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 Abstract. The study aims to augment commonly applied volatility models with support 

vector machines and neural networks. Further, fractional integration and asymmetric powers 

will be introduced. The proposed modeling strategy benefits from neural network based 

GARCH models and SVR-GARCH models. Following these approaches, the study proposed 

fractional integration and asymmetric power GARCH structures to obtain SVR-FIAPGARCH 

and NN-FIAPGARCH models to be evaluated in terms of learning algorithms. Models are 

evaluated for in-sample and out-of-sample forecasting of daily returns in Istanbul ISE100 stock 

index. Results suggest several findings: i. fractional integration and asymmetric power 

structures could be modeled with learning algorithms. ii. volatility clustering, asymmetry and 

nonlinearity characteristics are modeled more effectively with SVR-GARCH and MLP-GARCH 

models compared to the GARCH models. iii. SVR-GARCH models provided the lowest error 

criteria levels in out-of-sample and are closely followed by the MLP-GARCH models.  
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1 Introduction 

 Financial time series are subject to volatility clustering and asymmetry which 

result from different dynamics caused by negative and positive shocks. In financial 

econometrics, to control volatility, GARCH models are commonly applied in 

modelling time series. However, GARCH  family are criticized in the literature due to 

their insufficiency in terms of their forecasting capabilities.  
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The study aims to investigate GARCH models and to augment them with learning 

algorithms based on neural networks and support vector machines. Donaldson and 

Kamstra (1997) proposed utilization of neural network models in terms of GJR, 

GARCH and EGARCH based baseline specifications. Bildirici and Ersin (2009) 

extended to a family of neural network GARCH models to be estimated with gradient-

descent and back propagation learning algorithm cooperation to obtain forecast 

accuracy improvements. Ou and Wang (2010) and Perez-Cruz et. al. (2003) focused on 

SVR-GARCH models that benefit from support vector algorithms. The study aims to 

discuss modeling and estimation of MLP-GARCH and SVR-GARCH models with 

learning algorithms and to introduce fractional integration and asymmetric power 

versions of these models to capture different volatility dynamics which gain special 

importance for financial time series.  

  

2 Literature Review 

Econometric modeling of volatility in financial market returns following the 

ARCH specification of conditional volatility of Engle (1982) and further extended to 

Generalized ARCH (GARCH) model in Bollerslev (1986) has found many significant 

applications in light of modeling the distributional aspects such as volatility clustering, 

heavy tails, non-normal distribution. The Asymmetric GARCH model (AGARCH) 

aims modeling asymmetric effects of negative and positive shocks; whereas, negative 

and positive news have different effects on volatility. Accordingly, the Exponential 

GARCH (EGARCH) model and the GJR-GARCH model are among the main 

modeling techniques followed in applied econometrics literature. The Asymmetric 

Power GARCH (APGARCH) model is based on different power transformations 

without simple squared shocks and conditional variances as in the traditional GARCH 

models.  

Following the achievements in modeling the asymmetry in the volatility, ARCH 

(GARCH) family models are extended to different nonlinear modeling structures; 

specifically, regime switching (Hamilton and Susmel, 1994), threshold based 

regression space division with smooth sigmoid type continuous functions (Hagerud, 

1997).  

       SVM models have gathered a growing interest focusing on various nonlinear 

regression, time series and forecasting tasks. Kim (2003) utilized SVM’s for financial 

time series forecasting. Cao and Gu (2002) used SVM models with non-stationary time 

series. Müller et.al. (1997) SVM models for time series prediction for predicting time 

series with noisy data generating processes and chaotic time series under different loss 

functions and shown that SVM models provided forecast improvement compared to 

Radial Basis Functions.  
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Various attempts had been made to augment the out-of-sample forecasting 

capabilities of GARCH models since these models had been criticized of performing 

insufficient in terms of forecasting. The ANN-GARCH (Artificial Neural Network 

ARCH) developed by Donaldson and Kamstra (1997) augments the GJR model with 

multi-layer perceptron based neural network architecture with logistic squashing 

functions to model nonlinearity by benefiting the universal approximation property 

(Cybenko, 1989) of ANN models. Bildirici and Ersin (2009) augments NN-GARCH 

models further with various learning algorithms and proposes hybrid models of 9 

different GARCH family models to obtain forecast accuracy improvement in stock 

markets. Ou and Wang (2010) follows a similar hybridization approach by combining 

the benefits of least squares SVM and GARCH, EGARCH and GJR models to forecast 

financial volatilities of stock markets. Bildirici and Ersin (2013) and Bildirici and 

Ersin (2014) integrated STAR and MS type nonlinear models with neural networks 

where both the conditional mean and variance follows MLP processes. 
 The literature with respect to SVR models and their applications in Turkish 

financial markets in terms of GARCH modeling is rather limited. Ince and Trafalis 

(2006) utilizes SVR and MLP models in which input selection processes are based on 

ARIMA and VAR modeling techniques. They combine co-integration methodology. 

An application to Turkish exchange rates is provided. Their findings suggest that SVR 

outperforms the ANN for two input selection methods. Özdemir et.al. (2011) applied 

SVM models to forecast the direction of ISE100 stock index and showed that SVM 

model 76-85% correct classifications. Similarly, Kara et.al. (2011) used ANN and 

SVM models and found that ANN models provided 75.7% correct classifications; 

whereas, the correct classifications of SVM was 71.2% for ISE100 daily returns. Our 

study is different than these studies above since they focus on ANN and SVR 

implementations of financial variables; whereas, our study focuses on volatility models 

by evaluating and proposing learning algorithm augmented estimation of SVR-

GARCH and MLP-GARCH models with fractional integration and asymmetric power 

GARCH structures.   

 In Part 3, MLP and SVR models are evaluated and their relevant hybrid GARCH 

versions, namely, MLP-GARCH and SVR-GARCH models are discussed. In Part 4, 

the estimation results and forecast results are evaluated. Models are compared for their 

in-sample performances and are compared in terms of predictive accuracy for out-of-

sample forecasts. Conclusions are given in the last section. 
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3 Research Methodology and Econometric Models 

Time series models may be subject to follow nonlinear processes in different 

proportions, in the conditional mean and/or in the conditional variance. Accordingly, 

models investigated in the study are divided into groups by possessing nonlinearity in 

the conditional mean, variance, or none (or both) in the conditional variance and mean. 

In the study, the first group of models are the baseline models. The group constitutes 

the GARCH model, fractionally integrated FI-GARCH, Asymmetric Power 

APGARCH (Ding, Granger and Engle; 1993) and the fractionally integrated 

FIAPGARCH models (Baillie, Bollerslev and Mikkelsen; 1996). These models are 

taken as the baseline family of models. Second group of models utilizes Support 

Vector Regression type nonlinearity in the conditional mean and the conditional 

variance processes. The obtained models are SVR-GARCH, SVR-FIGARCH, SVR-

APGARCH and SVR-FIAPGARCH. 

 

3.1     MLP and GARCH Models 

Multi-Layer Perceptron (MLP), an important class of neural networks consists 

of a set of sensory units defined with an input layer, one or more hidden layers and an 

output layer with estimation algorithms that include back-propagation and gradient 

descent type algorithms (Rumelhart et al., 1986). Artificial Neural Network (ANN) 

models have significant applications in modeling economic variables and time series. 

The NN-GARCH and SVR-GARCH models evaluated in the study assume that the 

conditional mean processes follow a nonlinear process modelled with SVR and ANN 

processes while the conditional variance processes of a time series is allowed to follow 

a GARCH process additionally augmented with asymmetric power terms and/or 

fractionally integrated modeling. Following Donaldson and Kamstra (1997) and 

Bildirici and Ersin (2009), NN-GARCH models will be derived and further, the 

fractional integration and asymmetric power terms will be introduced to obtain the 

NN-FIGARCH, NN-APGARCH and NN-FIAPGARCH variants. 

  

i.  NN-GARCH Model  

NN-GARCH (p,q,m) model is a GARCH(p,q) process augmented with single 

hidden layer neural network as follows,  
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with the following sigmoid type neuron function, 
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    2 EEz dtdt         (3) 

  wdh ,,2
1  ~ uniform  1,1       (4) 

Note that,  htz   is the sigmoid type activation function of the form 1/(1+exp(-x)) 

and satisfies the universal approximation conditions derived by Cybenko (1989). 

 = w  is the weight vector; defined as htz  = ix  for the input variables. Hence, the 

parameters in the activation function has the h  connection weights as given in 

equation (4). For a throughout analysis, see Bildirici and Ersin (2009). 

 

ii.  NN-APGARCH Model 

 

Asymmetric power GARCH (APGARCH) structure of Ding et.al. (1993) has 

interesting features in volatility modeling. The NN-APGARCH model belongs to the 

NN-GARCH models discussed in Bildirici and Ersin (2009) and is an extension of 

Donaldson and Kamstra (1997) NN-GARCH models. The NN-APGARCH model is 

obtained by augmenting APGARCH model with artificial neural network architecture 

and modeling techniques, 
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2

1
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where,  htz   is the logistic function. The NN-APGARCH nests several models. 

The model reduces to the standard  NN-GARCH model for   =2 and k =0, the NN-

NGARCH model for k =0, and the NN-GJR-GARCH model for  =2 and 

10  k ; the NN-TGARCH model for for  =1 and 10  k . For estimation of 

NN-APGARCH models, Bildirici and Ersin (2009) proposes weight-decay algorithms 
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combined with early-stopping conditions within an algorithm corporation framework, 

where the back-propagation and conjugate-gradiend-descent algorithms are utilized.  

 

iii.    NN-FIAPGARCH Model 

 

In this study, NN-FIAPGARCH model is an augmented version of NN-

APGARCH model proposed by Bildirici and Ersin (2009). NN-FIAPGARCH model is 

also an augmented version of fractionally integrated asymmetric power GARCH 

model with neural network architecture. The model is defined as, 
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where,  htz   is the logistic function and h number of neurons. Logistic function 

belongs to the sigmoid type function family applied in neural network literature. The 

NN-FIAPGARCH nests several models. The model given in (9)-(12) reduces to the 

NN-FIGARCH model for restrictions on the power term =2 and k =0; the model 

reduces to NN-FINGARCH model for k =0; and to the NN-FIGJRGARCH model if 

 =2 and k  is so that it varies between 0 1k  . Further, the model may be 

shown as NN-GARCH model if  =1 in addition to the 0 1k   restriction. 

Furthermore, the model could be represented with short memory characteristics under 

restrictions on fractional integration parameters. By imposing 0d   to the fractional 

differentiation parameter the model in Eq. (9) reduces to NN-APGARCH model, the 

short memory model variant.  In this study, only FIGARCH and FIAPGARCH 

versions will be evaluated.   

 

3.2 Support Vector Machines and GARCH Models 

Support Vector Machines (SVM) are learning machines developed by Vapnik 

(1995) and Cortes and Vapnik (1992). A mainstream analysis of SVM models is given 

in Christianini and Shaw-Taylor (2000). Similar to backpropagation neural network 
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models with multi-layer architecture (Rumelhart et al. 1986), a Support Vector 

Machine can be used for pattern recognition and nonlinear regression problems. A 

SVR or SVM possesses the universal approximation property similar to the MLP 

model. Similar to the property that a MLP with an optimum number of sigmoidal 

functions (Cybenko 1989), a SVR with optimum support vectors and basis functions 

can be shown to provide successful approximations of any borel measurable function 

(Müller et al. 1997; Vapnik, 1995).  

One significant difference between the SVM and MLP is that SVM model uses 

structural risk minimization principle rather than empirical risk minimization principle 

as followed by neural network modeling and regression analysis. In this context, the 

main idea of a support vector machine is to construct a hyperplane as the decision 

surface in such a way that the margin of separation between positive and negative 

observations is maximized (Vapnik, 1995). The induction principle focuses on the 

error rate in the test sample during the optimization process of a SVM. Further, the 

error rate is bounded by the sum of the training error rate and a penalty term depending 

on the Vapnik-Chervonenkis dimension (VC). A SVM is optimum if it produces the 

value zero for the former (error rate) and minimizes the second term (VC) in the case 

of separable patterns (Christianini and Shaw-Taylor 2000).  

The support vector regression focuses on the construction of the support vector 

learning algorithm by mapping the original data x into a higher dimensional feature 

space F with the use of nonlinear mapping   to obtain a linear regression space.   

Given a set of data   
1

,
N

i i i
G x a


 , where ix  is the input vector;  ia  is the actual 

value, and N is the total number of data patterns, the SVM regression is stated as, 

   i iy f x w x b         (13) 

with i : ,n F w F R . Equation (13) provides a decision surface in the form of a 

hyperplane. Thus,  i x  is the feature of inputs x , b and iw  are the threshold and 

weights to be estimated by minimizing the regularized risk function, 

      
2

1

1 1
,

2

N

i i

i

R C C L d y w
N




       (14) 

and  ,i iL d y defined as, 
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C and   are prescribed parameters, id  is the actual value and iy  is the estimation 

value at i. In the model, linear regression in a high dimensional feature space 

corresponds to nonlinear regression in the low dimensional input space.  ,i iL d y in 

Eq. (15) is the  -insensitive loss function. The norm of w, 
21

2
w  measures the 

flatness of the function; C represents the trade-off between the flatness and empirical 

risk. Two positive slack variables i  
and 

*

i  represent the distance from actual values 

to boundary values of the  -tube. Soft margin computation requires the formulation of 

Equation (14) in the constrained form, 
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To solve the constrained optimization problem, the following primal Lagrangian form 

is obtained, 
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The Lagrangian given in Equation (18) is minimized with respect to primal 

variables w ,b , , 
* ; and, maximized with respect to nonnegative Lagrangian 

multipliers  
* *, , ,i i    . If Kuhn-Tucker conditions are used in the regression and in 

the regularized risk function given in Equation (14), we obtain the dual Lagrangian as, 
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which is subject to the constraint, 
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For the solution, first step is the calculation of 
*,   Lagrangian multipliers. In the 

second step, solving for w , the optimal weights of the regression is calculated: 
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Finally, the regression function is represented as, 
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We have worked on SVM model with  ,i jK x x , whose value is the inner product of 

two x vectors in the   feature space,      ,i j i jK x x x x   . Vapnik (1995) 

shows that any symmetric positive and semi-definite function that satisfies Mercer’s 

conditions could be used as the Kernel functions. In SVM literature, common Kernel 

functions utilized are Gaussian, polynomial and linear kernel functions given below: 

  Gaussian:   
2

2
, exp
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i j

i j

x x
K x x
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   (23) 

Polynomial:     , 1
d

T

i j i jK x x x x      (24) 

Linear:   , T

i j i jK x x x x       (25) 

In the study, we follow Ou and Wang (2010) and Perez-Cruz et. al. (2003) in the 

modeling process. We utilized Support Vector Regression models with Gaussian 

Kernel functions. For forecasting purposes, the researchers should follow several 

techniques such as risk minimization in the validation tests for selecting the kernel 

functions. The results are based on the data analyzed in the study. As a result, for 

different data sets, the researcher should consider applying different kernel functions to 

formulate the input space into the feature space to obtain well generalization 
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performance. The selection of parameters in the kernel functions are discussed in many 

studies. Some methods include bootstapping and risk criteria minimization. Training of 

SVM regression is based on neural nets (Chang and Tsai, 2009), hybridization of SVM 

regression models with certain time series models (Chen et.al., 2008). Müller et.al. 

(1997) provide a comparison of models with different loss functions; namely, Huber’s 

loss function and e-insensitive loss function. In the study, the SVR-GARCH model is 

restricted to be estimated with the Gaussian kernel function and loss function is 

defined as the e-insensitive loss function following Vapnik (1995). The hybrid 

modeling methodology followed in the study for the SVR-GARCH models is similar 

to Ou and Wang (2010) and Perez-Cruz et al. (2003) modeling procedure and follows 

the methodology derived for the NN-GARCH modeling (Donaldson and Kamstra, 

1997).  

Empirical results are given in Part 3. GARCH model estimated with ML will be 

compared with MLP-GARCH and SVR-GARCH models in terms of error criteria 

(MSE, RMSE) and Diebold Mariano (DM) predictive accuracy tests in forecasting.   

 At the first stage, we estimated SVR models for the conditional mean. At the 

second stage, the error terms are modeled with GARCH, FIGARCH, APGARCH and 

FIAPGARCH processes.   

 

4 Data and Empirical Results 

4.1 Data  

     

Istanbul Stock Exchange ISE100 stock index data is gathered from the EVDS 

system of Central Bank of Turkey. The stock returns are calculated by using the daily 

closing prices of ISE100 covering the 11.02.1987-15.09.2011 period corresponding to 

5957 observations. The stock returns data is calculated as first differenced logarithmic 

series, y=ln(Pt/Pt-1), where ln(.) is the natural logarithms. In the process of SVR and 

MLP model estimation, the sample is divided into three sub-samples; namely, training, 

test and out-of-sample. Initial 80% of the observations are taken as the training sample. 

Following 20% of the observations corresponds to the test sample. The final 80 

observations are left for out of sample forecasting. The daily returns are given in 

Figure 1. Areas in white correspond to the training sample; whereas, areas in grey and 

blue are the test and forecasting samples, respectively.  
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Figure 1. ISE100 Stock Index Daily Returns 

Note. Areas in white: training sample (80% of obs.). Areas shaded in grey: test sample (20% 

of obs). Areas shaded in blue: out of sample set (last 80 obs.). 
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Figure 2. Histogram and Basic Statistics, ISE100 Daily Returns 

Basic statistics are given in Figure 2. The mean of the series is 0.00149. JB normality 

test statistic is calculated as 3942.544 (p-value= 0.00000) and suggests that the null 

hypothesis of normality is strongly rejected. Skewness is calculated as 0.031746 and is 

close to zero, whereas the kurtosis is calculated as 6.985304 pointing to the leptokurtic 

structure, a phenomenon commonly observed for daily financial time series. ADF, PP 

and KPSS test statistics are calculated as -69.49 (0.0001), -69.77 (0.0001) and 0.31 

showing that the daily return series is stationary1. The ARCH-LM(1-2) and ARCH-

LM(1-5) test statistics are calculated as 434.85 (0.0000) and 138.69 (0.0000) and show 

that the data exhibits strong ARCH effects. 

 

 

                                                           
1 ADF, PP unit root tests and KPSS stationarity test results are not given in detail to save space 

and could be obtained from the authors. 
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4.2 Econometric Results 

 

At the first stage, among the GARCH family models, we selected basic 

GARCH model, and APGARCH models  FIGARCH,  taken as baseline models are 

estimated for evaluation purposes. Results are given in Table 1.  

 

Table 1  Baseline Models 

Coefficients: GARCH APGARCH FIGARCH FIAPGARCH 

Cst(M) 

0.0016** 

(5.36) 

0.0014** 

(4.917) 

0.0016** 

(5.488) 

0.00145** 

(5.16) 

Cst(V) 

0.1998**  

(3.21) 

0.7554 

(1.20) 

0.2842** 

(3.15) 

0.15264 

(1.08) 

d-Figarch 

  

0.4064** 

(8.21) 

0.3797** 

(6.66) 

ARCH 

0.1572** 

(6.36) 

0.1643** 

(7.07) 

0.2317** 

(2.24) 

0.2067* 

(1.76) 

GARCH 

0.8285** 

(29.99) 

0.8326** 

(31.71) 

0.4338** 

(3.73) 

0.3793** 

(2.72) 

APARCH 

(Gamma1) 

 

0.0518* 

(1.64) 

 

0.0592* 

(1.78) 

APARCH 

(Delta) 

 

1.6594** 

(8.18) 

 

2.0994** 

(17.12) 

LogL 13361.16 13366.35 13405.95 13410.05 

AIC: -4.5455 -4.5466 -4.5605 -4.5612 

SIC: -4.5410 -4.5398 -4.5548 -4.5532 

Q(  5) 

14.1874 

[0.00] 

17.6420    

[0.00] 

5.8026    

[0.12] 

5.29105 

[0.15] 

Q( 10) 

26.9742 

[0.00] 

30.9775    

[0.00] 

14.085    

[0.07] 

12.6800 

[0.12] 

SB: 

0.38924 

[0.69] 

0.4958 

[0.61] 

0.6236 

[0.53] 

0.8391 

[0.40] 

ARCH (1-2): 

4.4142 

[0.012] 

6.1645  

[0.00] 

0.8560  

[0.42] 

0.55257 

[0.57] 

ARCH (1-5): 

2.7684 

[0.02] 

3.4571  

[0.00] 

1.1540  

[0.32] 

1.0520 

[0.38] 

LogL: Loglikelihood, Q(p): pth order autocorrelation test, SB: Sign bias test, 

ARCH(p): pth order ARCH-LM test. 
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Included models have different characteristics to be evaluated; namely, 

fractional integration, asymmetric power and fractionally integrated asymmetric power 

models, namely, GARCH, APGARCH, FIGARCH and FIAPGARCH models. The 

ARCH and GARCH parameters are statistically significant at 5% significance level 

and the summation of alpha + beta is equal to 0.98574 and less than 1. The log-

likelihood for the model is calculated as 13361.16. The AIC and SIC information 

criteria are calculated as -4.5455 and -4.5410 respectively. The data is daily and the 

highest autocorrelation is observed at the 5th and 10th days. Q(5) and Q(10) statistics 

show that autocorrelation of order 5 and 10 cannot be rejected at 5% significance level. 

ARCH-LM tests of order 1, 2 and 5 show that ARCH effect cannot be rejected. 

ARCH-LM test could also show possible nonlinearity in the residuals. Sign bias test 

statistic (SB) is calculated as 0.389 and sign bias is rejected by evaluating the news 

impact curve.  

      It is observed that, all volatility models perform better than the FIAPGARCH 

model in light of Log Likelihood criteria. If AIC and SIC criteria are evaluated, the 

lowest AIC (-4.5612) is calculated for the FIAPGARCH model; whereas, the lowest 

SIC is calculated as -4.5548 for the FIGARCH model. The sum of ARCH and 

GARCH parameters is calculated as 0.9857 for the GARCH model and similarly is 

less than 1 for the APGARCH, FIGARCH and FIAPGARCH model. For the 

fractionally integrated models, the differentiation parameters are estimated as 0.40 

(FIGARCH) and 0.38 (FIAPGARCH).  

Power terms obtained for returns calculated for stock indices in many developing 

economies are calculated comparatively higher than those obtained for the various 

indices in developed countries in various studies. The calculated power term is 1.65 in 

the APGARCH model and is estimated as 2.09 in the FIAPGARCH model showing 

high levels of asymmetry. 

It is noteworthy to evaluate several studies. Power terms in single regime APGARCH 

models were calculated for daily returns as 1.57 in Nikkei 225 Index, as 1.81 in Hang 

Seng Index, as 1.69 in Kuala Lumpur Composite Index and as 2.41 in Singapore SES-

ALL Index. The non-standard LR test is statistically significant and this suggests that 

linearity is strongly rejected. Further, STAR type nonlinearity tests are evaluated. 

Accordingly, the nonlinearity is accepted and linearity is rejected for the transition 

variable of one lagged daily returns.  

           It should be noted that, the GARCH model will be taken as the baseline model 

to be compared with the SVR-GARCH and MLP-GARCH models. Further, the study 

is restricted only GARCH type conditional volatility and aims to focus on the in 

sample and out of sample performance of the suggested hybrid versions, namely, SVR-
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GARCH and MLP-GARCH architectures. MLP-GARCH model is estimated and 

results are given in Table 2.  

          Table 2. Architecture Selection and Training Results: MLP-GARCH Model 

Model Type:* 

MLP-GARCH  (4-6-1; 

1,1) 

Training performance 0.103297 

Test performance 0.110626 

Overall performance 0.1069615 

Training MSE 0.002 

Test MSE 0.002246 

Training algorithm BP+CGD 

Error function SOS 

Activation functions  Logistic 

Output activation function Identity 

* Samples are divided into 80% training and 20 % test samples during optimization. 

Training/Test/Overall performance is shown with the Pearson’s rho statistic. A MLP-

GARCH (i,n,o; p,q) model is a model with i input variable, n neuron, o output variable 

with ARCH of order p and GARCH of order q. BP is back-propagation and CGD is 

the Conjugate Gradient Descent algorithm. SOS is the sum of squares. 

 

At the first step, lag length is selected with SIC information criteria as 4. Following the 

model selection procedure as discussed in the previous section, 100 models MLP-

GARCH models are estimated with varying neurons in the hidden layer. The activation 

function is restricted to logistic activation function for its sigmoid shaped continuous 

function characteristics. The optimum MLP model is selected as a MLP-GARCH (4-6-

1; 1,1) model with 4 input variable  - 6 neurons in the hidden layer – 1 dependent 

variable in the output layer model with GARCH (1, 1) process. The output layer is 

restricted to be linear identity function which is a common practice in the NN 

literature. Training/Test/Overall performance is shown with the Pearson’s rho statistic. 

A MLP-GARCH (i,n,o; p,q) model is a model with i input variable, n neuron, o 

dependent variable model with ARCH of order p and GARCH of order q. BP is back-

propagation and CGD is the Conjugate Gradient Descent algorithms. SOS is sum of 

squares. Further, the estimated MLP-GARCH models are reported with their 

coefficients and diagnostics tests in Table 3. The ARCH and GARCH parameters are 

statistically significant at 5% significance level. The stationarity condition, 

alpha+beta<1 is achieved for all the MLP-GARCH models estimated. For a typical, 

alpha+beta is equal to 0.9850, hence, compared to the baseline GARCH model 
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reported in Table 1 with alpha+beta = 0.9857, the results show improvement over the 

baseline GARCH, though the improvement is comparatively low. 

 

Table 3  Multilayer Perceptron–GARCH Models, Parameter Estimates 

  

MLP- MLP- MLP – MLP – 

GARCH APGARCH FIGARCH FIAPGARCH 

Cst(M) 
-0.0002 

(-0.68) 

-0.00001 

(-0.06) 

-0.0002 

(-0.78) 

-0.00003 

(-0.12) 

Cst(V) 
0.2003** 

(3.25) 

0.5808 

(1.19) 

0.0133 

(1.29) 

0.0153 

(0.7) 

d-Figarch     
0.4332** 

(6.2) 

0.4259** 

(7.45) 

ARCH 
0.1560** 

(6.37) 

0.1634** 

(6.91) 

0.1930** 

(1.99) 

0.1848* 

(1.89) 

GARCH 
0.8290** 

(30.31) 

0.8305** 

(31.08) 

0.4290** 

(3.39) 

0.4146** 

(3.26) 

APARCH 
  

-0.060* 

(-1.82)  

-0.0675** 

(-1.96)  (Gamma1) 

APARCH 

 

1.7318** 

(8.52)  

1.9684** 

(12.07)  (Delta) 

LogL 13372.56 13377.5 13417.23 13421.37 

AIC: -4.5525 -4.5535 -4.5674 -4.5681 

SIC: -4.548 -4.5467 -4.5617 -4.5602 

Q(  5) 
12.4986 14.3909 6.6036 6.2299 

 [0.01]  [0.00]  [0.08]  [0.10] 

Q( 10) 
25.1365 26.9583 15.5264 14.8638 

 [0.00] [0.00] [0.05]  [0.06] 

SB: 
0.8317 0.8713 1.0132 1.205 

[0.41] [0.3835]  [0.31] [0.22] 

ARCH  3.9319 4.8583 1.132 0.9353 

(1-2): [0.01] [0.01] [0.32] [0.39] 

ARCH  2.4587 2.8385 1.3099 1.2395 

(1-5):  [0.03]  [0.01] [0.26] [0.28] 

Note:  p-values are given in brackets. t-statistics are given in parentheses. * (**) 

denotes %10 (%5) significance level.  
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The ARCH and GARCH parameters are statistically significant at 5% significance 

level. The stationarity condition, alpha+beta<1 is achieved for all the MLP-GARCH 

models estimated. For a typical, alpha+beta is equal to 0.9850, hence, compared to the 

baseline GARCH model reported in Table 1 with  alpha+beta = 0.9857, the results 

show improvement over the baseline GARCH, though the improvement is 

comparatively low. The AIC and SIC information criteria are calculated as -4.5525 and 

-4.548 which are both lower than the calculated AIC and SIC information criteria for 

the baseline GARCH model (AIC=-4.5455, -4.5410). Box-Pierce serial correlation 

statistic Q(5) is calculated as 12.4986 and serial correlation up to order 5 cannot be 

rejected. Q(10) statistic is calculated as 23.13 and show that serial correlation up to 

order 10 cannot be rejected. Further, ARCH-LM(1-2) and ARCH-LM(1-5) tests test 

remaining ARCH effects in the error terms up to order 2 and 5 and the results show 

that ARCH effect cannot be rejected for the MLP-GARCH and MLP-APGARCH 

models. It will be noted that, following the fractional integration specifications, both 

the MLP-FIGARCH and its asymmetric power version, the MLP-FIAPGARCH model 

show improvement in capturing both autocorrelation (based on Q tests) and volatility 

(based on ARCH-LM tests) compared to MLP-GARCH and MLP-APGARCH models. 

For a typical, the sign bias test statistic (SB) is calculated as 0.83 for the MLP-

GARCH model and sign bias is rejected (p-value=0.41). Similarly, it could be 

concluded that, asymmetry is rejected for all of the MLP based models. As a result, the 

MLP-GARCH family captured asymmetry effectively for ISE100 daily returns series.  

The fractional differentiation parameters were estimated as 0.41 and 0.39 for the 

baseline models, FIGARCH and FIAPGARCH, respectively. The fractional 

differentiation parameter estimates showed an increase and were calculated as 0.43 for 

their MLP variants, the MLP-FIGARCH and MLP-FIAPGARCH models. As a result, 

the MLP augmented versions pointed at comparatively higher persistence than their 

baseline counterparts. 

Following the methodology discussed above, the estimated SVR-GARCH 

models are reported in Table 4 and parameter estimates are given in Table 5. The 

Support Vector Regression variants of the MLP-GARCH models constitute four 

models, the SVR-GARCH, SVR-APGARCH, SVR-FIGARCH and SVR-

FIAPGARCH; respectively. For the conditional mean process, the decision constant is 

calculated as -0.342241 the capacity coefficient is taken as 1 and the nu parameter is 

calculated as 0.4. 

The  gamma coefficient is taken as 0.25, the default value in the RBF kernel 

functions. MSE is calculated as 0.001. The SVR model is estimated with 1786 number 

of support vectors; whereas, the MSE and MAE for the process is calculated as 

0.00082 and 0.0205 that insights good fit of the model to the ISE100 stock index daily 

returns data. 
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Table 4  SVR-GARCH Model Architecture 

Support Vector Regression 

Architecture*  Value: 

Decision Constant: -0.342241 

Capacity: 1 

Nu: 0.4 

Kernel type: RBF (gamma=0.25) 

No.of support vectors 1786 (1784 bounded) 

MAE: 0.020560660 

MSE: 0.000817462 

               * Samples are taken as: 80% training; 20 % test.   

 

 

       The ARCH and GARCH parameters are statistically significant at 5% significance 

level. alpha+beta stationarity condition is achieved and is less than 1 for the four SVR 

based GARCH models. The AIC and SIC information criteria are calculated lower for 

the models analyzed. As a result, on overall conclusion could be made as the fact that, 

considering the baseline GARCH, MLP-GARCH and SVR-GARCH models, though 

the MLP-GARCH type models provided better goodness of fit compared to the 

baseline models, SVR-GARCH type models provided improvement in terms of fit. 

However, it should be noted that, the reported AIC and SIC type criteria constitutes to 

the in-sample forecasting capability; whereas for comparative purposes in forecasting, 

out-of-sample data forecasting results would provide better information. As a typical, 

for the variants of the FIAPGARCH models, SVR-FIAPGARCH provided the lowest 

(most negative) AIC and SIC statistics among all models (AIC=-4.5712, SIC=-

4.5633). Box-Pierce serial correlation Q test statistics up to order 5 and 10 show that 

autocorrelation cannot be captured by the SVR-GARCH and SVR-APGARCH 

models, whereas, the Q(5) and Q(10) statistics showed that, SVR-FIGARCH and 

SVR-FIAPGARCH models, the fractionally integrated variants, show no 

autocorrelation in the error terms.  

The result is similar to the findings discussed for he MLP-FIAPGARCH and 

MLP-FIGARCH models. ARCH-LM(1-2) and ARCH-LM(1-5) tests show that ARCH 

effect is strongly rejected for the SVR-FIGARCH and SVR-FIAPGARCH models. 

Further, similar to the MLP-GARCH models, sign bias tests show that sign bias is 

rejected for all SVR-GARCH family models and asymmetry is effectively captured. 
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Table 4  Support Vector Regression-GARCH Results 

  
SVR- SVR- SVR – SVR – 

GARCH APGARCH FIGARCH FIAPGARCH 

Cst(M) 
-0.0007** 

(-2.43) 

-0.0009** 

(-3.22) 

-0.0006** 

(-2.48) 

-0.0009** 

(-3.30) 

Cst(V) 
0.2029** 

(3.29) 

0.5806 

(1.186) 

0.1441 

(1.24) 

0.1863 

(0.74) 

d-Figarch     
0.4383** 

(5.88) 

0.4246** 

(7.44) 

ARCH 
0.1562** 

(6.41) 

0.1639** 

(6.89) 

0.1804* 

(1.83) 

0.1697* 

(1.67) 

GARCH 
0.8283** 

(30.33) 

0.8282** 

(30.68) 

0.4231** 

(3.15) 

0.4009** 

(3.02) 

APARCH (Gamma1)    

  

0.0691* 

(1.94) 

  

  

0.0793** 

(2.16) 

 APARCH (Delta)   

  

1.7411** 

(8.58) 

  

  

1.9373** 

(12.09) 

 LogL 13380.99 13386.35 13425.37 13430.57 

AIC: -4.5554 -4.5565 -4.5702 -4.5712 

SIC: -4.5509 -4.5497 -4.5645 -4.5633 

Q(  5) 
7.5579 8.3849 5.5885    

[0.34] 

5.8589 

[0.18] [0.14] [0.11] 

Q( 10) 
23.5501 24.91 24.2028    

[0.01] 

14.183 

[0.01] [0.005] [0.08] 

SB: 
0.3691 0.5119 0.5135 0.7163 

[0.71] [0.61] [0.60] [0.4738] 

ARCH  3.4654 4.1581 1.0521 0.9206 

(1-2): [0.03] [0.02] [0.35] [0.39] 

ARCH  2.1908 2.4736 1.239 1.1677 

(1-5): [0.05] [0.03] [0.29] [0.32] 

Note: P-values are given in brackets. t-statistics are given in parentheses. * 

(**) denotes %10 (%5) significance level. 

 

Since the fractionally integrated models showed significant improvement, the 

fractional differentiation parameters are evaluated with attention. It should be noted 
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that, the d parameter estimates reported for the SVR-FIGARCH and SVR-

FIAPGARCH models are 0.43 and 0.42 and show stationarity. Further, the parameter 

estimates are comparatively larger than the parameter estimates reported for the 

FIGARCH and FIAPGARCH baseline models. However, the d parameter estimates 

are lower than 0.5, hence, they point at no long memory in the processes. 

 In this section, the models will be evaluated for their generalization 

capabilities in the out-of-sample forecasting in terms of the RMSE error criteria. 

Results are given in Table 5 for 3 different model groups, the baseline, the MLP and 

their SVR variants.  

 

Table 5  Out of Sample Forecast Statistics, 1-80 Working Days (4 Months) Ahead 

 

GARCH APGARCH FIGARCH FIAPGARCH 

RMSE: 

 

0.000819000 

[3rd] 

0.00083000 

[3rd] 

0.00079600 

[3rd] 

0.00078900 

[3rd] 

 

MLP- 

GARCH 

MLP- 

APGARCH 

MLP- 

FIGARCH 

MLP- 

FIAPGARCH 

RMSE: 

 

0.000777800 

[2nd] 

0.000787800 

[2nd] 

0.000740200 

[2nd] 

0.000741200 

[2nd] 

 

SVR- 

GARCH 

SVR- 

APGARCH 

SVR- 

FIGARCH 

SVR- 

FIAPGARCH 

RMSE: 

 

0.000750000 

[1st] 

0.000761800 

[1st] 

0.000709900 

[1st] 

0.00071300 

[1st] 

*RMSE: Root Mean Squared Error, MAE: Mean Absolute Error 

*Models are ordered from the lowest error criteria (for both RMSE and MAE) to the 

highest. The rank of each model is given in [ ] brackets. Models are evaluated in terms 

of their capability in forecasting the conditional mean and variance separately.    

 

In Table 5, 12 different conditional volatility models are compared to investigate their 

forecast accuracy for 80 work days (4 month period) ahead. The root mean squared 

error criterion (RMSE) is reported at the first row and three models with the similar 

conditional variance processes is evaluated among its own group. The RMSE is 

calculated as 0.00082 for the baseline model; whereas the RMSE’s of MLP-GARCH 

and SVR-GARCH models are calculated as 0.000778 and 0.00075, respectively. As a 

result, among the GARCH models, the baseline model has the 3rd rank, MLP-GARCH 

model shows improvement over the baseline GARCH and takes the 2nd place. Further, 

among the GARCH processes, the lowest RMSE is achieved for the SVR-GARCH 

model and the model achieves the 1st place among the models with GARCH type 
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conditional volatility. Among the APGARCH type models, a similar result is obtained. 

The APGARCH model also showed the worst performance with RMSE=0.0083, 

however, its MLP and SVR based augmentations showed slight improvement with 

RMSE’s equal to 0.00078 and 0.00076. The SVR-APGARCH model takes the 1st rank 

followed by the MLP-APGARCH model. For the FIGARCH and FIAPGARCH 

models, the in-sample results suggested that MLP and SVR augmentations showed 

significant improvement over other models estimated. The out-of sample analysis 

provided a similar conclusion for forecast accuracy. Though MLP-FIGARCH and 

MLP-FIAPGARCH models provided significant improvement over the baseline 

models, the SVR variants, SVR-FIGARCH (RMSE=0.0007099) and SVR-

FIAPGARCH (RMSE=0.00071300) models showed the best performances among the 

fractional integration models and also compared to the MLP-GARCH models.  

Lastly, the models are evaluated within the identical conditional mean processes. 

Among the baseline GARCH models the lowest RMSE (=0.000789) is achieved for 

the FIAPGARCH model which is followed by the FIGARCH model. Among the 

MLP-GARCH models, the lowest RMSE is achieved by the MLP-FIGARCH model 

(=0.000740) and is closely followed by the MLP-FIAPGARCH model (=0.000741). 

Among the SVR-GARCH models, the SVR-FIGARCH model provided the lowest 

RMSE (=0.000709) which suggests a 15.5% improvement over the simple GARCH 

and 4.5% improvement over the MLP-GARCH model. The SVR-FIGARCH model is 

closely followed by the SVR-FIAPGARCH model (RMSE=0.000713) which provided 

%14.8 improvement over the baseline GARCH model and 3.7% improvement over the 

MLP-FIGARCH model. The results suggest that, overall, SVR-GARCH and MLP-

GARCH models benefit from their respective learning algorithms and provide better 

forecast accuracy compared to the simple GARCH model. On the other hand, the 

fractional integration and asymmetric power characteristics improve the forecast 

capacity even more. According to the results, SVR-GARCH and MLP-GARCH group 

models capture the volatility characteristics of Istanbul Stock Index daily returns, taken 

as an example of an emerging market time series with strong volatility characteristics.  

 

5 Concluding Remarks 
The study aimed to investigate linear GARCH, fractionally integrated FI-GARCH 

and Asymmetric Power APGARCH models and their nonlinear counterparts based on 

a family of Neural Networks and Support Vector Machhine models. In the study, 

nonlinear augmentations based on SVR and MLP models are taken as the basis. The 

SVR-GARCH models are proposed in spirit of NN-GARCH architectures. The models 

are tested for in-sample and out-of-sample forecasting the daily stock returns in 

ISE100 Istanbul stock index, an example of an emerging market with high volatility 

and leptokurtic distribution characteristics.  The empirical results show that SVR-
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GARCH models and NN-GARCH models provided significant gains compared to 

simple GARCH models and therefore the results suggested that the learning algorithms 

provided significant gains in forecasting. 

The models are subject to modeling conditional mean processes with machine 

learning and neural network methodologies while the conditional variance processes 

are allowed to integrate fractional integration and asymmetric power characteristics. 

The future studies should focus on incorporating machine learning and neural network 

learning algorithms with GARCH models that also benefits from nonlinear 

econometric techniques such as regime switching and smooth transition regressions. 

The results are restricted to the data analyzed in the study similar to many empirical 

analyses. To obtain generalization, applications of the models to different financial 

markets are suggested for future research. 
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