela PETROŞANU, PhD

E-mail: danap@mathem.pub.ro

Department of Mathematics-Informatics I

The Polytechnic University of Bucharest

Lecturer assistant Alexandru PÎRJAN, PhD

E-mail: alex@pirjan.com

Statistics and Mathematics Department

The Romanian-American University

SOLUTIONS FOR IMPROVING THE PERFORMANCE OF

RANDOM NUMBER GENERATORS USING GRAPHICS

PROCESSING UNITS

Abstract. In this paper, we have researched the possibility of using

graphics processing units (GPUs) for generating a variety of random numbers. We

have compared the performance obtained on the latest GPUs architectures with

the one recorded on a high-end central processing unit, we have analyzed the main

features of each architecture that influence the performance, we have developed

solutions for optimizing the performance of random number generators. Although

there is a great interest lately in implementing random number generators on

parallel architectures, none of the works so far (to our best knowledge) has

developed and studied implementations on Kepler, the latest Compute Unified

Device Architecture (CUDA) architecture. We have developed a high performance

implementation, harnessing the computational resources of the latest Fermi and

Kepler architectures, studying their optimization potential, their impact on the

execution time, on the generated samples bandwidth, on the energy consumption

and on the execution cost.

Keywords: random number generators, graphics processing units,

Compute Unified Device Architecture, Kepler architecture, execution threads.

JEL Classification: C15, C61, C63, C88

1. Introduction

A high performance random number generator is of paramount importance

in a wide range of applications, like mathematical systems, signal processing,

nuclear physics, cryptography, financial management and simulations. Most of the

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

random number generators are sequential, facing severe performance limitations.

The huge parallel computational power of graphics processing units (GPUs) that

incorporate the Compute Unified Device Architecture (CUDA) represents a great

opportunity to develop and implement efficient parallel random number generators

that overcome the limitations of previously central processing units (CPUs) based

architectures that sequentially generated samples of data.

In this paper, we have analyzed the use of GPUs in parallel random

number generation. We have implemented the Mersenne Twister random number

generator algorithm in the parallel Compute Unified Device Architecture and we

have developed optimization solutions that harness the computational power of the

GPUs. We have generated a wide range of samples (ranging from 35-size up to

120 million-size samples). We have researched the obtained performance on the

most powerful CUDA architectures (Fermi and Kepler) and also on a high-end

Central Processing Unit (Sandy Bridge), we have analyzed the technical

specifications of each architecture and their influence on the obtained performance

level thus obtaining optimization solutions targeting the performance of the

Mersenne Twister random number generator on the CUDA architecture.

Lately, there has been a lot of interest in the literature for optimizing

random number generators, taking into account their numerous applications, but

none of the works so far (to our best knowledge) has studied the optimization

potential of the latest CUDA architecture, Kepler, its impact on the performance,

on energy consumption due to the generation of random numbers samples, the

impact of the generated sample’s size on the performance and on the processing

costs.

2. The Compute Unified Device Architecture

At the beginning, the graphics processing units’ (GPUs’) sole purpose was

to render graphics. As time passed by, the necessary computational power required

for graphics rendering kept increasing, leading to an inherent evolution of the

graphics processing unit. In 2006, the Nvidia company announced and launched

the Compute Unified Device Architecture (CUDA), a novel parallel programming

model that used the huge computational power of the GPUs in order to solve

demanding scientific computational problems in a much more efficient manner

than by using solely the central processing units. This architecture makes it

possible for the GPU to execute and run programs that have been developed in

programming languages such as C, C++, Direct Compute, OpenCL, FORTRAN.

The computational tasks are executed in parallel by many threads that are grouped

in thread blocks, that are further grouped in grids of thread blocks. The graphics

processing unit instantiates a special function (kernel) on a grid of thread blocks

and each thread of the block executes a kernel’s instance, having an unique

attached ID, private memory and associated registers [1].

The CUDA processing model offers three levels of abstraction: thread

hierarchy, memory hierarchy and barrier synchronization [1]. Using a set of C-

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

language extensions, the developer has access to these abstractions that offer the

possibility to implement fine-grained parallelism for data and threads along with

large grained parallelism for data and tasks. The abstractions allow the developer

to sub-divide the problems into smaller ones that can be processed in parallel. This

offers a high degree of scalability as every thread can cooperate when processing

the tasks and so each task can be processed by any of the available CUDA cores.

As a consequence it is possible to execute a program compiled in CUDA C on any

number of CUDA cores.

The hierarchy of threads is associated to the hierarchy of the CUDA

hardware processors: one or more kernel grids are executed by the graphic

processing unit; the streaming multiprocessor (SM) launches in execution the

thread blocks; within the blocks, the CUDA cores of the streaming multiprocessor

run the threads. A streaming multiprocessor can process groups of up to 32 threads.

A group of 32 threads is called a warp. Every multiprocessor has a set of 32-bit

registry and a shared memory zone, accessible by each core of the multiprocessor

but is not visible to other multi-processors (Figure 1).

Figure 1. NVIDIA Compute Unified Device Architecture (CUDA)

The size of the shared memory and the number of registry varies from one

GPU generation to another. The multiprocessor also contains a read only memory

cache for the texture and another one for storing the constants.

When developing algorithms in the CUDA programming model, one must

divide the tasks into smaller fragments that can be processed by the desired number

of available thread blocks, each of them containing a previously specified number

of threads. The most important factor for obtaining a high degree of performance is

to take into account how the tasks are allocated to the available thread blocks.

This architecture uses the GPU’s computational processing power, offering

a new parallel programing model useful in solving high-demanding computational

processing tasks in a much more efficient manner than using solely central

processing units (CPUs) [2]. The CUDA architecture makes it possible to improve

the software performance of a wide range of data processing applications. In this

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

context, the improvement of many applications that make use of random numbers

can be achieved using random number generators, accelerated by many-core

graphics processing units.

Once the CUDA-C language was introduced, the application developers

were able to benefit from the increased computational power of the latest CUDA-

enabled GPUs, through a standard programming language. CUDA-C allows the

developers to control how tasks are being parallelized and executed by the parallel

threads of the GPU [3] and also offers a high level of control that facilitates the

development of resource demanding applications.

In our research we have used two of the most powerful graphics processing

cards: the GTX 480 from the Fermi architecture GF100 and the GTX 680 from the

Kepler GK104 architecture.

3. The Mersenne Twister random number generator algorithm

An algorithm generating a sample of numbers that approximates the

properties of random numbers is a pseudorandom number generator. The algorithm

starts with a small set of initial values, that contains a truly random seed and this

set of values determines entirely the sequence. Therefore, the algorithms of this

type are also called deterministic random bit generators. Due to their efficiency in

generating numbers, these pseudorandom number generators are extremely useful

in many practical applications (Monte Carlo financial simulations, physical

systems, etc). When using a pseudorandom number generator, one must assure,

through rigorous mathematical methods, that the generated numbers satisfy a

certain degree of randomness that fits to the intended purpose.

Developed by Makoto Matsumoto and Takuji Nishimura [4], the Mersenne

Twister pseudorandom number generator algorithm surpasses many of the previous

algorithms’ limitations. This algorithm is characterized by a high performance,

efficient use of memory, long period and good distribution property. The

Mersenne Twister algorithm is faster than many other known generators, being

equidistributed in up to 623 dimensions for 32-bit sequences, having a huge period:

1219937 iterations. All of these advantages, make the Mersenne Twister a

powerful tool in generating random number samples.

In the following, we mention a few notations and describe some

mathematical aspects regarding the Mersenne Twister random number generator

algorithm, using these notations: i and j are two fixed natural numbers, ji1

(the parameter j is called the degree of recurrence and i is called the middle

term); 0)(kkw is a sequence of d -dimensional bit vectors; 10 ds a natural

number;)(1

r

k

l

k w|w a d -dimensional bit vector obtained by concatenating the

left sd bits of the kw vector and the right s bits of 1kw ; M a quadratic d -

dimensional bit matrix (called twister).

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

The Mersenne Twister algorithm [5], generates d -dimensional bit vectors

using the recurrence:

Mw|www)(1

r

k

l

kikjk (1)

where is the addition of bit values modulo 2 (exclusive OR operation, XOR)

and Mw|w)(1

r

k

l

k represents the multiplication of the d -dimensional bit vector

)(1

r

k

l

k w|w and the twister M .

All arithmetic operations are modulo 2, and therefore the equation (1)

represents a linear reccurence of vectors in the field }1,0{ . The vectors

110 ,...,, jwww are called the initial seeds and are known. Using the equation (1)

and choosing 0k , it is generated the vector jw . When k takes values ,...2,1 ,

the generator provides the vectors ,...21, jj ww The chosing of different values of

s provides various particular cases of reccurence: the algorithm for the case 0s

is studied in [6], [7] and is named TGSFR, while in the case 0s and dIM the

algorithm is named GFSR and is studied in [8]. By choosing a convenient form of

the matrix M , the computation of the Mw|w)(1

r

k

l

k product from equation (1)

becomes simple and fast. In [4] is proposed a form called the companion matrix:

0321 ...
1...000

...
0...100
0...010

mmmm ddd

M (2)

where),...,,(021 mmm ddm is a d -dimensional bit vector. If

),...,,(021 www ddw is a d -dimensional bit vector, the multiplication of the

vector w with the matrix Mgives:

1),,...,,,(

0),...,,,,0(

00132211

01321

wifmwmwmwm

wifwwww

ddddd

ddd
Mw (3)

that can be written more concise:

 1 ,

0 ,

0

0

wif)(shiftrightlogical

wif)(shiftrightlogical

mw

w
Mw (4)

using the logical right shift operator.

Each generated bit vector w is then multiplied by a invertible quadratic d -

dimensional bit matrix T , called tempering matrix [4], [6], [7]. The multiplication

with this matrix, that improves the distribution properties and the least significant

bits, is done using some successive transformations:

)u(wwy (5)

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

)&) b((yyy s (6)

)&) c((yyy t (7)

 l(yyz) (8)

where ltsu ,,, are natural numbers, b and c are suitable d -size bitmasks, the

notation uw signifies the logical u -bit right shift and the notation

ly signifies the logical l -bit left shift. The equations (5)-(8) transform the bit

vector w in Twz .

In order to use the equation (1), one must previously know j bit vectors of

d -dimension. We denote by]1:0[jw an array of j bit unsigned integers of

d -dimension, p a natural variable and mr,l, constant unsigned integers of d -

size. Using these notations, the algorithm can be resumed in the following steps:

1. The bitmask for the left sd bits:  0...01...1
ssd

l

 The bitmask for the right s bits: 
ssd

1...10...0r

 The last row of the companion matrix: ... 0121 mmmm ddm

2. 0p

Non zero initial-values: 1]w[jw[1],...,w[0],

3. Concatenating),(1

r

p

l

p ww :)] mod(OR)(r1)w[(plw[p]x &j&

4. Multiplying M :

1 ofbit t significanleast theif

0 ofbit t significanleast theif 0
XOR

)1(XOR] mod

x

x

i)w[(pw[p]

a

xj

5. Computing Tw[p] :

w[p]x

)(XOR uxxx

)&)((XOR bsxxx

)&)((XOR ctxxx

)(XOR lxxx

xoutput

6. jpp mod)1(

7. Return to Step 3.

In the following, we present an efficient method for designing and

implementing the Mersenne Twister pseudorandom number generator algorithm in

the CUDA architecture.

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

4. The CUDA implementation of the Mersenne Twister random

numbers generator algorithm

As we have depicted above, the Mersenne Twister algorithm uses the

following 11 parameters: the dimension d of bit vectors; the degree of recurence

j and the middle term i ; the separation point s , that appears in the concatenation

)(1

r

k

l

k w|w ; the d -dimensional bit vector),...,,(021 mmm ddm , the last row

of the companion matrix M ; the tempering shift parameters ltsu ,,, ; the

tempering d -size bitmasks, b and c .

The Mersenne Twister algorithm is suitable to be implemented in the

CUDA parallel programming model, as CUDA supports bitwise arithmetic and

random writes in memory. One must take into account the fact that the Mersenne

Twister algorithm is iterative, just like most of the pseudorandom number

generators. Therefore, it is difficult to parallelize one of the state’s update steps

over multiple threads. The graphic processing unit must employ thousands of

execution threads in the grid of thread blocks in order to benefit at maximum from

its computational power. In order to overcome this problem and harness the

computational potential of the GPU, we have processed in parallel more instances

of the pseudorandom number generator. After analysing the experimental results,

we have observed that although the initial values have been chosen differently, the

generated output sequences were correlated when we have used the same

parameters for the random number generator. So, in order to obtain an efficient

algorithm’s implementation in CUDA, we arrived at the solution of using the

DCMT library developed by Makoto Matsumoto and Takuji Nishimura (1998) [9]

in order to dynamically create the parameters for the Mersenne Twister algorithm.

Thus we have encapsulated the thread’s ID into the algorithm’s parameters for

each thread, so that they can update their own twister matrix independently,

assuring in this way that the output contains random values.

We have first used DCMT to compute for each thread the custom

parameters that our CUDA implementation uses in the process of generating the

random numbers. Although, as we have previously specified at the beginning of

this section, the Mersenne Twister algorithm requires the specification of 11

parameters, only the parameters that are bit vectors vary, at the same moment of

time and DCMT seed, depending on the chosen thread: the last row of the

companion matrix, the d -dimensional bit vector),...,,(021 mmm ddm ; the

tempering d -size bitmasks, b and c .

All the other parameters are being shared by all the threads. During the

execution, the CUDA threads store their state in a local memory array. Each thread

within a warp accesses the same state index as the parameters i and j are the same

for every thread. The read and write operations performed on the state arrays are

always coalesced. The random uniform distributed number sequences, generated

by the Mersenne Twister algorithm or any other random number generator, can be

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

transformed in standard normal distribution, using the Box-Muller transformation

[10].

In order to obtain an improved version of the Mersenne Twister

algorithm’s implementation in CUDA, we have developed and implemented a

series of solutions for optimizing its performance:

Solution 1. Balancing the computational load, using multiple

simultaneous Twisters processed in parallel. In order to efficiently employ the

thousands of parallel threads offered by the CUDA architecture, we have processed

multiple simultaneous Twisters processed in parallel, thus correctly balancing the

computational load. This technique generates a sufficient computational load so

that the computational power of all the CUDA cores is entirely harnessed during

the execution phases.

Solution 2. Optimizing the distribution of tasks to each of the threads.

Generating a single element per thread does not create a sufficient computational

load for reducing the memory latency. Each thread incorporates its own private

registers, private memory and a state counter. A thread may independently process

a part of the source code. At the hardware level, the graphic processing unit

manages and executes hundreds of parallel concurrent threads, thus reducing the

memory latency and scheduling overloading. The Kepler GK104 architecture has

1536 CUDA cores, while the Fermi GF100 architecture offers 512 processing

cores. The graphic cards we have used in our research incorporate 1536 CUDA

cores for the GTX 680 and 480 CUDA cores for the GTX 480. In order to

completely employ and benefit from the computational power of all these cores,

we have distributed the tasks of processing multiple simultaneous Twisters, thus

employing hundreds of threads in the process of generating random numbers. For

improving the software performance in CUDA, when we have defined the threads,

we took in consideration the high latency of global memory. While the CPU’s

architecture makes use of large dimension cache memory in order to hide memory

latencies, the CUDA architecture makes use of thousands of threads to compensate

and reduce the memory latency [11]. We have obtained the best results when using

thread blocks of 256 threads per block for the GTX 480 and blocks of 512 threads

for the GTX 680.

Solution 3. Minimizing the number of used registers. Like we have

previously mentioned, the CUDA architecture uses multiple threads in order to

reduce memory latency, but their number is often limited by their registry

requirements. Therefore, we have decided to minimize the number of used

registers in order to maximize the number of available threads. Optimizing the

number of used registers is very important in generating random numbers, because

many registers are required to store and manage the intermediate results.

Solution 4. Shared memory usage. To obtain an efficient implementation

of the random number generator in CUDA, we have used the GPU’s shared

memory in order to locally store the data that must be processed and to improve the

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

level of coherence, thus optimizing the overall performance, due to the reduced

latency and improved memory bandwidth offered by the shared memory.

Solution 5. Managing shared memory banks conflicts. The CUDA

shared memory contains multiple memory modules of equal size, called memory

banks [2]. A 32-bit value is stored by each of the memory banks. When multiple

data is requested from the same memory bank, a memory bank conflict might

occur. These conflicts arise even if the requests come from the same address of

memory or from different addresses. When such a conflict happens, the hardware

device initiates a serialization process that puts all the threads in a standby mode

until all the requests from the memory addresses have been processed. This process

can be prevented if the same shared memory address is read by all the threads

involved. In this case, a complex distribution mechanism that delivers data to many

threads simultaneously is triggered [11].

Solution 6. Using the warp shuffle operation. This is a solution that we

have implemented only for the GK104 Kepler architecture (GTX 680 processor),

because the warp shuffle operation is only supported by devices having the

compute capability 3.x. By using the warp shuffle operation, we were able to

exchange data between the threads within a warp directly (without having to use

global or shared memory) with an even lower latency than when using shared

memory. In this way we were able to save a large amount of shared memory space

for other computational tasks.

 Solution 7. Managing the synchronization of parallel tasks. The

synchronization is usually implemented by defining a synchronization barrier

within the application, from which a task cannot continue anymore until another

task reaches a certain point. For the Kepler GK104 architecture (GTX 680) we

have minimized the number of synchronization operations by using the warp

shuffle operation (depicted in Solution 6) for exchanging data directly between the

threads within a warp. For the GF100 Fermi architecture (that does not support the

warp shuffle operation) we had to use the shared memory. We have minimized the

number of synchronization operations by processing the data in warps (groups of

32 threads). Within a warp we didn’t have to use the synchronization operations in

order to share data between threads, as the instructions were being executed in a

SIMD (Single Instruction, Multiple Data) model. We have used the

synchronization operations only when sharing data between different warps.

 Solution 8. Using multiple thread blocks. We have optimized the CUDA

implementation of the Mersenne Twister algorithm using multiple thread blocks,

leading to a significant improvement of the running time compared to the situation

when the algorithm runs on CPU. When implementing the Mersenne Twister
random number generator in CUDA, both algorithmic and hardware efficiency

have been taken into account. We have also optimized the memory access patterns

in order to reduce latency and improve the performance.

Solution 9. Minimizing the number of executed instructions. We have

noticed that, as the process of generating numbers progresses, the necessary

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

number of active threads decreases. When this number is less than or equal to 32, it

means that only one active warp remains. As the synchronization operations are

not necessary within the same warp, nor the checking of the threads’ indexes, we

have decided to remove these instructions, thus obtaining an increase in the overall

performance.

Solution 10. Minimizing data transfer from/to external memory.

Taking into account that the data transfer from/to external memory consumes a

large amount of computational resources, we have minimized as much as possible

those data transfers, obtaining thus a significant improvement regarding the

execution time of our CUDA implementation of the random number generator

algorithm.

Solution 11. Using the CPU instead of the GPU to generate low

dimension output vectors. Analysing our experimental results, we have noticed

that when the output vector’s size is relatively small (35-1500 elements), it is not

generated an enough computational load in order to fully employ the huge parallel

processing capacity of the GPUs. Therefore, we have decided to generate the

numbers in this case using the CPU, as its performance exceeds those of the tested

GPUs when low dimension output vectors are required.

In the following we benchmark and analyze the obtained experimental

results of our pseudorandom number generator’s CUDA implementation.

5. Experimental results
In order to prove the efficiency of our solutions for optimizing the

Mersenne Twister algorithm’s implementation in CUDA, we have developed a

series of experimental tests. For evaluating the performance, we have used the

following hardware and software configuration:

 the Windows 8 64-bit operating system

 the Intel i7-2600K CPU from the Sandy Bridge architecture clocked at

4.6 GHz

 8 GB (2x4GB) DDR3 RAM running in dual channel at 1333 MHz

 the NVIDIA graphic cards GeForce GTX 480 and GTX 680

 the CUDA Toolkit 5.0

 the NVIDIA developer driver version 306.94.

After experimenting with different block sizes, we have concluded that the

best level of performance is achieved with 256 threads per block in the case of the

GTX 480 GPU and a block-size of 512 threads for the GTX 680 GPU. We have

designed our random number generator to be implemented in a wide class of GPU

applications. As the transfer times between the central processing unit and the

graphic processing unit is influenced by the complexity, dimension and specific of

each application, we have decided to measure only the random numbers

generation’s execution time without including the transfer times.

We have measured the GPU’s average execution time needed for

generating a random number sample, using the CUDA Application Programming

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

Interface (CUDA API). We have preferred this method instead of those based on

operating system timers in order to avoid having latency from other sources,

latency that could have appeared taking into account that the execution is

asynchronous (the CPU continues its execution, before the GPU would have

finished the random generation of samples). We have created two timestamps

using the “cudaEvent_t” instruction, we have associated two events to these

timestamps and we have marked the beginning and the end of the processing that

generates the random numbers using the “cudaEventRecord()”. We have used the

“cudaEventSynchronize()” method to be sure that all the threads have finished the

processing before measuring the execution time using the

“cudaEventElapsedTime” instruction. We have used this approach in order to get a

reliable and accurate measurement of the execution time in the benchmark suite of

our random number generator’s implementation in CUDA (Figure 2).

Figure 2. Measuring the execution time of the random number generator’s

CUDA implementation

The first set of tests evaluates the performance obtained by applying our

random number generator’s CUDA implementation for generating sequences of

float type elements ranging from 35 to 150000000 elements. We wanted to be sure

that we obtain accurate results that we can rely upon. Therefore, we have run

10000 iterations and computed their average results when measuring the execution

time (in milliseconds) and the bandwidth (in millions of numbers generated per

second) for each generated vector on the GTX 480, GTX 680 and on a random

number generator on the i7-2600K central processing unit (Table 1, Table 2).

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

Table 1. The experimental results recorded on the i7-2600K, GTX 480 and

GTX 680 – the execution time

Test

no.

Number of

elements

Execution time (ms)

i7-2600K GTX 480 GTX 680

1 35 0.000754651 0.008342884 0.006257163

2 128 0.002263952 0.013071522 0.010195787

3 260 0.003803439 0.01286069 0.009902731

4 512 0.011712179 0.014740216 0.012555162

5 1500 0.020466127 0.032979992 0.024734994

6 30000 0.402470303 0.026143044 0.020391574

7 65589 0.900992584 0.094753468 0.073907705

8 120674 1.638859749 0.050870508 0.039678996

9 262145 3.642608261 0.087344265 0.067255084

10 500238 6.753006744 0.125052893 0.093789670

11 1048576 14.09295044 0.264924192 0.201342386

12 2097152 28.16365356 0.493946886 0.370460165

13 4194334 56.30684204 1.008645535 0.786743517

14 8388600 112.6196045 1.957686234 1.468264675

15 16000569 214.8572021 3.678578949 2.869291580

16 32009634 429.6052246 7.041303253 5.351390472

17 48097624 646.2623535 9.915622711 7.635029488

18 60000123 805.5741211 13.50315247 10.26239587

19 120000000 1612.357715 26.08548584 19.82496924

20 150000000 2017.803516 30.28605347 23.32026117

Total execution

time – 10.000 tests

(h)

16.5306114454 0.2630598862 0.2012467151

The system’s

power (kW)
0.1980000000 0.3580000000 0.3070000000

Total energy

consumption

(kWh)

3.2730610662 0.0941754392 0.0617827415

The GPU’s consumption compared to

the CPU’s

34.75 times

lower

52.98 times

lower

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

Table 2. The experimental results recorded on the i7-2600K, GTX 480 and

GTX 680 – the bandwidth

Test

no.

Number of

elements

Bandwidth (millions of numbers

generated/s)

i7-

2600K
GTX 480 GTX 680

1 35 46.3791 4.1952 5.5936

2 128 56.5383 9.7923 12.5542

3 260 68.3592 20.2166 26.2554

4 512 43.7152 34.7349 40.7800

5 1500 73.2918 45.4821 60.6428

6 30000 74.5397 1147.5328 1471.1959

7 65589 72.7964 692.2069 887.4447

8 120674 73.6329 2372.1800 3041.2564

9 262145 71.9663 3001.2846 3897.7722

10 500238 74.0763 4000.2113 5333.6151

11 1048576 74.4043 3958.0228 5207.9248

12 2097152 74.4631 4245.7035 5660.9379

13 4194334 74.4907 4158.3826 5331.2597

14 8388600 74.4861 4284.9563 5713.2751

15 16000569 74.4707 4349.6604 5576.4876

16 32009634 74.5094 4545.9815 5981.5545

17 48097624 74.4243 4850.6912 6299.5990

18 60000123 74.4812 4443.4159 5846.5999

19 120000000 74.4252 4600.2593 6052.9728

20 150000000 74.3383 4952.7747 6432.1750

We have computed the total execution time for the 10000 iterations

corresponding to each of the 20 dimensions of the generated sequences. Using an

energy consumption meter device (Voltcraft Energy Logger 4000) we have

measured the system’s power (kW) and the total energy consumption in each of the

three analyzed cases (running the tests on the CPU and on the two GPUs). We have

noticed that the system consumes 31.17 times less power when the test suite is run

on the GTX 480 GPU compared to the i7-2600K CPU. The power consumption is

better for the GTX 680 GPU than for the i7-2600K CPU, beeing 52.98 times

lower.

We have analyzed the obtained experimental results when running our

random number generator’s CUDA implementation on the two GPUs and a

random number generator on the i7-2600K CPU, when the output sequence has a

relatively low dimension (35-1500 elements). We have noticed that the CPU has

recorded the lowest execution time (Figure 3) and the highest bandwidth (Figure

4) because the processing amount, needed to generate the random elements, was

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

not high enough so that the graphic processing units could employ their huge

parallel processing power.

Figure 3. The execution time for 35 -

1500 elements of the output array

Figure 4. The bandwidth for 35 - 1500

elements of the output array

When we have generated a large dimension output array, ranging from

30000 to 150000000 elements, the GPUs have recorded the lowest execution times

and the highest bandwidths. We have obtained the best performance on the GTX

680 GPU and then on the GTX 480, a performance that has overwhelmingly

surpassed that of the CPU (Figure 5, Figure 6). In this case, the graphic

processing units benefitted from the high computational amount needed to generate

the random elements and fully employed the 512/256 allocated number of threads

per block.

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

Figure 5. The execution time for

30000-150000000 elements of the

output array

Figure 6. The bandwidth for 30000-

150000000 elements of the output

array

We have designed our algorithm to generate float or double data types

output elements. In the following, we have researched if the generated data type

influenced the performance of our random number generator’s CUDA

implementation. We have analysed the results obtained on the Kepler GK104

architecture (GTX 680), generating an input array ranging from 35 to 150000000

elements. For measuring accurate results, we have computed the average of 10000

iterations.

We have highlighted the execution time (Figure 7) and the bandwidth

(Figure 8) variation depending on the output vector’s data types. We have

obtained the best results (lower execution time, higher bandwidth) when generating

float data type elements, that is justified taking into account the amount of

necessary memory to store the analyzed data types. The high level of performance

registered in both cases, reflects the efficiency of our random number generator’s

implementation, using graphics processing units that provide a reduced execution

time and a high data processing speed, regardless of the considered data type.

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

Figure 7. The influence of the

generated data types on the execution

time

Figure 8. The influence of the

generated data types on the bandwidth

Analysing the previous obtained results, we have concluded that our

random number generator, implemented in the Compute Unified Device

Architecture, provides a high level of performance, covering a broad range of

scenarios, being a useful tool in applications that require random number

generating.

6. Conclusions

We have focused our research on developing an efficient implementation

of the Mersenne Twister random number generator algorithm in CUDA, using

different optimization solutions. After analysing the Mersenne Twister’s main

execution steps, we have developed and implemented the algorithm in the

Compute Unified Device Architecture. In this purpose, we have developed and

applied a series of optimization solutions for our CUDA implementation (Table 3).

Table 3. Solutions for optimizing the Mersenne Twister algorithm’s

implementation in CUDA

No. The Optimization Solution

Solution 1
Balancing the computational load, using multiple simultaneous

Twisters processed in parallel

Solution 2 Optimizing the distribution of tasks to each of the threads

Solution 3 Minimizing the number of used registers

Solution 4 Shared memory usage

Solution 5 Managing shared memory banks conflicts

Solution 6 Using the warp shuffle operation

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

Solution 7 Managing the synchronization of parallel tasks

Solution 8 Using multiple thread blocks

Solution 9 Minimizing the number of executed instructions

Solution 10 Minimizing data transfer from/to external memory

Solution 11
Using the CPU instead of the GPU to generate low

dimension output vectors

Our target was to fully benefit from the graphic processing units’ huge

parallel computational power. In order to achieve this, we have gradually improved

and optimized the solutions after each experimental test.

We have compared the performance of our Mersenne Twister random

number generator algorithm’s CUDA implementation with the performance

obtained by a CPU implementation of the algorithm. We have used the CUDA API

in order to measure with outmost accuracy the GPUs’ average execution time and

bandwidth. We have analysed the obtained experimental results and remarked the

following facts:

 The system consumes 34.75x less energy when generating numbers of

float data type on the GTX 480 graphics processor, than it does in the

case of the Intel i7-2600K CPU, while the GTX 680 GPU determines a

52.98x lower system power consumption than the CPU.

 When we have generated on the GTX 680 graphics processing unit

large dimension float data types arrays, ranging from 30000 to

150000000 elements, we have recorded significantly lower execution

times and bandwidth. We have managed to obtain an improvement in

performance of up to 86.53x compared to CPU, regarding both the

execution time (23.32 ms versus 2017.80 ms) and bandwidth (6432.18

millions versus 74.34 millions of numbers generated/s). The CPU has

recorded the lowest execution time and the highest bandwidth when the

dimension of generated arrays varies between 35 and 1500 elements.

This happened because the processing amount, needed to generate the

random elements, was not high enough so that the graphic processing

units could employ their huge parallel processing power. This is the

reason why we have chosen as an optimization solution to use the CPU

instead of the GPU to generate low dimension output vectors and to use

the GPU to generate large dimension data volumes.

 We have obtained the best results (lower execution time, higher

bandwidth) when generating float data type elements on the GTX 680

processor and we have recorded an improvement of up to 2x in both

execution time (0.067255084 ms versus 0.134510168 ms) and

bandwidth (5333.62 millions versus 2666.81 millions of numbers

generated/s) compared to the generation of double data type elements.

By analysing these results, we have found that, regardless of the

Ion Lungu, Dana-Mihaela Petrosanu, Alexandru Pîrjan

generated data type, the efficiency of our CUDA algorithm’s

implementation is confirmed.

 The results that we have obtained allow us to conclude that our random

number generator, implemented in the Compute Unified Device

Architecture, provides a high level of performance, covering a broad

range of scenarios, being a useful tool in applications that require

random number generating.

 Through this research, we were able to develop optimization solutions

that apply to a wide class of graphics processing units covering all the

major compute capabilities (1.x, 2.x, 3.x). In the same time, we have

developed specific optimization solutions targeted towards the Kepler

GK104 architecture, covering the devices with compute capability 3.x.

There has been a lot of interest in the literature lately for implementing

random number generators on parallel architectures, but as far as we know, there

have not been any scientific papers that developed specific optimization solutions

that improve the performance of random number generators using CUDA devices

of 3.x compute capability. We have noticed that, with a proper set of optimization

solutions, the latest Kepler GK104 architecture offers a tremendous performance

when generating random numbers.

We must mention that both graphic cards used in our research are targeted

towards rendering video games, high performance scientifically computations

being of secondary importance for these home targeted graphic cards. The Quadro

series, on the other hand, are graphic cards targeted especially towards high

performance scientifically computations, but due to their huge price and scarce

availability we had to use in our research the GTX 480 and the GTX 680 GPUs.

The performance that we managed to obtain far exceeds the one of the Sandy

Bridge i7-2600K central processing unit.

We have paid particular attention in obtaining a random number generator

solution in CUDA that self-adjusts and self-configures the number of thread

blocks, number of threads per block, number of generated elements per block

depending on the GPU’s architecture, with values that provide an optimum

performance. The obtained results confirm that our random number generator

implemented in CUDA provides a high level of performance, covering the most

important CUDA enabled GPUs architectures up to date: the GF100 Fermi and the

GK104 Kepler. These aspects prove the efficiency and usefulness of our

optimization solutions that we have specifically developed for the Mersenne

Twister random number generator algorithm’s CUDA implementation. Therefore,

our random number generator algorithm’s implementation in CUDA becomes an

useful tool for a wide range of applications that make use of random number

generation.

Without a doubt, the Compute Unified Device Architecture offers a

tremendous potential in overcoming the computational limits of today’s central

processing units architectures, facilitating the development of optimization

Solutions for Improving the Performance of Random Number Generators Using

Graphics Processing Units

__

solutions for data processing that determine a significant improvement in the

performance and energy efficiency in the entire computing industry.

REFERENCES

[1] Nvidia Corporation (2012), CUDA C Programming Guide. Version 5.0,

Nvidia Whitepaper, 14-124;

[2] Sanders J., Kandrot E. (2010), CUDA by Example: An Introduction to

General-Purpose GPU Programming. Addison-Wesley Professional, 150-280;

[3] Hwu W. W. (2011), GPU Computing Gems Jade Edition. Morgan Kaufmann,

50-120;

[4] Matsumoto M., Nishimura T. (1998), Mersenne Twister: a 623-

Dimensionally Equidistributed Uniform Pseudo-random Number Generator.

ACM Transactions on Modeling and Computer Simulation 8 (1), 3–30;

[5] Podlozhnyuk V. (2007), Parallel Mersenne Twister. Nvidia Corporation

Tutorial, 1-8;

[6] Matsumoto M., Kurita Y. (1992), Twisted GFST Generators. ACM Trans.

Model. Comput. Simul. 2, 179-194;

[7] Matsumoto M., Kurita Y. (1994), Twisted GFST Generators II. ACM Trans.

Model. Comput. Simul. 4, 251-266;

[8] Lewis T.G., Payne W.H. (1973), Generalized Feedback Shift Register

Pseudorandom Number Algorithms. J. ACM 20, 456-468;

[9] Matsumoto M., Nishimura T. (1998), Dynamic Creation of Pseudorandom

Number Generators. Proceedings of the Third International Conference on Monte

Carlo and Quasi-Monte Carlo Methods in Scientific Computing, 56-69;

[10] Griebel M., Knapek S. , Zumbusch G. (2010), Numerical Simulation in

Molecular Dynamics: Numerics, Algorithms, Parallelization, Applications.

Springer, 70-110;

[11] Pirjan A. (2010), Improving Software Performance in the Compute Unified

Device Architecture. Informatica Economica Journal, 14, 4, 30-47.

