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Abstract: The paper presents a multi-criteria decision making 

method to tackle intuitionistic fuzzy numbers, namely MULTIMOORA-IFN. 

Being an extension of the crisp MULTIMOORA method, the 

MULTIMOORA-IFN is designed to facilitate group decision making with 

uncertain information. The proposed methods consists of the three parts—

the Ratio System, the Reference Point, and the Full Multiplicative Form—

specific with different aggregation techniques. Furthermore, the robustness 

of the decision making process can be improved by employing ordered 

aggregation operators, for instance an intuitionistic fuzzy power ordered 

weighted average operator or an intuitionistic fuzzy power ordered 

weighted geometric operator. A numerical simulation exhibits the 

possibilities for application of the proposed method. 
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1. Introduction 

Multi–criteria decision-making methods (MCDM) methods enable to 

prioritize certain alternatives in terms of multiple attributes or objectives 
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and thus find an optimal solution from a set of available alternatives. In case 

none of the alternatives satisfies all the objectives, a satisfactory decision is 

made instead of an optimal one. It is due to Roy (1996) that MODM 

problems can be grouped into the four wide streams: (i) choosing problems 

aim at choosing the best alternative; (ii) sorting problems classify 

alternatives into relatively homogenous groups; (iii) ranking problems rank 

alternatives from best to worst; and (iv) describing problems describe the 

alternatives in terms of their peculiarities and features. Belton and Stewart 

(2002) defined the three broad categories of MODM methods, namely (i) 

value measurement models; (ii) goal, aspiration, and reference level models; 

and (iii) outranking models (the French school). In this study we will extend 

and apply the MOORA and MULTIMOORA methods. Furthermore, the 

complex nature of socio-economic phenomena requires an appropriate set of 

MCDM methods to make sustainable management decisions. Indeed, Sadiq 

and Tesfamariam (2009) distinguished between the two sources of 

uncertainty in the decision making process, viz. vagueness related to the 

lack of definite or sharp distinctions, and ambiguity related to imprecise 

assessment and definition of the alternatives. It is the fuzzy logic that 

provides one with the means to overcome the both types of uncertainty. 

 Zadeh (1965), the Founder of fuzzy logic, proposed employing 

the fuzzy set theory to model complex systems that are hard to define in 

crisp numbers. Fuzzy logic hence allows coping with vague inputs and 

knowledge. Linguistic reasoning relying on fuzzy logics as well as interval-

valued membership function was later introduced by Zadeh (1975) to tackle 

ambiguity in MCDM. Later on, Atanassov (1986) introduced the 

intuitionistic fuzzy set which takes into account the degree of indeterminacy 

(non-specificity). The crisp MCDM methods, therefore, are extended into 

fuzzy environment so that they could handle uncertain assessment 

(Yazdani-Chamzini et al., 2012; Razavi Hajiagha et al., 2013). In addition, 

the ordered weighted operators (Yager, 1988; Xu, 2011) also increase the 

robustness of MCDM, for they can be applied to aggregate data without 

subjective assessments of the importance of certain decision makers. 

This study aims at updating the crisp MULTIMOORA method with 

intuitionistic fuzzy number (IFN) and thus offering the MULTIMOORA-

IFN. The MULTIMOORA method was proposed and Developed by 

Brauers and Zavadskas (2006, 2010). Baležentis et al. (2012) offered the 

MULTIMOORA-FG for fuzzy group decision making.  
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The rest of paper is organized in the following manner. Section 2 

brings the theoretical preliminaries for handling IFNs. Section 3 focuses on 

the crisp MULTIMOORA method. The following Section 4 presents the 

MULTIMOORA-IFN method, with its application to personnel selection 

given in Section 5. 

 

2. Preliminaries 

This section describes the preliminaries for IFN-based MCDM. To be 

specific, the first subsection presents IFNs, whereas the second one focuses 

on aggregation operators. 

 

2. 1. The intuitionistic fuzzy numbers 

Zadeh (1965) introduced the use of fuzzy set theory when dealing 

with problems involving fuzzy phenomena. Noteworthy, fuzzy sets and 

fuzzy logic are powerful mathematical tools for modelling uncertain 

systems. A fuzzy set is an extension of a crisp set. Crisp sets only allow full 

membership or non-membership, while fuzzy sets allow partial 

membership. The theoretical fundaments of fuzzy set theory are overviewed 

by Chen (2000). In a universe of discourse X, a fuzzy subset A  of X is 

defined with a membership function ( )
A

x  which maps each element 

x X  to a real number in the interval [0; 1]. The function value of ( )
A

x  

resembles the grade of membership of x in A . The higher the value of 

( )
A

x , the higher the degree of membership of x in A  (Keufmann, Gupta, 

1991).  

 

Definition 1. Let a set X be fixed, a fuzzy set A
~

 in X is given by 

Zadeh (1965) as follows: 

  XxxxA
A

 )(,
~

~ ,  (1) 

where ]1,0[)(],1,0[: ~~  xXxX
AA

  and 
A
~  denotes the degree of 

membership of the element x to the set A . 

Consequently, Atanassov (1986) introduced intuitionistic fuzzy 

set, which is the generalization of Zadeh’s (1965) fuzzy set. Intuitionistic 

fuzzy set is characterized by membership and non-membership functions, 

whereas fuzzy set is described solely by the former one. Hence, intuitionist 
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fuzzy set can resemble imprecise or uncertain decision information. More 

specifically, intuitionistic fuzzy sets can describe satisfied, unsatisfied, and 

uncertain information (Xu, 2011). Such information can represent, for 

instance, voting preferences, namely support, objection, and abstention, 

when voting for alternatives against given criteria.  

 

Definition 2. Let a set X be fixed, an intuitionistic fuzzy set A
~

 

in X is given by Atanassov (1986) as follows: 

  XxxvxxA
AA

 )(),(,
~

~~ ,  (2) 

where functions ]1,0[)(],1,0[: ~~  xXxX
AA

  and 

]1,0[)(],1,0[: ~~  xvXxXv
AA

 satisfy the condition 

1)()(0 ~~  xvx
AA

 , for all Xx . Moreover, here )(~ x
A

  and 

)(~ xv
A

denote the degree of membership and the degree of non-membership 

of the element x to the set A , respectively. 

In addition, )()(1)( ~~~ xvxx
AAA

   is called the degree of 

indeterminacy of x to A  or the degree of hesitancy of x to A (Xu, Yager, 

2006). Noteworthy, if 0)(~ x
A

  for all Xx , then the intuitionistic fuzzy 

set A  is reduced to a fuzzy set. 

  

Definition 3. For convenience of computation, we call 

),,(   v  an intuitionistic fuzzy number (IFN), where 

  vvv  1,1],1,0[],1,0[ . (3) 

For an IFN ),,(   v , if the value   gets bigger and 

the value v  gets smaller, then IFN   gets greater. Thus, we know that 

)0,0,1(  and )0,1,0(  are the largest and the smallest IFNs, 

respectively.  

Xu (2011) defined the following algebraic operations for any 

two IFNs ),,(
1111   v  and ),,(

2222   v : 

 
2121212121

)1)(1(,,21 aaaaaaaaaa vvvv    (4) 

 
2121212121

)1)(1(,,21 aaaaaaaaaa vvvvvv   , (5) 

 
1 1 1 11 1 (1 ) , , (1 ) , 0v v   

            , (6) 
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 





 
1111

)1(,)1(1,1  aa vv , 0 . (7) 

According to Eqs. 4 and 5, the following equations hold: 

1 1

1 2

1

1 1

1 (1 ), ,

(1 )

j j

j j

n n

n
j j

j n n n
j

j j

v

v

 

 



   



 



 

 
  

     
 

   
 

 


 

, (8) 

1 1

1 2

1

1 1

,1 (1 ),

(1 )

j j

j j

n n

n
j j

j n n n
j

j j

v

v

 

 



   



 



 

 
  

     
 

   
 

 


 

. (9) 

 

Definition 4. Let ),,(
1111   v  and ),,(

2222   v  be 

two IFNs, then  

 
2121212

1
),( 21    vvd  (10) 

is called the distance between 
1  and 

2  (Xu, Yager, 2006). 

 

 Definition 5. Let ),,(   v . Then a negation operator 

is defined in the following manner: 

   ,,)( vNeg  .  (11) 

For an IFN α, Chen and Tan (1994) introduced the score 

function s , whereas Hong and Choi (2000) defined the accuracy function 

h : 

s v    ,   (12) 

  vh  .  (13) 

With respect to the score function and the accuracy function, Xu 

and Yager (2006) gave an order relation between any two IFNs: 

Definition 6. Let ),,(
1111   v  and ),,(

2222   v  be 

two IFNs, then (Xu, 2011; Xu, Yager, 2006; Xu, 2007): 

 If 
1 2

s s  , then 1 2  . 
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 If 
1 2

s s  , then a) if 
1 2

h h  , then 1 2  ; 

   b) if
1 2

h h  , then 1 2  . 

The discussed peculiarities of IFNs will provide a basis for 

MCDM procedure described in Section 4. 

 

2. 2. Intuitionistic fuzzy power aggregation operators 

Ambiguity related to group decision making can be tackled by 

assigning weights to each of decision makers. However, in certain cases 

these weights are hard to quantify. Yager (1988) offered a method to 

overcome the latter issue, namely the ordered weighted average (OWA) 

operator. In general, aggregation operators belonging to the family of OWA 

assigns the most biased ratings with the lowest weights and thus increases 

the robustness of decision making process. The OWA operator, indeed, is a 

generalization of maximin, minimax, Hurwicz, and Laplace criteria.  

Actually, the OWA operator was designed to aggregate crisp 

variables by the means of the weighted arithmetic average. The subsequent 

modifications of the method were aimed at enabling aggregation of fuzzy 

numbers as well as application of different aggregations techniques. The 

power average (PA) operator was introduced by Yager (2001). PA operator 

takes into account the relationships between the values being fused by 

attributing higher weights to those values which are less deviated from the 

remaining ones (Xu, Yager, 2010).  

It was Xu (2011) who offered the two additional aggregation 

methods suitable for handling IFNs, namely an intuitionistic fuzzy power 

ordered weighted average (IFPOWA) operator and an intuitionistic fuzzy 

power ordered weighted geometric (IFPOWG) operator. These operators are 

peculiar with features of both OWA and PA operators and thus allow 

tackling the uncertainty arising in the group decision making.  

Let there is a collection of IFNs, ( , , )
j j jj v      with 

1,2,...,j n , and the ordered set of IFNs 
( ) ( ) ( )( ) ( , , )

j j jj v      with 

( 1) ( )j j    for 2,3,...,j n . Then the IFPOWA aggregates a set of IFNs 

into a single IFN in the following way: 
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( ) ( )

( ) ( )

1 2 1 (1) 2 (2) ( )

1 1

1 1

( , ,..., ) ...

1 (1 ) , ( ) ,

(1 ) ( )

j j

j j

j j

j j

n n n

n n
w w

j j

n n
w w

j j

IFPOWA w w w

v

v

 

 

     





 

 

   

 
  

 
 

   
 

 

 

, (14) 

where 1 2( , ,..., ,..., )j l nw w w w w  is a set of weights such that 

1
( )

1

( ) ( ) ( )

1

, ,

, 1 ( )

l
l l

l l j

j

n

j j j

j

D D
w g g D V

TV TV

TV V V T 







   
     

   

  



 , (15) 

with ( )( )jT   being the support of the j-th largest IFN by all the other IFNs: 

 ( ) ( ) ( )

1

( ) ,
n

l l j

j
j l

T Sup  



 , (16) 

where  ( ) ( ),l jSup    is support of the l-th largest IFN by the j-th largest 

IFN, and :[0,1] [0,1]g   is a basic unit-interval monotonic (BUM) 

function. The following properties of BUM functions are valid: 1) (0) 0g  , 

2) (1) 1g  , and 3) ( ) ( ),  if g x g y x y  .  

 The IFPOWG operator aggregates ( , , )
j j jj v      into 

single IFN as follows: 
1 2

( ) ( )

( ) ( )

11 1

1 1 1
1 2 (1) (2) ( )

1 1

1 1

1 1

1 1

1 1

1 1

( , ,..., ) ( ) ( ) ... ( )

( ) ,1 (1 ) ,

(1 ) ( )

n

j j

j j

j j

j j

ww w

n n n
n n

w wn n

n n

j j

w wn n

n n

j j

IFPOWG

v

v

 

 

     





 

  

 

 

 

 

 

 

   

 
  

 
  
  
 
 

 

 

,  (17) 

where 1 2( , ,..., ,..., )j l nw w w w w  is a set of weights satisfying Eqs. 15 and 

16. 
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 Both IFPOWA and IFPOWG can be employed to aggregate 

the ratings provided by different decision makers into a single decision 

matrix. 

 

3. The crisp MULTIMOORA method 

As already said earlier, Multi-Objective Optimization by Ratio 

Analysis (MOORA) method was introduced by Brauers and Zavadskas 

(2006). Brauers and Zavadskas (2010) extended the method and in this way 

it became more robust as MULTIMOORA (MOORA plus the full 

multiplicative form). These methods have been applied in numerous studies 

focused on regional studies, international comparisons and investment 

management.  

The MOORA method begins with matrix X  where its 

elements ijx
denote ith alternative of jth objective ( 1,2, ,i m  and 

1,2, ,j n ). MOORA method consists of two parts: the Ratio System and 

the Reference Point approach. The MULTIMOORA method includes 

internal normalization and treats originally all the objectives equally 

important. In principle all stakeholders interested in the issue only could 

give more importance to an objective. Therefore they could either multiply 

the dimensionless number representing the response on an objective with a 

significance coefficient or they could decide beforehand to split an objective 

into different sub-objectives. 

The Ratio System of MOORA. Ratio system defines data normalization by 

comparing alternative of an objective to all values of the objective: 

*

2

1

,
ij

ij
m

ij

i

x
x

x






 

(18) 

where 
*

ijx
denotes ith alternative of jth objective. Usually these numbers 

belong to the interval [0; 1]. These indicators are added (if desirable value 

of indicator is maximum) or subtracted (if desirable value is minimum), 

Thus, the summarizing index of each alternative is derived in this way: 

* * *

1 1

,
g n

i ij ij

j j g

y x x
  

    (19) 

where 1, ,g n  denotes number of objectives to be maximized. Then 

every ratio is given the rank: the higher the index, the higher the rank. 
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The Reference Point of MOORA. Reference point approach is based on the 

Ratio System. The Maximal Objective Reference Point (vector) is found 

according to ratios found by employing Eq. 18. The jth coordinate of the 

reference point can be described as 

*maxj ij
i

r x
 in case of maximization. 

Every coordinate of this vector represents maximum or minimum of certain 

objective (indicator). Then every element of normalized response matrix is 

recalculated and final rank is given according to deviation from the 

reference point and the Min-Max Metric of Tchebycheff: 

 *min max .j ij
i j

r x  (20) 

 

The Full Multiplicative Form and MULTIMOORA. Brauers and Zavadskas 

(2010) proposed MOORA to be updated by the Full Multiplicative Form 

method embodying maximization as well as minimization of purely 

multiplicative utility function. Overall utility of the ith alternative can be 

expressed as dimensionless number: 

' ,i

i

i

A
U

B
 (21) 

where 1

g

i ij
j

A x



, 1,2, ,i m  denotes the product of objectives of the ith 

alternative to be maximized with 1, ,g n  being the number of 

objectives to be maximized and 

where 1

n

i ij
j g

B x
 

 
 denotes the product of objectives of the ith alternative to 

be minimized with n g  being the number of objectives (indicators) to be 

minimized. Thus MULTIMOORA summarizes MOORA   (i.e. Ratio 

System and Reference point) and the Full Multiplicative Form. Ameliorated 

Nominal Group and Delphi techniques can also be used to reduce remaining 

subjectivity (2010). The Dominance theory (Annex A) was proposed to 

summarize three ranks provided by respective parts of MULTIMOORA into 

a single one (Brauers, Zavadskas, 2011). 
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4. The MULTIMOORA–IFN method 

 

This section describes the proposed extension of the MULTIMOORA 

method, namely MULTIMOORA–IFN, which enables to tackle uncertainty 

and vagueness in decision making. Let us assume that a group of experts 

(decision makers) is about to choose the most compromising alternative 

with respect to multiple criteria. These criteria are grouped into cost criteria 

( Cj , C is the set thereof) and benefit criteria ( Bj ).  

 

Step 1. Each expert evaluates the alternatives under 

consideration in terms of the defined criteria. The assessments are expressed 

in IFNs k

ij , where mi ,...,2,1  stands for respective alternatives, 

nj ,...,2,1  denotes the j-th criterion, and Kk ,...,2,1  indicates the k-th 

decision maker. Thus K response matrices are defined. 

Step 2. Either IFPOWA or IFPOWG aggregation operator is 

employed to aggregate the expert decision matrices into a single response 

matrix: 
1 2( , ,..., ) , ,K

ij ij ij ijIFPOWA a a a i j  ,  (22) 

where ij  denotes the value given for the i-th alternative according to the j-

th criterion. Similarly: 
1 2( , ,..., ) , ,K

ij ij ij ijIFPOWG a a a i j  ,  (23) 

Step 3. The transformed response matrix nm  is defined by 

transforming cost criteria into benefit ones. Subsequently, a negation 

operator is used in accordance to Eq. 11 to transform cost criteria into 

benefit ones: 












CjNeg

Bj

ij

ij

ij
),(

,




 .   (24) 

These values are bounded to the interval of [0, 1] and therefore do not 

require an additional normalization. 

Step 4. The Ratio System of MULTIMOORA–IFN. The 

assessments of a certain alternative are aggregated across the criteria by 

employing Eq. 8: 





n

y
j

iji

1

 .   (25) 
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Accordingly, alternatives with higher values of ),,(
iii yyyi vy   are 

attributed with higher ranks (cf. Definition 6).  

Step 5. The Reference Point of MULTIMOORA–IFN. 

Generally, the two types of the reference point might be chosen (Brauers, 

2004): (i) the Maximal Objective Reference Point, and (ii) the Utopian 

Reference Point. In case of the Maximal Objective Reference Point, the 

maximum for every criterion is defined according to Definition 6: 

ij
i

j  max . In case of the Utopian Reference Point one may set 

)0,0,1(j . Then, Chebychev distances from the reference point are 

calculated for each of the alternatives (Eq. 10):  

  jij
j

d  ,max .  (26) 

The alternatives with larger distances from the Reference are attributed with 

lower ranks. 

Step 6. The Full Multiplicative Form of MULTIMOORA–2T. 

The overall utility of a certain alternative is determined by employing Eq. 9: 





n

j

ijiU
1

 .   (27) 

The alternatives are ranked in descending order of the overall utility. 

Step 7. The three ranks obtained in Steps 4–6 are summarized 

by applying the Dominance theory (Brauers, Zavadskas, 2011), see Annex 

A.  

 

5. Personnel selection: a numerical example 

 

Step 1. A personnel selection problem will illustrate the group 

decision-making procedure according to MULTIMOORA–IFNs. The 

enterprise has formed an executive committee consisting of four decision-

makers (DM1, DM2, DM3, and DM4); adopted from Baležentis et al. (2012). 

The committee is about to choose the best candidate from another four 

participants (A1, A2, A3, and A4) to fill the vacancy. The committee has 

decided to consider the following eight attributes: (1) Creativity, innovation 

(C1); (2) Leadership (C2); (3) Strategic planning (C3); (4) Communication 

skills (C4); (5) Team management (C5); (6) Emotional steadiness (C6); (7) 

Educational background (C7); (8) Professional experience (C8). More 

specifically, these criteria are expressed in IFNs. All the criteria, hence, are 
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subjective as well as benefit ones. Table 1 presents the initial assessment.  

Step 2. In this example, we assume ( )g x x and employ the 

IFPOWA operator by the virtue of Eq. 14 to aggregate the expert decision 

matrices into a single response matrix (Table 2). Indeed, one may choose 

0,)(  kxxg k  in order to obtain a different weight vector. 

Step 3. All of the criteria are benefit ones, therefore we do not 

need to employ the negation operator (cf. Eq. 24). 

 

                    Table 2. The aggregated decision matrix 

 C1 C2 C3 C4 

A1 (0.42,0.47,0.11) (0.53,0.27,0.2) (0.4,0.41,0.19) (0.38,0.44,0.18) 

A2 (0.64,0.3,0.06) (0.64,0.25,0.11) (0.49,0.33,0.18) (0.48,0.47,0.05) 

A3 (0.48,0.45,0.07) (0.39,0.58,0.03) (0.6,0.22,0.18) (0.46,0.4,0.14) 

A4 (0.77,0,0.23) (0.69,0.24,0.07) (0.4,0.49,0.11) (0.45,0.32,0.23) 
     

 C5 C6 C7 C8 

A1 (0.39,0.51,0.1) (0.5,0.32,0.18) (0.61,0.22,0.17) (0.41,0.54,0.05) 

A2 (0.64,0.3,0.06) (0.59,0.27,0.14) (0.65,0.31,0.04) (0.42,0.58,0) 

A3 (0.34,0.59,0.07) (0.55,0.43,0.02) (0.48,0.39,0.13) (0.46,0.43,0.11) 

A4 (0.77,0,0.23) (0.66,0.25,0.09) (0.52,0.38,0.1) (0.48,0.43,0.09) 

 

 Step 4. The four candidates are ranked according to the Ratio 

System, cf. Eq. 25. Table 3 presents the results. 

Step 5. We define the Reference Point )0,0,1(j  and thus 

rank the alternatives in terms of their distance from it (Eq. 26): those with 

smaller distances are attributed with higher ranks (Table 4). 
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Table 1. The ratings provided by the decision makers (DM1–DM4) to the candidates (A1–A4) in terms of the multiple 

criteria (C1–C8). 
  C1 C2 C3 C4 C5 C6 C7 C8 

DM1 A1 (0.5,0.4,0.1) (0.5,0.3,0.2) (0.2,0.6,0.2) (0.4,0.4,0.2) (0.4,0.5,0.1) (0.5,0.3,0.2) (0.6,0.2,0.2) (0.3,0.5,0.2) 

 A2 (0.7,0.3,0) (0.7,0.2,0.1) (0.6,0.2,0.2) (0.6,0.4,0) (0.7,0.3,0) (0.2,0.7,0.1) (0.5,0.5,0) (0.6,0.4,0) 

 A3 (0.5,0.4,0.1) (0.4,0.6,0) (0.6,0.2,0.2) (0.5,0.3,0.2) (0.2,0.7,0.1) (0.4,0.6,0) (0.4,0.4,0.2) (0.5,0.3,0.2) 

 A4 (0.7,0.2,0.1) (0.7,0.2,0.1) (0.2,0.7,0.1) (0.5,0.2,0.3) (0.7,0.2,0.1) (0.6,0.2,0.2) (0.3,0.6,0.1) (0.5,0.5,0) 

DM2 A1 (0.2,0.7,0.1) (0.5,0.3,0.2) (0.5,0.3,0.2) (0.3,0.5,0.2) (0.2,0.7,0.1) (0.5,0.4,0.1) (0.5,0.3,0.2) (0.3,0.7,0) 

 A2 (0.6,0.3,0.1) (0.7,0.2,0.1) (0.4,0.4,0.2) (0.1,0.9,0) (0.6,0.3,0.1) (0.4,0.4,0.2) (0.4,0.5,0.1) (0.1,0.9,0) 

 A3 (0.4,0.5,0.1) (0.2,0.8,0) (0.6,0.3,0.1) (0.5,0.3,0.2) (0.4,0.5,0.1) (0.8,0.2,0) (0.6,0.3,0.1) (0.5,0.4,0.1) 

 A4 (0.7,0.2,0.1) (0.8,0.2,0) (0.5,0.4,0.1) (0.5,0.4,0.1) (0.7,0.1,0.2) (0.8,0.2,0) (0.4,0.4,0.2) (0.6,0.3,0.1) 

DM3 A1 (0.6,0.3,0.1) (0.5,0.3,0.2) (0.2,0.7,0.1) (0.4,0.4,0.2) (0.6,0.3,0.1) (0.5,0.3,0.2) (0.7,0.2,0.1) (0.6,0.4,0) 

 A2 (0.5,0.3,0.2) (0.7,0.2,0.1) (0.6,0.3,0.1) (0.4,0.4,0.2) (0.5,0.3,0.2) (0.7,0.2,0.1) (0.6,0.3,0.1) (0.2,0.8,0) 

 A3 (0.5,0.5,0) (0.4,0.5,0.1) (0.6,0.2,0.2) (0.3,0.6,0.1) (0.5,0.5,0) (0.4,0.5,0.1) (0.2,0.7,0.1) (0.3,0.6,0.1) 

 A4 (0.9,0,0.1) (0.7,0.2,0.1) (0.6,0.3,0.1) (0.5,0.2,0.3) (0.9,0,0.1) (0.7,0.2,0.1) (0.6,0.4,0) (0.5,0.3,0.2) 

DM4 A1 (0.3,0.6,0.1) (0.6,0.2,0.2) (0.6,0.2,0.2) (0.4,0.5,0.1) (0.3,0.6,0.1) (0.5,0.3,0.2) (0.6,0.2,0.2) (0.4,0.6,0) 

 A2 (0.7,0.3,0) (0.2,0.7,0.1) (0.3,0.5,0.2) (0.6,0.4,0) (0.7,0.3,0) (0.8,0.1,0.1) (0.9,0.1,0) (0.6,0.4,0) 

 A3 (0.5,0.4,0.1) (0.5,0.5,0) (0.6,0.2,0.2) (0.5,0.5,0) (0.2,0.7,0.1) (0.5,0.5,0) (0.6,0.3,0.1) (0.5,0.5,0) 

 A4 (0.7,0.1,0.2) (0.5,0.4,0.1) (0.2,0.7,0.1) (0.2,0.8,0) (0.7,0.1,0.2) (0.4,0.5,0.1) (0.7,0.2,0.1) (0.2,0.8,0) 
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Step 6. Eq. 27 is employed to obtain ranks for each of 

alternatives according to the Full Multiplicative Form (Table 5). 

 

                                 Table 3. The Ratio System. 

 

 
iy  s  Rank 

A1 (0.9929,0.0004,0.0067) 0.9925 4 

A2 (0.9990,0.0001,0.0009) 0.9989 2 

A3 (0.9943,0.0010,0.0047) 0.9933 3 

A4 (0.9995,0,0.0005) 0.9995 1 

 

Table 4. The Reference Point. 

 

   jij
j

d  ,max  Rank 

A1 0.62 3 

A2 0.58 1 

A3 0.66 4 

A4 0.6 2 

 

Table 5. The Full Multiplicative Form 

 

 
iy  s  Rank 

A1 (0.0017,0.9847,0.01777) -0.983 3 

A2 (0.0099,0.9724,0.01777) -0.9625 2 

A3 (0.0021,0.9912,0.0067) -0.9891 4 

A4 (0.0121,0.9302,0.0577) -0.9181 1 

 

 Step 7. Then by using the Ratio System, the Reference Point 

and the Full Multiplicative Form to rank the candidates, we have the 

following results (Table 6). The Dominance theory (Annex A) is employed 

to summarize the three different ranks provided by respective parts of 

MULTIMOORA-IFN. The last column in Table 6 presents the final ranking. 
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Table 6. Ranking of the candidates according to MULTIMOORA–IFN 

 

 The Ratio 

System 

The Reference 

Point 

The Full 

Multiplicative Form 

MULTIMOORA-

IFN (Final rank) 

A1 4 3 3 3 

A2 2 1 2 2 

A3 3 4 4 4 

A4 1 2 1 1 

 

 According to the multi-criteria evaluation, the fourth candidate 

(A4) should be recruited, whereas the second candidate (A2) is the second-

best option. At the other end of spectrum, candidates A1 and A3 are the last 

two. 

 

6. Conclusion 

 

 The proposed method MULTIMOORA-IFN enables to tackle 

vague and ambiguous ratings express in IFNs thanks to the power ordered 

weighted average operators employed when aggregating the opinions of the 

decision makers. Furthermore, the three parts of MULTIMOORA-IFN 

prioritizes the alternatives in terms of different techniques and thus provides 

one with a more robust ranking. A decision maker can choose the BUM 

function for the aggregation operator as well as the type of the operator and 

thus test the sensitivity of the results. Furthermore, the reference point can 

also be defined in various ways.  

The numerical simulation of personnel selection was 

implemented to test the MULTIMOORA-IFN. Further extensions of the 

MULTIMOORA method aimed at facilitating soft computing with various 

types of information would contribute to the area of the imprecise decision 

making. 
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Annex A. The Dominance Theory 
Absolute Dominance means that an alternative, solution or project is 

dominating in ranking all other alternatives, solutions or projects which are all 

being dominated. This absolute dominance shows as rankings for 

MULTIMOORA: (1–1–1). General Dominance in two of the three methods is of 

the form with a < b < c <d:  

(d–a–a) is generally dominating (c–b–b); 

(a–d–a) is generally dominating (b–c–b); 

(a–a–d) is generally dominating (b–b–c); 

and further transitiveness plays fully. 
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Transitiveness. If a dominates b and b dominates c than also a will 

dominate c. Overall Dominance of one alternative on the next one. For instance (a–

a–a) is overall dominating (b–b–b) which is overall being dominated, with (b–b–b) 

following immediately (a–a–a) in rank (transitiveness is not playing). Absolute 

Equability has the form: for instance (e–e–e) for 2 alternatives. Partial Equability 

of 2 on 3 exists e. g. (5–e–7) and (6–e–3). Despite all distinctions in classification 

some contradictions remain possible in a kind of Circular Reasoning. We can cite 

the case of:  

Object A (11–20–14)  Object B. (14–16–15); 

Object B (14–16–15)  Object C (15–19–12); but 

Object C (15–19–12)  Object A (11–20–14). 

Here, the operator  represents a General Dominance. In such a case the same 

ranking is given to the three objects. 


